1
|
Meng X, Yamashita YM. Intrinsically weak sex chromosome drive through sequential asymmetric meiosis. SCIENCE ADVANCES 2025; 11:eadv7089. [PMID: 40333966 PMCID: PMC12057659 DOI: 10.1126/sciadv.adv7089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Meiotic drivers are selfish genetic elements that bias their own transmission, violating Mendel's Law of Equal Segregation. It has long been recognized that sex chromosome-linked drivers present a paradox: Their success in transmission can severely distort populations' sex ratio and lead to extinction. This paradox is typically solved by the presence of suppressors or fitness costs associated with the driver, limiting the propagation of the driver. Here, we show that Stellate (Ste) in Drosophila melanogaster represents a novel class of X chromosome-linked driver that operates with an inherent mechanism that weakens its drive strength. Ste protein asymmetrically segregates into Y-bearing cells during meiosis I, subsequently causing their death. Unexpectedly, Ste segregates asymmetrically again during meiosis II, sparing half of the Y-bearing spermatids from Ste-induced defects, thereby weakening the drive strength. Our findings reveal a mechanism by which sex chromosome drivers avoid suicidal success.
Collapse
Affiliation(s)
- Xuefeng Meng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Yukiko M. Yamashita
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
2
|
Klumpe S, Senti KA, Beck F, Sachweh J, Hampoelz B, Ronchi P, Oorschot V, Brandstetter M, Yeroslaviz A, Briggs JAG, Brennecke J, Beck M, Plitzko JM. In-cell structure and snapshots of copia retrotransposons in intact tissue by cryo-ET. Cell 2025; 188:2094-2110.e18. [PMID: 40049165 DOI: 10.1016/j.cell.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 03/10/2025]
Abstract
Long terminal repeat (LTR) retrotransposons belong to the transposable elements (TEs), autonomously replicating genetic elements that integrate into the host's genome. Among animals, Drosophila melanogaster serves as an important model organism for TE research and contains several LTR retrotransposons, including the Ty1-copia family, which is evolutionarily related to retroviruses and forms virus-like particles (VLPs). In this study, we use cryo-focused ion beam (FIB) milling and lift-out approaches to visualize copia VLPs in ovarian cells and intact egg chambers, resolving the in situ copia capsid structure to 7.7 Å resolution by cryoelectron tomography (cryo-ET). Although cytoplasmic copia VLPs vary in size, nuclear VLPs are homogeneous and form densely packed clusters, supporting a model in which nuclear import acts as a size selector. Analyzing flies deficient in the TE-suppressing PIWI-interacting RNA (piRNA) pathway, we observe copia's translocation into the nucleus during spermatogenesis. Our findings provide insights into the replication cycle and cellular structural biology of an active LTR retrotransposon.
Collapse
Affiliation(s)
- Sven Klumpe
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Kirsten A Senti
- Institute of Molecular Biotechnology Austria (IMBA), Vienna, Austria
| | - Florian Beck
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jenny Sachweh
- Department Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Bernhard Hampoelz
- Department Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Paolo Ronchi
- EMBL EM Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Viola Oorschot
- EMBL EM Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Assa Yeroslaviz
- Computational Systems Biochemistry, Bioinformatics Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Julius Brennecke
- Institute of Molecular Biotechnology Austria (IMBA), Vienna, Austria.
| | - Martin Beck
- Department Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany; Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany.
| | - Jürgen M Plitzko
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Claro-Linares F, Rojas-Ríos P. PIWI proteins and piRNAs: key regulators of stem cell biology. Front Cell Dev Biol 2025; 13:1540313. [PMID: 39981094 PMCID: PMC11839606 DOI: 10.3389/fcell.2025.1540313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
In this mini review, we discussed the functional roles of PIWI proteins and their associated small RNAs, piRNAs, in regulating gene expression within stem cell biology. Guided by piRNAs, these proteins transcriptionally and post-transcriptionally repress transposons using mechanisms such as the ping-pong amplification cycle and phasing to protect germline genomes. Initially identified in Drosophila melanogaster, the piRNA pathway regulate germline stem cell self-renewal and differentiation via cell-autonomous and non-cell-autonomous mechanisms. Precisely, in GSCs, PIWI proteins and piRNAs regulate gene expression by modulating chromatin states and directly influencing mRNA translation. For instance, the PIWI protein Aubergine loaded with piRNAs promotes and represses translation of certain mRNAs to balance self-renewal and differentiation. Thus, the piRNA pathway exhibits dual regulatory roles in mRNA stability and translation, highlighting its context-dependent functions. Moreover, PIWI proteins are essential in somatic stem cells to support the regenerative capacity of highly regenerative species, such as planarians. Similarly, in Drosophila intestinal stem cells, the PIWI protein Piwi regulates metabolic pathways and genome integrity, impacting longevity and gut homeostasis. In this case, piRNAs appear absent in the gut, suggesting piRNA-independent regulatory mechanisms. Together, PIWI proteins and piRNAs demonstrate evolutionary conservation in stem cell regulation, integrating TE silencing and gene expression regulation at chromatin and mRNA levels in somatic and germline lineages. Beyond their canonical roles, emerging evidence reveal their broader significance in maintaining stem cell properties and organismal health under physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Patricia Rojas-Ríos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Chen P, Pan KC, Park EH, Luo Y, Lee YCG, Aravin AA. Escalation of genome defense capacity enables control of an expanding meiotic driver. Proc Natl Acad Sci U S A 2025; 122:e2418541122. [PMID: 39772737 PMCID: PMC11745323 DOI: 10.1073/pnas.2418541122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases. Such a binary architecture allows the defense systems to be readily adaptable, where new targets can be captured via innovation of specificity factors. Thus, our current understanding of genome defense against lineage-specific selfish genes has been largely limited to specificity factor innovations, while it remains poorly understood whether other types of innovations are required. Here, we describe a new type of innovation, which escalates the genome defense capacity to control a recently expanded selfish gene in Drosophila melanogaster. Through a targeted RNAi screen for repressors of Stellate-a recently evolved meiotic driver-we identified a defense factor, Trailblazer. Trailblazer is a transcription factor that promotes the expression of two PIWI-clade nucleases, Aub and AGO3, to match Stellate in abundance. Recent innovation in the DNA-binding domain of Trailblazer enabled it to elevate Aub and AGO3 expression, thereby escalating the silencing capacity of piRNA pathway to tame expanded Stellate and safeguard fertility. As copy-number expansion is a recurrent feature of diverse selfish genes across the tree of life, we envision that augmenting the defense capacity to quantitatively match selfish genes is a repeatedly employed defense strategy in evolution.
Collapse
Affiliation(s)
- Peiwei Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Katherine C. Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Eunice H. Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
5
|
Yamashita T, Komenda K, Miłodrowski R, Robak D, Szrajer S, Gaczorek T, Ylla G. Non-gonadal expression of piRNAs is widespread across Arthropoda. FEBS Lett 2025; 599:3-18. [PMID: 39358781 PMCID: PMC11726155 DOI: 10.1002/1873-3468.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
PIWI-interacting RNAs (piRNAs) were discovered in the early 2000s and became known for their role in protecting the germline genome against mobile genetic elements. Successively, piRNAs were also detected in the somatic cells of gonads in multiple animal species. In recent years, piRNAs have been reported in non-gonadal tissues in various arthropods, contrary to the initial assumptions of piRNAs being exclusive to gonads. Here, we performed an extensive literature review, which revealed that reports on non-gonadal somatic piRNA expression are not limited to a few specific species. Instead, when multiple studies are considered collectively, it appears to be a widespread phenomenon across arthropods. Furthermore, we systematically analyzed 168 publicly available small RNA-seq datasets from diverse tissues in 17 species, which further supported the bibliographic reports that piRNAs are expressed across tissues and species in Arthropoda.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Krystian Komenda
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Doctoral School of Exact and Natural SciencesJagiellonian UniversityKrakowPoland
| | - Rafał Miłodrowski
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Doctoral School of Exact and Natural SciencesJagiellonian UniversityKrakowPoland
| | - Dominik Robak
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Szymon Szrajer
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Tomasz Gaczorek
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| |
Collapse
|
6
|
Suyama R, Kai T. piRNA processing within non-membrane structures is governed by constituent proteins and their functional motifs. FEBS J 2024. [PMID: 39739617 DOI: 10.1111/febs.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/23/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Discovered two decades ago, PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs) in animal gonads, thereby protecting the germline genome from harmful transposition, and ensuring species continuity. Silencing of TEs is achieved through transcriptional and post-transcriptional suppression by piRNAs and the PIWI clade of Argonaute proteins within non-membrane structured organelle. These structures are composed of proteins involved in piRNA processing, including PIWIs and other proteins by distinct functional motifs such as the Tudor domain, LOTUS, and intrinsic disordered regions (IDRs). This review highlights recent advances in understanding the roles of these conserved proteins and structural motifs in piRNA biogenesis. We explore the molecular mechanisms of piRNA biogenesis, with a primary focus on Drosophila as a model organism, identifying common themes and species-specific variations. Additionally, we extend the discussion to the roles of these components in nongonadal tissues.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Kaneko S, Miyoshi K, Tomuro K, Terauchi M, Tanaka R, Kondo S, Tani N, Ishiguro KI, Toyoda A, Kamikouchi A, Noguchi H, Iwasaki S, Saito K. Mettl1-dependent m 7G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster. Nat Commun 2024; 15:8147. [PMID: 39317727 PMCID: PMC11422498 DOI: 10.1038/s41467-024-52389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Modification of guanosine to N7-methylguanosine (m7G) in the variable loop region of tRNA is catalyzed by the METTL1/WDR4 heterodimer and stabilizes target tRNA. Here, we reveal essential functions of Mettl1 in Drosophila fertility. Knockout of Mettl1 (Mettl1-KO) causes no major effect on the development of non-gonadal tissues, but abolishes the production of elongated spermatids and mature sperm, which is fully rescued by expression of a Mettl1-transgene, but not a catalytic-dead Mettl1 transgene. This demonstrates that Mettl1-dependent m7G is required for spermatogenesis. Mettl1-KO results in a loss of m7G modification on a subset of tRNAs and decreased tRNA abundance. Ribosome profiling shows that Mettl1-KO led to ribosomes stalling at codons decoded by tRNAs that were reduced in abundance. Mettl1-KO also significantly reduces the translation efficiency of genes involved in elongated spermatid formation and sperm stability. Germ cell-specific expression of Mettl1 rescues disrupted m7G tRNA modification and tRNA abundance in Mettl1-KO testes but not in non-gonadal tissues. Ribosome stalling is much less detectable in non-gonadal tissues than in Mettl1-KO testes. These findings reveal a developmental role for m7G tRNA modification and indicate that m7G modification-dependent tRNA abundance differs among tissues.
Collapse
Affiliation(s)
- Shunya Kaneko
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Keita Miyoshi
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan.
| |
Collapse
|
8
|
Adashev VE, Kotov AA, Bazylev SS, Kombarov IA, Olenkina OM, Shatskikh AS, Olenina LV. Essential functions of RNA helicase Vasa in maintaining germline stem cells and piRNA-guided Stellate silencing in Drosophila spermatogenesis. Front Cell Dev Biol 2024; 12:1450227. [PMID: 39184915 PMCID: PMC11341464 DOI: 10.3389/fcell.2024.1450227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
DEAD-box RNA helicase Vasa is required for gonad development and fertility in multiple animals. Vasa is implicated in many crucial aspects of Drosophila oogenesis, including translation regulation, primordial germ cell specification, piRNA silencing of transposable elements, and maintenance of germline stem cells (GSCs). However, data about Vasa functions in Drosophila spermatogenesis remain controversial. Here we showed that loss-of-function vasa mutations led to failures of GSC maintenance in the testes, a severe loss of total germ cell content, and a cessation of male fertility over time. Defects in GSC maintenance in vasa mutant testes were not associated with an increasing frequency of programmed cell death, indicating that a premature loss of GSCs occurred via entering differentiation. We found that Vasa is implicated in the positive regulation of rhino expression both in the testes and ovaries. The introduction of a transgene copy of rhino, encoding a nuclear component of piRNA pathway machinery, in vasa mutant background allowed us to restore premeiotic stages of spermatogenesis, including the maintenance of GSCs and the development of spermatogonia and spermatocytes. However, piRNA-guided repression of Stellate genes in spermatocytes of vasa mutant testes with additional rhino copy was not restored, and male fertility was disrupted. Our study uncovered a novel mechanistic link involving Vasa and Rhino in a regulatory network that mediates GSC maintenance but is dispensable for the perfect biogenesis of Su(Ste) piRNAs in testes. Thus, we have shown that Vasa functions in spermatogenesis are essential at two distinct developmental stages: in GSCs for their maintenance and in spermatocytes for piRNA-mediated silencing of Stellate genes.
Collapse
Affiliation(s)
- Vladimir E. Adashev
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A. Kotov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S. Bazylev
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilia A. Kombarov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Oxana M. Olenkina
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre Kurchatov Institute, Moscow, Russia
| | - Aleksei S. Shatskikh
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V. Olenina
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Chen P, Pan KC, Park EH, Luo Y, Lee YCG, Aravin AA. Escalation of genome defense capacity enables control of an expanding meiotic driver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598716. [PMID: 38915551 PMCID: PMC11195268 DOI: 10.1101/2024.06.12.598716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity1,2. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, which controls selfish elements in the metazoan germline, diverse target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases via enzymatic cleavage1,3. Such a binary architecture allows the defense systems to be readily adaptable, where new targets can be captured via the innovation of new specificity factors4,5. Thus, our current understanding of genome defense against lineage-specific selfish genes has been largely limited to the evolution of specificity factors, while it remains poorly understood whether other types of innovations are required. Here, we describe a new type of innovation, which escalates the defense capacity of the piRNA pathway to control a recently expanded selfish gene in Drosophila melanogaster. Through an in vivo RNAi screen for repressors of Stellate-a recently evolved and expanded selfish meiotic driver6-8-we discovered a novel defense factor, Trailblazer. Trailblazer is a transcription factor that promotes the expression of two PIWI-clade nucleases, Aub and AGO3, to match Stellate in abundance. Recent innovation in the DNA-binding domain of Trailblazer enabled it to drastically elevate Aub and AGO3 expression in the D. melanogaster lineage, thereby escalating the silencing capacity of the piRNA pathway to control expanded Stellate and safeguard fertility. As copy-number expansion is a recurrent feature of diverse selfish genes across the tree of life9-12, we envision that augmenting the defense capacity to quantitatively match selfish genes is likely a repeatedly employed defense strategy in evolution.
Collapse
Affiliation(s)
- Peiwei Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Katherine C. Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Eunice H. Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California 92697, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
10
|
Kotov AA, Adashev VE, Kombarov IA, Bazylev SS, Shatskikh AS, Olenina LV. Molecular Insights into Female Hybrid Sterility in Interspecific Crosses between Drosophila melanogaster and Drosophila simulans. Int J Mol Sci 2024; 25:5681. [PMID: 38891872 PMCID: PMC11172174 DOI: 10.3390/ijms25115681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.
Collapse
Affiliation(s)
- Alexei A. Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Vladimir E. Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Ilia A. Kombarov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Sergei S. Bazylev
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Aleksei S. Shatskikh
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Ludmila V. Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| |
Collapse
|
11
|
Zhang H, Li Y. Potential roles of PIWI-interacting RNAs in breast cancer, a new therapeutic strategy. Pathol Res Pract 2024; 257:155318. [PMID: 38688203 DOI: 10.1016/j.prp.2024.155318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Breast cancer (BC) has been the focus of numerous studies aimed at identifying novel biological markers for its early detection. PIWI-interacting RNAs (piRNAs), a subset of small non-coding RNAs, have emerged as potential markers due to their aberrant expression in various cancers. PiRNAs have recently gained attention due to their aberrant expression in various cancers, including BC. PiRNAs, exhibit diverse biological activities, such as epigenetic regulation of gene and protein expression and their association with cell proliferation and metastasis has been well-established. As the field of non-coding RNAs rapidly evolves, there is great anticipation that therapies targeting piRNAs will advance swiftly. This review will delve into the various biological functions of piRNAs, such as gene suppression, transposon silencing, and epigenetic regulation of genes. The review will also highlight the role of piRNAs as either progenitors or suppressors in cancers, with a particular focus on BC. Lastly, it will touch upon the potential of piRNAs as biomarkers and therapeutic targets for BC.
Collapse
Affiliation(s)
- Hongpeng Zhang
- The Second Clinical College, China Medical University, Shenyang 110122, China
| | - Yanshu Li
- School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
12
|
Gupta P, Das G, Chattopadhyay T, Ghosh Z, Mallick B. TarpiD, a database of putative and validated targets of piRNAs. Mol Omics 2023; 19:706-713. [PMID: 37427797 DOI: 10.1039/d3mo00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel class of 18-36 nts long small non-coding single-stranded RNAs that play crucial roles in a wide array of critical biological activities besides maintaining genome integrity by transposon silencing. piRNAs influence biological processes and pathways by regulating gene expression at transcriptional and post-transcriptional level. Studies have reported that piRNAs silence various endogenous genes post-transcriptionally by binding to respective mRNAs through interaction with the PIWI proteins. Several thousands of piRNAs have been discovered in animals, but their functions remain largely undiscovered owing to a lack of proper guiding principles of piRNA targeting or diversity in targeting patterns amongst piRNAs from the same or different species. Identification of piRNA targets is essential for deciphering their functions. There are a few tools and databases on piRNAs, but there are no systematic and exclusive repositories to obtain information on target genes regulated by piRNAs and other related information. Hence, we developed a user-friendly database named TarpiD (Targets of piRNA Database) that offers comprehensive information on piRNA and its targets, including their expression, methodologies (high-throughput or low-throughput) for target identification/validation, cells/tissue types, diseases, target gene regulation types, target binding regions, and key functions driven by piRNAs through target gene interactions. The contents of TarpiD are curated from the published literature and enable users to search and download the targets of a particular piRNA or the piRNAs that target a specific gene for use in their research. This database harbours 28 682 entries of piRNA-target interactions supported by 15 methodologies reported in hundreds of cell types/tissues from 9 species. TarpiD will be a valuable resource for a better understanding of the functions and gene-regulatory mechanisms mediated by piRNAs. TarpiD is freely accessible for academic use at https://tarpid.nitrkl.ac.in/tarpid_db/.
Collapse
Affiliation(s)
- Pooja Gupta
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| | - Gourab Das
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| |
Collapse
|
13
|
Venkei ZG, Gainetdinov I, Bagci A, Starostik MR, Choi CP, Fingerhut JM, Chen P, Balsara C, Whitfield TW, Bell GW, Feng S, Jacobsen SE, Aravin AA, Kim JK, Zamore PD, Yamashita YM. A maternally programmed intergenerational mechanism enables male offspring to make piRNAs from Y-linked precursor RNAs in Drosophila. Nat Cell Biol 2023; 25:1495-1505. [PMID: 37723298 PMCID: PMC10567549 DOI: 10.1038/s41556-023-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/09/2023] [Indexed: 09/20/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence complementary targets such as transposons. In Drosophila and other species with a maternally specified germline, piRNAs deposited in the egg initiate piRNA biogenesis in the progeny. However, Y chromosome loci cannot participate in such a chain of intergenerational inheritance. How then can the biogenesis of Y-linked piRNAs be initiated? Here, using Suppressor of Stellate (Su(Ste)), a Y-linked Drosophila melanogaster piRNA locus as a model, we show that Su(Ste) piRNAs are made in the early male germline via 5'-to-3' phased piRNA biogenesis initiated by maternally deposited 1360/Hoppel transposon piRNAs. Notably, deposition of Su(Ste) piRNAs from XXY mothers obviates the need for phased piRNA biogenesis in sons. Together, our study uncovers a developmentally programmed, intergenerational mechanism that allows fly mothers to protect their sons using a Y-linked piRNA locus.
Collapse
Affiliation(s)
- Zsolt G Venkei
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ayca Bagci
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Charlotte P Choi
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peiwei Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chiraag Balsara
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George W Bell
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Loubalova Z, Konstantinidou P, Haase AD. Themes and variations on piRNA-guided transposon control. Mob DNA 2023; 14:10. [PMID: 37660099 PMCID: PMC10474768 DOI: 10.1186/s13100-023-00298-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are responsible for preventing the movement of transposable elements in germ cells and protect the integrity of germline genomes. In this review, we examine the common elements of piRNA-guided silencing as well as the differences observed between species. We have categorized the mechanisms of piRNA biogenesis and function into modules. Individual PIWI proteins combine these modules in various ways to produce unique PIWI-piRNA pathways, which nevertheless possess the ability to perform conserved functions. This modular model incorporates conserved core mechanisms and accommodates variable co-factors. Adaptability is a hallmark of this RNA-based immune system. We believe that considering the differences in germ cell biology and resident transposons in different organisms is essential for placing the variations observed in piRNA biology into context, while still highlighting the conserved themes that underpin this process.
Collapse
Affiliation(s)
- Zuzana Loubalova
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Page N, Taxiarchi C, Tonge D, Kuburic J, Chesters E, Kriezis A, Kyrou K, Game L, Nolan T, Galizi R. Single-cell profiling of Anopheles gambiae spermatogenesis defines the onset of meiotic silencing and premeiotic overexpression of the X chromosome. Commun Biol 2023; 6:850. [PMID: 37582841 PMCID: PMC10427639 DOI: 10.1038/s42003-023-05224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Understanding development and genetic regulation in the Anopheles gambiae germline is essential to engineer effective genetic control strategies targeting this malaria mosquito vector. These include targeting the germline to induce sterility or using regulatory sequences to drive transgene expression for applications such as gene drive. However, only very few germline-specific regulatory elements have been characterised with the majority showing leaky expression. This has been shown to considerably reduce the efficiency of current genetic control strategies, which rely on regulatory elements with more tightly restricted spatial and/or temporal expression. Meiotic silencing of the sex chromosomes limits the flexibility of transgene expression to develop effective sex-linked genetic control strategies. Here, we build on our previous study, dissecting gametogenesis into four distinct cell populations, using single-cell RNA sequencing to define eight distinct cell clusters and associated germline cell-types using available marker genes. We reveal overexpression of X-linked genes in a distinct cluster of pre-meiotic cells and document the onset of meiotic silencing of the X chromosome in a subcluster of cells in the latter stages of spermatogenesis. This study provides a comprehensive dataset, characterising the expression of distinct cell types through spermatogenesis and widening the toolkit for genetic control of malaria mosquitoes.
Collapse
Affiliation(s)
- Nicole Page
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Daniel Tonge
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Jasmina Kuburic
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Emily Chesters
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Antonios Kriezis
- Department of Life Sciences, Imperial College London, London, UK
| | - Kyros Kyrou
- Department of Life Sciences, Imperial College London, London, UK
| | - Laurence Game
- Genomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK.
| |
Collapse
|
16
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
17
|
Jarva T, Zhang J, Flynt A. MiSiPi-Rna: an integrated tool for characterizing small regulatory RNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539760. [PMID: 37214880 PMCID: PMC10197562 DOI: 10.1101/2023.05.07.539760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA interference (RNAi) is mediated by small (20-30 nucleotide) RNAs that are produced by complex processing pathways. In animals, three main classes are recognized: microRNAs (miRNAs), small-interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs). Understanding of small RNA pathways has benefited from genetic models where key enzymatic events were identified that lead to stereotypical positioning of small RNAs relative to precursor transcripts. Increasingly there is interest in using RNAi in non-model systems due to ease of generating synthetic small RNA precursors for research and biotechnology. Unfortunately, small RNAs are often rapidly evolving, requiring investigation of a species' endogenous small RNAs prior to deploying an RNAi approach. This can be accomplished through small non-coding RNA sequencing followed by applying various computational tools; however, the complexity and separately maintained packages lead to significant challenges for annotating global small RNA populations. To address this need, we developed a simple and efficient R package (MiSiPi-Rna) which can be used to characterize pre-selected loci with plots and statistics, aiding researchers understanding RNAi biology specific to their target species. Additionally, MiSiPi-Rna pioneers several computational approaches to identifying Dicer processing to assist annotation of miRNA and siRNA.
Collapse
|
18
|
Yamazaki H, Namba Y, Kuriyama S, Nishida KM, Kajiya A, Siomi MC. Bombyx Vasa sequesters transposon mRNAs in nuage via phase separation requiring RNA binding and self-association. Nat Commun 2023; 14:1942. [PMID: 37029111 PMCID: PMC10081994 DOI: 10.1038/s41467-023-37634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Bombyx Vasa (BmVasa) assembles non-membranous organelle, nuage or Vasa bodies, in germ cells, known as the center for Siwi-dependent transposon silencing and concomitant Ago3-piRISC biogenesis. However, details of the body assembly remain unclear. Here, we show that the N-terminal intrinsically disordered region (N-IDR) and RNA helicase domain of BmVasa are responsible for self-association and RNA binding, respectively, but N-IDR is also required for full RNA-binding activity. Both domains are essential for Vasa body assembly in vivo and droplet formation in vitro via phase separation. FAST-iCLIP reveals that BmVasa preferentially binds transposon mRNAs. Loss of Siwi function derepresses transposons but has marginal effects on BmVasa-RNA binding. This study shows that BmVasa assembles nuage by phase separation via its ability to self-associate and bind newly exported transposon mRNAs. This unique property of BmVasa allows transposon mRNAs to be sequestered and enriched in nuage, resulting in effective Siwi-dependent transposon repression and Ago3-piRISC biogenesis.
Collapse
Affiliation(s)
- Hiroya Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yurika Namba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Shogo Kuriyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Asako Kajiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
19
|
Cao J, Yu T, Xu B, Hu Z, Zhang XO, Theurkauf W, Weng Z. Epigenetic and chromosomal features drive transposon insertion in Drosophila melanogaster. Nucleic Acids Res 2023; 51:2066-2086. [PMID: 36762470 PMCID: PMC10018349 DOI: 10.1093/nar/gkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Transposons are mobile genetic elements prevalent in the genomes of most species. The distribution of transposons within a genome reflects the actions of two opposing processes: initial insertion site selection, and selective pressure from the host. By analyzing whole-genome sequencing data from transposon-activated Drosophila melanogaster, we identified 43 316 de novo and 237 germline insertions from four long-terminal-repeat (LTR) transposons, one LINE transposon (I-element), and one DNA transposon (P-element). We found that all transposon types favored insertion into promoters de novo, but otherwise displayed distinct insertion patterns. De novo and germline P-element insertions preferred replication origins, often landing in a narrow region around transcription start sites and in regions of high chromatin accessibility. De novo LTR transposon insertions preferred regions with high H3K36me3, promoters and exons of active genes; within genes, LTR insertion frequency correlated with gene expression. De novo I-element insertion density increased with distance from the centromere. Germline I-element and LTR transposon insertions were depleted in promoters and exons, suggesting strong selective pressure to remove transposons from functional elements. Transposon movement is associated with genome evolution and disease; therefore, our results can improve our understanding of genome and disease biology.
Collapse
Affiliation(s)
- Jichuan Cao
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo Xu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongren Hu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-ou Zhang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
20
|
Raz AA, Vida GS, Stern SR, Mahadevaraju S, Fingerhut JM, Viveiros JM, Pal S, Grey JR, Grace MR, Berry CW, Li H, Janssens J, Saelens W, Shao Z, Hu C, Yamashita YM, Przytycka T, Oliver B, Brill JA, Krause H, Matunis EL, White-Cooper H, DiNardo S, Fuller MT. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 2023; 12:e82201. [PMID: 36795469 PMCID: PMC9934865 DOI: 10.7554/elife.82201] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Proper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in Drosophila starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells. We justify assignment of key germline and somatic cell types using combinations of known markers, in situ hybridization, and analysis of extant protein traps. Comparison of single cell and single nucleus datasets proved particularly revealing of dynamic developmental transitions in germline differentiation. To complement the web-based portals for data analysis hosted by the FCA, we provide datasets compatible with commonly used software such as Seurat and Monocle. The foundation provided here will enable communities studying spermatogenesis to interrogate the datasets to identify candidate genes to test for function in vivo.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Gabriela S Vida
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Sarah R Stern
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Sharvani Mahadevaraju
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Jennifer M Viveiros
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Soumitra Pal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Jasmine R Grey
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mara R Grace
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cameron W Berry
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jasper Janssens
- JVIB Center for Brain & Disease Research, and the Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Wouter Saelens
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, and Department of Applied Mathematics, Computer Science and Statistics, Ghent UniversityGhentBelgium
| | - Zhantao Shao
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chun Hu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Teresa Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Institute of Medical Science, University of TorontoTorontoCanada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | | | - Stephen DiNardo
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
21
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
22
|
Shoji K, Umemura Y, Katsuma S, Tomari Y. The piRNA cluster torimochi is an expanding transposon in cultured silkworm cells. PLoS Genet 2023; 19:e1010632. [PMID: 36758066 PMCID: PMC9946225 DOI: 10.1371/journal.pgen.1010632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/22/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
PIWI proteins and PIWI-interacting RNAs (piRNAs) play a central role in repressing transposable elements in animal germ cells. It is thought that piRNAs are mainly produced from discrete genomic loci named piRNA clusters, which often contain many "dead" transposon remnants from past invasions and have heterochromatic features. In the genome of silkworm ovary-derived cultured cells called BmN4, a well-established model for piRNA research, torimochi was previously annotated as a unique and specialized genomic region that can capture transgenes and produce new piRNAs bearing a trans-silencing activity. However, the sequence identity of torimochi has remained elusive. Here, we carefully characterized torimochi by utilizing the updated silkworm genome sequence and the long-read sequencer MinION. We found that torimochi is in fact a full-length gypsy-like LTR retrotransposon, which is exceptionally active and has massively expanded its copy number in BmN4 cells. Many copies of torimochi in BmN4 cells have features of open chromatin and the ability to produce piRNAs. Therefore, torimochi may represent a young, growing piRNA cluster, which is still "alive" and active in transposition yet capable of trapping other transposable elements to produce de novo piRNAs.
Collapse
Affiliation(s)
- Keisuke Shoji
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (K.S); (Y.T)
| | - Yusuke Umemura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (K.S); (Y.T)
| |
Collapse
|
23
|
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 2023; 24:123-141. [PMID: 36104626 DOI: 10.1038/s41580-022-00528-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Anne Ramat
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
24
|
Messina G, Celauro E, Marsano RM, Prozzillo Y, Dimitri P. Epigenetic Silencing of P-Element Reporter Genes Induced by Transcriptionally Active Domains of Constitutive Heterochromatin in Drosophila melanogaster. Genes (Basel) 2022; 14:genes14010012. [PMID: 36672753 PMCID: PMC9858095 DOI: 10.3390/genes14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Reporter genes inserted via P-element integration into different locations of the Drosophila melanogaster genome have been routinely used to monitor the functional state of chromatin domains. It is commonly thought that P-element-derived reporter genes are subjected to position effect variegation (PEV) when transposed into constitutive heterochromatin because they acquire heterochromatin-like epigenetic modifications that promote silencing. However, sequencing and annotation of the D. melanogaster genome have shown that constitutive heterochromatin is a genetically and molecularly heterogeneous compartment. In fact, in addition to repetitive DNAs, it harbors hundreds of functional genes, together accounting for a significant fraction of its entire genomic territory. Notably, most of these genes are actively transcribed in different developmental stages and tissues, irrespective of their location in heterochromatin. An open question in the genetic and molecular studies on PEV in D. melanogaster is whether functional heterochromatin domains, i.e., heterochromatin harboring active genes, are able to silence reporter genes therein transposed or, on the contrary, can drive their expression. In this work, we provide experimental evidence showing that strong silencing of the Pw+ reporters is induced even when they are integrated within or near actively transcribed loci in the pericentric regions of chromosome 2. Interestingly, some Pw+ reporters were found insensitive to the action of a known PEV suppressor. Two of them are inserted within Yeti, a gene expressed in the deep heterochromatin of chromosome 2 which carries active chromatin marks. The difference sensitivity to suppressors-exhibited Pw+ reporters supports the view that different epigenetic regulators or mechanisms control different regions of heterochromatin. Together, our results suggest that there may be more complexity regarding the molecular mechanisms underlying PEV.
Collapse
Affiliation(s)
- Giovanni Messina
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy
| | - Emanuele Celauro
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy
| | | | - Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy
- Correspondence:
| |
Collapse
|
25
|
Walsh E, Torres TZB, Rückert C. Culex Mosquito Piwi4 Is Antiviral against Two Negative-Sense RNA Viruses. Viruses 2022; 14:2758. [PMID: 36560761 PMCID: PMC9781653 DOI: 10.3390/v14122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Culex spp. mosquitoes transmit several pathogens concerning public health, including West Nile virus and Saint Louis encephalitis virus. Understanding the antiviral immune system of Culex spp. mosquitoes is important for reducing the transmission of these viruses. Mosquitoes rely on RNA interference (RNAi) to control viral replication. While the siRNA pathway in mosquitoes is heavily studied, less is known about the piRNA pathway. The piRNA pathway in mosquitoes has recently been connected to mosquito antiviral immunity. In Aedes aegypti, Piwi4 has been implicated in antiviral responses. The antiviral role of the piRNA pathway in Culex spp. mosquitoes is understudied compared to Ae. aegypti. Here, we aimed to identify the role of PIWI genes and piRNAs in Culex quinquefasciatus and Culex tarsalis cells during virus infection. We examined the effect of PIWI gene silencing on virus replication of two arboviruses and three insect-specific viruses in Cx. quinquefasciatus derived cells (Hsu) and Cx. tarsalis derived (CT) cells. We show that Piwi4 is antiviral against the La Crosse orthobunyavirus (LACV) in Hsu and CT cells, and the insect-specific rhabdovirus Merida virus (MERDV) in Hsu cells. None of the silenced PIWI genes impacted replication of the two flaviviruses Usutu virus (USUV) and Calbertado virus, or the phasivirus Phasi-Charoen-like virus. We further used small RNA sequencing to determine that LACV-derived piRNAs, but not USUV-derived piRNAs were generated in Hsu cells and that PIWI gene silencing resulted in a small reduction in vpiRNAs. Finally, we determined that LACV-derived DNA was produced in Hsu cells during infection, but whether this viral DNA is required for vpiRNA production remains unclear. Overall, we expanded our knowledge on the piRNA pathway and how it relates to the antiviral response in Culex spp mosquitoes.
Collapse
Affiliation(s)
| | | | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
26
|
A Tale of Two Lobsters—Transcriptomic Analysis Reveals a Potential Gap in the RNA Interference Pathway in the Tropical Rock Lobster Panulirus ornatus. Int J Mol Sci 2022; 23:ijms231911752. [PMID: 36233053 PMCID: PMC9569428 DOI: 10.3390/ijms231911752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
RNA interference (RNAi) has been widely utilised in many invertebrate models since its discovery, and in a majority of instances presents as a highly efficient and potent gene silencing mechanism. This is emphasized in crustaceans with almost all taxa having the capacity to trigger effective silencing, with a notable exception in the spiny lobsters where repeated attempts at dsRNA induced RNAi have demonstrated extremely ineffective gene knockdown. A comparison of the core RNAi machinery in transcriptomic data from spiny lobsters (Panulirus ornatus) and the closely related slipper lobsters (Thenus australiensis, where silencing is highly effective) revealed that both lobsters possess all proteins involved in the small interfering and microRNA pathways, and that there was little difference at both the sequence and domain architecture level. Comparing the expression of these genes however demonstrated that T. australiensis had significantly higher expression in the transcripts encoding proteins which directly interact with dsRNA when compared to P. ornatus, validated via qPCR. These results suggest that low expression of the core RNAi genes may be hindering the silencing response in P. ornatus, and suggest that it may be critical to enhance the expression of these genes to induce efficient silencing in spiny lobsters.
Collapse
|
27
|
Quarato P, Singh M, Bourdon L, Cecere G. Inheritance and maintenance of small RNA-mediated epigenetic effects. Bioessays 2022; 44:e2100284. [PMID: 35338497 DOI: 10.1002/bies.202100284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Heritable traits are predominantly encoded within genomic DNA, but it is now appreciated that epigenetic information is also inherited through DNA methylation, histone modifications, and small RNAs. Several examples of transgenerational epigenetic inheritance of traits have been documented in plants and animals. These include even the inheritance of traits acquired through the soma during the life of an organism, implicating the transfer of epigenetic information via the germline to the next generation. Small RNAs appear to play a significant role in carrying epigenetic information across generations. This review focuses on how epigenetic information in the form of small RNAs is transmitted from the germline to the embryos through the gametes. We also consider how inherited epigenetic information is maintained across generations in a small RNA-dependent and independent manner. Finally, we discuss how epigenetic traits acquired from the soma can be inherited through small RNAs.
Collapse
Affiliation(s)
- Piergiuseppe Quarato
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Meetali Singh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Loan Bourdon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Germano Cecere
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| |
Collapse
|
28
|
Namba Y, Iwasaki YW, Nishida KM, Nishihara H, Sumiyoshi T, Siomi MC. Maelstrom functions in the production of Siwi-piRISC capable of regulating transposons in Bombyx germ cells. iScience 2022; 25:103914. [PMID: 35243263 PMCID: PMC8881725 DOI: 10.1016/j.isci.2022.103914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yurika Namba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka W. Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama 332-0012, Japan
| | - Kazumichi M. Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mikiko C. Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
- Corresponding author
| |
Collapse
|
29
|
Ghosh B, Sarkar A, Mondal S, Bhattacharya N, Khatua S, Ghosh Z. piRNAQuest V.2: an updated resource for searching through the piRNAome of multiple species. RNA Biol 2021; 19:12-25. [PMID: 34965192 PMCID: PMC8786328 DOI: 10.1080/15476286.2021.2010960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PIWI interacting RNAs (piRNAs) have emerged as important gene regulators in recent times. Since the release of our first version of piRNAQuest in 2014, lots of novel piRNAs have been annotated in different species other than human, mouse and rat. Such new developments in piRNA research have led us to develop an updated database piRNAQuest V.2. It consists of 92,77,689 piRNA entries for 25 new species of different phylum along with human, mouse and rat. Besides providing primary piRNA features which include their genomic location, with further information on piRNAs overlapping with repeat elements, pseudogenes and syntenic regions, etc., the novel features of this version includes (i) density based cluster prediction, (ii) piRNA expression profile across various healthy and disease systems and (iii) piRNA target prediction. The concept of density-based piRNA cluster identification is robust as it does not consider parametric distribution in its model. The piRNA expression profile for 21 disease systems including cancer have been hosted in addition to 32 tissue specific piRNA expression profile for various species. Further, the piRNA target prediction section includes both predicted and curated piRNA targets within eight disease systems and developmental stages of mouse testis. Further, users can visualize the piRNA-target duplex structure and the ping-pong signature pattern for all the ping-pong piRNA partners in different species. Overall, piRNAQuest V.2 is an updated user-friendly database which will serve as a useful resource to survey, search and retrieve information on piRNAs for multiple species. This freely accessible database is available at http://dibresources.jcbose.ac.in/zhumur/pirnaquest2.
Collapse
Affiliation(s)
- Byapti Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Arijita Sarkar
- Division of Bioinformatics, Bose Institute, Kolkata, India.,Present Affiliation: Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sudip Mondal
- Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
| | - Namrata Bhattacharya
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi, India
| | - Sunirmal Khatua
- Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| |
Collapse
|
30
|
Choudhary C, Meghwanshi KK, Shukla N, Shukla JN. Innate and adaptive resistance to RNAi: a major challenge and hurdle to the development of double stranded RNA-based pesticides. 3 Biotech 2021; 11:498. [PMID: 34881161 PMCID: PMC8595431 DOI: 10.1007/s13205-021-03049-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing process where short interfering RNAs degrade targeted mRNA. Exploration of gene function through reverse genetics is the major achievement of RNAi discovery. Besides, RNAi can be used as a potential strategy for the control of insect pests. This has led to the idea of developing RNAi-based pesticides. Differential RNAi efficiency in the different insect orders is the biggest biological obstacle in developing RNAi-based pesticides. dsRNA stability, the sensitivity of core RNAi machinery, uptake of dsRNA and amplification and spreading of the RNAi signal are the key factors responsible for RNAi efficiency in insects. This review discusses the physiological and adaptive factors responsible for reduced RNAi in insects that pose a major challenge in developing dsRNA- based pesticides.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Nidhi Shukla
- Birla Institute of Scientific Research, Statue Circle, Prithviraj Rd, C-Scheme, Jaipur, Rajasthan 302001 India
| | - Jayendra Nath Shukla
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| |
Collapse
|
31
|
Lawlor MA, Cao W, Ellison CE. A transposon expression burst accompanies the activation of Y-chromosome fertility genes during Drosophila spermatogenesis. Nat Commun 2021; 12:6854. [PMID: 34824217 PMCID: PMC8617248 DOI: 10.1038/s41467-021-27136-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
Transposable elements (TEs) must replicate in germline cells to pass novel insertions to offspring. In Drosophila melanogaster ovaries, TEs can exploit specific developmental windows of opportunity to evade host silencing and increase their copy numbers. However, TE activity and host silencing in the distinct cell types of Drosophila testis are not well understood. Here, we reanalyze publicly available single-cell RNA-seq datasets to quantify TE expression in the distinct cell types of the Drosophila testis. We develop a method for identification of TE and host gene expression modules and find that a distinct population of early spermatocytes expresses a large number of TEs at much higher levels than other germline and somatic components of the testes. This burst of TE expression coincides with the activation of Y chromosome fertility factors and spermatocyte-specific transcriptional regulators, as well as downregulation of many components of the piRNA pathway. The TEs expressed by this cell population are specifically enriched on the Y chromosome and depleted on the X chromosome, relative to other active TEs. These data suggest that some TEs may achieve high insertional activity in males by exploiting a window of opportunity for mobilization created by the activation of spermatocyte-specific and Y chromosome-specific transcriptional programs.
Collapse
Affiliation(s)
- Matthew A Lawlor
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
32
|
The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mamm Genome 2021; 33:293-311. [PMID: 34724117 PMCID: PMC9114089 DOI: 10.1007/s00335-021-09927-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
PIWI-interacting RNAs (piRNAs), small noncoding RNAs 24–35 nucleotides long, are essential for animal fertility. They play critical roles in a range of functions, including transposable element suppression, gene expression regulation, imprinting, and viral defense. In mammals, piRNAs are the most abundant small RNAs in adult testes and the only small RNAs that direct epigenetic modification of chromatin in the nucleus. The production of piRNAs is a complex process from transcription to post-transcription, requiring unique machinery often distinct from the biogenesis of other RNAs. In mice, piRNA biogenesis occurs in specialized subcellular locations, involves dynamic developmental regulation, and displays sexual dimorphism. Furthermore, the genomic loci and sequences of piRNAs evolve much more rapidly than most of the genomic regions. Understanding piRNA biogenesis should reveal novel RNA regulations recognizing and processing piRNA precursors and the forces driving the gain and loss of piRNAs during animal evolution. Such findings may provide the basis for the development of engineered piRNAs capable of modulating epigenetic regulation, thereby offering possible single-dose RNA therapy without changing the genomic DNA. In this review, we focus on the biogenesis of piRNAs in mammalian adult testes that are derived from long non-coding RNAs. Although piRNA biogenesis is believed to be evolutionarily conserved from fruit flies to humans, recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert precursor RNAs into piRNAs, perhaps associated with the unique features of mammalian piRNAs or germ cell development. We end with the discussion of major questions in the field, including substrate recognition and the birth of new piRNAs.
Collapse
|
33
|
Ow MC, Hall SE. piRNAs and endo-siRNAs: Small molecules with large roles in the nervous system. Neurochem Int 2021; 148:105086. [PMID: 34082061 PMCID: PMC8286337 DOI: 10.1016/j.neuint.2021.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Since their discovery, small non-coding RNAs have emerged as powerhouses in the regulation of numerous cellular processes. In addition to guarding the integrity of the reproductive system, small non-coding RNAs play critical roles in the maintenance of the soma. Accumulating evidence indicates that small non-coding RNAs perform vital functions in the animal nervous system such as restricting the activity of deleterious transposable elements, regulating nerve regeneration, and mediating learning and memory. In this review, we provide an overview of the current understanding of the contribution of two major classes of small non-coding RNAs, piRNAs and endo-siRNAs, to the nervous system development and function, and present highlights on how the dysregulation of small non-coding RNA pathways can assist in understanding the neuropathology of human neurological disorders.
Collapse
Affiliation(s)
- Maria C Ow
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| | - Sarah E Hall
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
34
|
Molla Herman A, Brasset E. Rhino breaks the deadlock in Drosophila testis. PLoS Genet 2021; 17:e1009702. [PMID: 34473721 PMCID: PMC8412255 DOI: 10.1371/journal.pgen.1009702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anahi Molla Herman
- Collège de France, CIRB, CNRS INSERM UMR 7241, PSL Research University, Paris, France
| | - Emilie Brasset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
35
|
Gonzalez LE, Tang X, Lin H. Maternal Piwi regulates primordial germ cell development to ensure the fertility of female progeny in Drosophila. Genetics 2021; 219:iyab091. [PMID: 34142134 PMCID: PMC8757300 DOI: 10.1093/genetics/iyab091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
In many animals, germline development is initiated by proteins and RNAs that are expressed maternally. PIWI proteins and their associated small noncoding PIWI-interacting RNAs (piRNAs), which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the Drosophila early embryo. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the ovaries of adult progeny. Furthermore, the maternal piRNA pool was diminished, reducing the capacity of the PIWI/piRNA complex to target zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and ovarian gene expression showed that the germline of female progeny was partially masculinized by maternal piwi knockdown. Our study reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06519, USA
| | - Xiongzhuo Tang
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
36
|
Onishi R, Yamanaka S, Siomi MC. piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep 2021; 22:e53062. [PMID: 34347367 PMCID: PMC8490990 DOI: 10.15252/embr.202153062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The PIWI‐interacting RNA (piRNA) pathway acts as a self‐defense mechanism against transposons to maintain germline genome integrity. Failures in the piRNA pathway cause DNA damage in the germline genome, disturbing inheritance of “correct” genetic information by the next generations and leading to infertility. piRNAs execute transposon repression in two ways: degrading their RNA transcripts and compacting the genomic loci via heterochromatinization. The former event is mechanistically similar to siRNA‐mediated RNA cleavage that occurs in the cytoplasm and has been investigated in many species including nematodes, fruit flies, and mammals. The latter event seems to be mechanistically parallel to siRNA‐centered kinetochore assembly and subsequent chromosome segregation, which has so far been studied particularly in fission yeast. Despite the interspecies conservations, the overall schemes of the nuclear events show clear biodiversity across species. In this review, we summarize the recent progress regarding piRNA‐mediated transcriptional silencing in Drosophila and discuss the biodiversity by comparing it with the equivalent piRNA‐mediated system in mice and the siRNA‐mediated system in fission yeast.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Wei X, Eickbush DG, Speece I, Larracuente AM. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. eLife 2021; 10:e62375. [PMID: 34259629 PMCID: PMC8321551 DOI: 10.7554/elife.62375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner-a previously described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.
Collapse
Affiliation(s)
- Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical CenterRochesterUnited States
| | - Danna G Eickbush
- Department of Biology, University of RochesterRochesterUnited States
| | - Iain Speece
- Department of Biology, University of RochesterRochesterUnited States
| | | |
Collapse
|
38
|
Saint-Leandre B, Capy P, Hua-Van A, Filée J. piRNA and Transposon Dynamics in Drosophila: A Female Story. Genome Biol Evol 2021; 12:931-947. [PMID: 32396626 PMCID: PMC7337185 DOI: 10.1093/gbe/evaa094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The germlines of metazoans contain transposable elements (TEs) causing genetic instability and affecting fitness. To protect the germline from TE activity, gonads of metazoans produce TE-derived PIWI-interacting RNAs (piRNAs) that silence TE expression. In Drosophila, our understanding of piRNA biogenesis is mainly based on studies of the Drosophila melanogaster female germline. However, it is not known whether piRNA functions are also important in the male germline or whether and how piRNAs are affected by the global genomic context. To address these questions, we compared genome sequences, transcriptomes, and small RNA libraries extracted from entire testes and ovaries of two sister species: D. melanogaster and Drosophila simulans. We found that most TE-derived piRNAs were produced in ovaries and that piRNA pathway genes were strongly overexpressed in ovaries compared with testes, indicating that the silencing of TEs by the piRNA pathway mainly took place in the female germline. To study the relationship between host piRNAs and TE landscape, we analyzed TE genomic features and how they correlate with piRNA production in the two species. In D. melanogaster, we found that TE-derived piRNAs target recently active TEs. In contrast, although Drosophila simulans TEs do not display any features of recent activity, the host still intensively produced silencing piRNAs targeting old TE relics. Together, our results show that the piRNA silencing response mainly takes place in Drosophila ovaries and indicate that the host piRNA response is implemented following a burst of TE activity and could persist long after the extinction of active TE families.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurelie Hua-Van
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jonathan Filée
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
39
|
Herbette M, Wei X, Chang CH, Larracuente AM, Loppin B, Dubruille R. Distinct spermiogenic phenotypes underlie sperm elimination in the Segregation Distorter meiotic drive system. PLoS Genet 2021; 17:e1009662. [PMID: 34228705 PMCID: PMC8284685 DOI: 10.1371/journal.pgen.1009662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.
Collapse
Affiliation(s)
- Marion Herbette
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Xiaolu Wei
- University of Rochester Medical Center, Department of Biomedical Genetics, Rochester, New York, United States of America
| | - Ching-Ho Chang
- University of Rochester Department of Biology, Rochester, New York, United States of America
| | - Amanda M. Larracuente
- University of Rochester Department of Biology, Rochester, New York, United States of America
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Raphaëlle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
40
|
Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. Nat Commun 2021; 12:4061. [PMID: 34210982 PMCID: PMC8249470 DOI: 10.1038/s41467-021-24351-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/10/2021] [Indexed: 11/08/2022] Open
Abstract
PIWI proteins use guide piRNAs to repress selfish genomic elements, protecting the genomic integrity of gametes and ensuring the fertility of animal species. Efficient transposon repression depends on amplification of piRNA guides in the ping-pong cycle, which in Drosophila entails tight cooperation between two PIWI proteins, Aub and Ago3. Here we show that post-translational modification, symmetric dimethylarginine (sDMA), of Aub is essential for piRNA biogenesis, transposon silencing and fertility. Methylation is triggered by loading of a piRNA guide into Aub, which exposes its unstructured N-terminal region to the PRMT5 methylosome complex. Thus, sDMA modification is a signal that Aub is loaded with piRNA guide. Amplification of piRNA in the ping-pong cycle requires assembly of a tertiary complex scaffolded by Krimper, which simultaneously binds the N-terminal regions of Aub and Ago3. To promote generation of new piRNA, Krimper uses its two Tudor domains to bind Aub and Ago3 in opposite modification and piRNA-loading states. Our results reveal that post-translational modifications in unstructured regions of PIWI proteins and their binding by Tudor domains that are capable of discriminating between modification states is essential for piRNA biogenesis and silencing.
Collapse
|
41
|
Chen P, Kotov AA, Godneeva BK, Bazylev SS, Olenina LV, Aravin AA. piRNA-mediated gene regulation and adaptation to sex-specific transposon expression in D. melanogaster male germline. Genes Dev 2021; 35:914-935. [PMID: 33985970 PMCID: PMC8168559 DOI: 10.1101/gad.345041.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Small noncoding piRNAs act as sequence-specific guides to repress complementary targets in Metazoa. Prior studies in Drosophila ovaries have demonstrated the function of the piRNA pathway in transposon silencing and therefore genome defense. However, the ability of the piRNA program to respond to different transposon landscapes and the role of piRNAs in regulating host gene expression remain poorly understood. Here, we comprehensively analyzed piRNA expression and defined the repertoire of their targets in Drosophila melanogaster testes. Comparison of piRNA programs between sexes revealed sexual dimorphism in piRNA programs that parallel sex-specific transposon expression. Using a novel bioinformatic pipeline, we identified new piRNA clusters and established complex satellites as dual-strand piRNA clusters. While sharing most piRNA clusters, the two sexes employ them differentially to combat the sex-specific transposon landscape. We found two piRNA clusters that produce piRNAs antisense to four host genes in testis, including CG12717/pirate, a SUMO protease gene. piRNAs encoded on the Y chromosome silence pirate, but not its paralog, to exert sex- and paralog-specific gene regulation. Interestingly, pirate is targeted by endogenous siRNAs in a sibling species, Drosophila mauritiana, suggesting distinct but related silencing strategies invented in recent evolution to regulate a conserved protein-coding gene.
Collapse
Affiliation(s)
- Peiwei Chen
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Baira K Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Sergei S Bazylev
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Ludmila V Olenina
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| |
Collapse
|
42
|
Specchia V, Bozzetti MP. The Role of HSP90 in Preserving the Integrity of Genomes Against Transposons Is Evolutionarily Conserved. Cells 2021; 10:cells10051096. [PMID: 34064379 PMCID: PMC8147803 DOI: 10.3390/cells10051096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The HSP90 protein is a molecular chaperone intensively studied for its role in numerous cellular processes both under physiological and stress conditions. This protein acts on a wide range of substrates with a well-established role in cancer and neurological disorders. In this review, we focused on the involvement of HSP90 in the silencing of transposable elements and in the genomic integrity maintenance. The common feature of transposable elements is the potential jumping in new genomic positions, causing chromosome structure rearrangements, gene mutations, and influencing gene expression levels. The role of HSP90 in the control of these elements is evolutionarily conserved and opens new perspectives in the HSP90-related mechanisms underlying human disorders. Here, we discuss the hypothesis that its role in the piRNA pathway regulating transposons may be implicated in the onset of neurological diseases.
Collapse
|
43
|
Ishino K, Hasuwa H, Yoshimura J, Iwasaki YW, Nishihara H, Seki NM, Hirano T, Tsuchiya M, Ishizaki H, Masuda H, Kuramoto T, Saito K, Sakakibara Y, Toyoda A, Itoh T, Siomi MC, Morishita S, Siomi H. Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Res 2021; 49:2700-2720. [PMID: 33590099 PMCID: PMC7969018 DOI: 10.1093/nar/gkab059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/27/2022] Open
Abstract
In animal gonads, transposable elements are actively repressed to preserve genome integrity through the PIWI-interacting RNA (piRNA) pathway. In mice, piRNAs are abundantly expressed in male germ cells, and form effector complexes with three distinct PIWIs. The depletion of individual Piwi genes causes male-specific sterility with no discernible phenotype in female mice. Unlike mice, most other mammals have four PIWI genes, some of which are expressed in the ovary. Here, purification of PIWI complexes from oocytes of the golden hamster revealed that the size of the PIWIL1-associated piRNAs changed during oocyte maturation. In contrast, PIWIL3, an ovary-specific PIWI in most mammals, associates with short piRNAs only in metaphase II oocytes, which coincides with intense phosphorylation of the protein. An improved high-quality genome assembly and annotation revealed that PIWIL1- and PIWIL3-associated piRNAs appear to share the 5'-ends of common piRNA precursors and are mostly derived from unannotated sequences with a diminished contribution from TE-derived sequences, most of which correspond to endogenous retroviruses. Our findings show the complex and dynamic nature of biogenesis of piRNAs in hamster oocytes, and together with the new genome sequence generated, serve as the foundation for developing useful models to study the piRNA pathway in mammalian oocytes.
Collapse
Affiliation(s)
- Kyoko Ishino
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidetoshi Hasuwa
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Naomi M Seki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takamasa Hirano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- National Institute of Genetics, Mishima 411-8540, Japan
| | - Marie Tsuchiya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Harumi Masuda
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tae Kuramoto
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Kuniaki Saito
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- National Institute of Genetics, Mishima 411-8540, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | | | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Mikiko C Siomi
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
44
|
piRNAs as Modulators of Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052373. [PMID: 33673453 PMCID: PMC7956838 DOI: 10.3390/ijms22052373] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advances in understanding disease pathogenesis correlates to modifications in gene expression within different tissues and organ systems. In depth knowledge about the dysregulation of gene expression profiles is fundamental to fully uncover mechanisms in disease development and changes in host homeostasis. The body of knowledge surrounding mammalian regulatory elements, specifically regulators of chromatin structure, transcriptional and translational activation, has considerably surged within the past decade. A set of key regulators whose function still needs to be fully elucidated are small non-coding RNAs (sncRNAs). Due to their broad range of unfolding functions in the regulation of gene expression during transcription and translation, sncRNAs are becoming vital to many cellular processes. Within the past decade, a novel class of sncRNAs called PIWI-interacting RNAs (piRNAs) have been implicated in various diseases, and understanding their complete function is of vital importance. Historically, piRNAs have been shown to be indispensable in germline integrity and stem cell development. Accumulating research evidence continue to reveal the many arms of piRNA function. Although piRNA function and biogenesis has been extensively studied in Drosophila, it is thought that they play similar roles in vertebrate species, including humans. Compounding evidence suggests that piRNAs encompass a wider functional range than small interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been studied more in terms of cellular homeostasis and disease. This review aims to summarize contemporary knowledge regarding biogenesis, and homeostatic function of piRNAs and their emerging roles in the development of pathologies related to cardiomyopathies, cancer, and infectious diseases.
Collapse
|
45
|
Ramat A, Simonelig M. Functions of PIWI Proteins in Gene Regulation: New Arrows Added to the piRNA Quiver. Trends Genet 2021; 37:188-200. [DOI: 10.1016/j.tig.2020.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
|
46
|
Adashev VE, Kotov AA, Bazylev SS, Shatskikh AS, Aravin AA, Olenina LV. Stellate Genes and the piRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster. Front Genet 2021; 11:610665. [PMID: 33584811 PMCID: PMC7874207 DOI: 10.3389/fgene.2020.610665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific Ste-Su(Ste) genetic system in Drosophila melanogaster is the subject of investigation worldwide. X-linked tandem testis-specific Stellate genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked Su(Ste) locus. Derepression of Stellate genes caused by Su(Ste) piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the Ste-Su(Ste) system, and piRNA-dependent regulation of Stellate expression. The Ste-Su(Ste) system is fixed only in the D. melanogaster genome. According to our hypothesis, the acquisition of the Ste-Su(Ste) system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked Su(Ste) repeats. To support this scenario, we have directly demonstrated Stellate derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between D. melanogaster and D. mauritiana. This finding embraces our hypothesis about the contribution of the Ste-Su(Ste) system and the piRNA pathway to the emergence of reproductive isolation of D. melanogaster lineage from initial species.
Collapse
Affiliation(s)
- Vladimir E. Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexei A. Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Sergei S. Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Aleksei S. Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies at the Organismal Level, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ludmila V. Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| |
Collapse
|
47
|
Wang C, Lin H. Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs. Genome Biol 2021; 22:27. [PMID: 33419460 PMCID: PMC7792047 DOI: 10.1186/s13059-020-02221-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
PIWI proteins, a subfamily of PAZ/PIWI Domain family RNA-binding proteins, are best known for their function in silencing transposons and germline development by partnering with small noncoding RNAs called PIWI-interacting RNAs (piRNAs). However, recent studies have revealed multifaceted roles of the PIWI-piRNA pathway in regulating the expression of other major classes of RNAs in germ cells. In this review, we summarize how PIWI proteins and piRNAs regulate the expression of many disparate RNAs, describing a highly complex global genomic regulatory relationship at the RNA level through which piRNAs functionally connect all major constituents of the genome in the germline.
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
48
|
Small RNAs Are Implicated in Regulation of Gene and Transposable Element Expression in the Protist Trichomonas vaginalis. mSphere 2021; 6:6/1/e01061-20. [PMID: 33408230 PMCID: PMC7845603 DOI: 10.1128/msphere.01061-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most common nonviral sexually transmitted infection in humans. The millions of cases each year have sequelae that may include complications during pregnancy and increased risk of HIV infection. Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent nonviral sexually transmitted infection worldwide. Repetitive elements, including transposable elements (TEs) and virally derived repeats, comprise more than half of the ∼160-Mb T. vaginalis genome. An intriguing question is how the parasite controls its potentially lethal complement of mobile elements, which can disrupt transcription of protein-coding genes and genome functions. In this study, we generated high-throughput RNA sequencing (RNA-Seq) and small RNA-Seq data sets in triplicate for the T. vaginalis G3 reference strain and characterized the mRNA and small RNA populations and their mapping patterns along all six chromosomes. Mapping the RNA-Seq transcripts to the genome revealed that the majority of genes predicted within repetitive elements are not expressed. Interestingly, we identified a novel species of small RNA that maps bidirectionally along the chromosomes and is correlated with reduced protein-coding gene expression and reduced RNA-Seq coverage in repetitive elements. This novel small RNA family may play a regulatory role in gene and repetitive element expression. Our results identify a possible small RNA pathway mechanism by which the parasite regulates expression of genes and TEs and raise intriguing questions as to the role repeats may play in shaping T. vaginalis genome evolution and the diversity of small RNA pathways in general. IMPORTANCE Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most common nonviral sexually transmitted infection in humans. The millions of cases each year have sequelae that may include complications during pregnancy and increased risk of HIV infection. Given its evident success in this niche, it is paradoxical that T. vaginalis harbors in its genome thousands of transposable elements that have the potential to be extremely detrimental to normal genomic function. In many organisms, transposon expression is regulated by the activity of endogenously expressed short (∼21 to 35 nucleotides [nt]) small RNA molecules that effect gene silencing by targeting mRNAs for degradation or by recruiting epigenetic silencing machinery to locations in the genome. Our research has identified small RNA molecules correlated with reduced expression of T. vaginalis genes and transposons. This suggests that a small RNA pathway is a major contributor to gene expression patterns in the parasite and opens up new avenues for investigation into small RNA biogenesis, function, and diversity.
Collapse
|
49
|
Christiaens O, Niu J, Nji Tizi Taning C. RNAi in Insects: A Revolution in Fundamental Research and Pest Control Applications. INSECTS 2020; 11:E415. [PMID: 32635402 PMCID: PMC7411770 DOI: 10.3390/insects11070415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023]
Abstract
In this editorial for the Special Issue on 'RNAi in insect pest control', three important applications of RNA interference (RNAi) in insects are briefly discussed and linked to the different studies published in this Special Issue. The discovery of the RNAi mechanism revolutionized entomological research, as it presented researchers with a tool to knock down genes, which is easily applicable in a wide range of insect species. Furthermore, RNAi also provides crop protection with a novel and promising pest control mode-of-action. The sequence-dependent nature allows RNAi-based control strategies to be highly species selective and the active molecule, a natural biological molecule known as double-stranded RNA (dsRNA), has a short environmental persistence. However, more research is needed to investigate different cellular and physiological barriers, such as cellular uptake and dsRNA degradation in the digestive system in insects, in order to provide efficient control methods against a wide range of insect pest species. Finally, the RNAi pathway is an important part of the innate antiviral immune defence of insects, and could even lead to applications targeting viruses in beneficial insects such as honeybees in the future.
Collapse
Affiliation(s)
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China;
| | | |
Collapse
|
50
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|