1
|
Mohammadzadeh R, Fathi M, Pourseif MM, Omidi Y, Farhang S, Barzegar Jalali M, Valizadeh H, Nakhlband A, Adibkia K. Curcumin and nano-curcumin applications in psychiatric disorders. Phytother Res 2024. [PMID: 38965868 DOI: 10.1002/ptr.8265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024]
Abstract
Psychiatric disorders cause long-lasting disabilities across different age groups. While various medications are available for mental disorders, some patients do not fully benefit from them or experience treatment resistance. The pathogenesis of psychiatric disorders involves multiple mechanisms, including an increase in the inflammatory response. Targeting inflammatory mechanisms has shown promise as a therapeutic approach for these disorders. Curcumin, known for its anti-inflammatory properties and potential neuroprotective effects, has been the subject of studies investigating its potential as a treatment option for psychiatric disorders. This review comprehensively examines the potential therapeutic role of curcumin and its nanoformulations in psychiatric conditions, including major depressive disorder (MDD), bipolar disorder, schizophrenia, and anxiety disorders. There is lack of robust clinical trials across all the studied psychiatric disorders, particularly bipolar disorder and schizophrenia. More studies have focused on MDD. Studies on depression indicate that curcumin may be effective as an antidepressant agent, either alone or as an adjunct therapy. However, inconsistencies exist among study findings, highlighting the need for further research with improved blinding, optimized dosages, and treatment durations. Limited evidence supports the use of curcumin for bipolar disorder, making its therapeutic application challenging. Well-designed clinical trials are warranted to explore its potential therapeutic benefits. Exploring various formulations and delivery strategies, such as utilizing liposomes and nanoparticles, presents intriguing avenues for future research. More extensive clinical trials are needed to assess the efficacy of curcumin as a standalone or adjunctive treatment for psychiatric disorders, focusing on optimal dosages, formulations, and treatment durations.
Collapse
Affiliation(s)
- R Mohammadzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Y Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - S Farhang
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Barzegar Jalali
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Valizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Nakhlband
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - K Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Froldi G, Ragazzi E. Selected Plant-Derived Polyphenols as Potential Therapeutic Agents for Peripheral Artery Disease: Molecular Mechanisms, Efficacy and Safety. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207110. [PMID: 36296702 PMCID: PMC9611444 DOI: 10.3390/molecules27207110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Vascular diseases, such as peripheral artery disease (PAD), are associated with diabetes mellitus and a higher risk of cardiovascular disease and even death. Surgical revascularization and pharmacological treatments (mainly antiplatelet, lipid-lowering drugs, and antidiabetic agents) have some effectiveness, but the response and efficacy of therapy are overly dependent on the patient’s conditions. Thus, the demand for new cures exists. In this regard, new studies on natural polyphenols that act on key points involved in the pathogenesis of vascular diseases and, thus, on PAD are of great urgency. The purpose of this review is to take into account the mechanisms that lead to endothelium dysfunction, such as the glycoxidation process and the production of advanced glycation end-products (AGEs) that result in protein misfolding, and to suggest plant-derived polyphenols that could be useful in PAD. Thus, five polyphenols are considered, baicalein, curcumin, mangiferin, quercetin and resveratrol, reviewing the literature in PubMed. The key molecular mechanisms and preclinical and clinical studies of each selected compound are examined. Furthermore, the safety profiles of the polyphenols are outlined, together with the unwanted effects reported in humans, also by searching the WHO database (VigiBase).
Collapse
|
3
|
Mahdy MAA, Akl MA, Madkour FA. Effect of chitosan and curcumin nanoparticles against skeletal muscle fibrosis at early regenerative stage of glycerol-injured rat muscles. BMC Musculoskelet Disord 2022; 23:670. [PMID: 35836166 PMCID: PMC9281067 DOI: 10.1186/s12891-022-05633-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Chitosan and curcumin are natural products that have a wide range of beneficial effects including wound healing. However, their high molecular weight and poor water solubility limit their applications. Aims Therefore, the current study aims to evaluate the effects of chitosan (Cs) and curcumin (Cn) nanoparticles (NPs) on fibrosis and regeneration of glycerol-injured muscle. Methods Muscle injury was induced by intramuscular injection of glycerol into the tibialis anterior muscle of rats. Cs-NPs and Cn-NPs were administered at different doses intraperitoneally after injury. Injured muscles were collected at day 7 after injury, and muscle fibrosis and regeneration were assessed. Results The present results revealed that Cs-NPs and Cn-NPs treatment significantly decreased fibrosis index and increased the average myotube diameter with shifting of the distribution of myotube diameters towards larger diameters in a dose-dependent manner. Immunohistochemical analysis revealed that Cs-NPs and Cn-NPs treatment significantly decreased the number of CD-68+ cells and Col-1+ area. Results showed that Cn-NPs had a higher protective effect, in the form of attenuating muscle fibrosis and inflammation, and enhancing muscle regeneration, than that of Cs-NPs. Conclusions To our knowledge, this is the first study to document the effects of Cs-NPs in injured muscles. The results of study might be a novel approach to attenuate muscle fibrosis in humans using curcumin and chitosan nanoparticles.
Collapse
Affiliation(s)
- Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fatma A Madkour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
4
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
5
|
Jyotirmayee B, Mahalik G. A review on selected pharmacological activities of Curcuma longa L. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B Jyotirmayee
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Gyanranjan Mahalik
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
6
|
Pellegrin M, Bouzourène K, Mazzolai L. Exercise Prior to Lower Extremity Peripheral Artery Disease Improves Endurance Capacity and Hindlimb Blood Flow by Inhibiting Muscle Inflammation. Front Cardiovasc Med 2021; 8:706491. [PMID: 34422931 PMCID: PMC8371529 DOI: 10.3389/fcvm.2021.706491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 01/22/2023] Open
Abstract
Lower extremity peripheral artery disease (PAD) is associated with functional decline. Physical exercise has been proven to be an effective therapeutic strategy for PAD; however the effect of exercise initiated before PAD remains unknown. Here, we investigated the preventive effects of exercise on endurance capacity, hindlimb perfusion, and on polarization profile of circulating monocytes and limb muscle macrophages. ApoE−/− mice were subjected to 5-week running wheel exercise or remained sedentary before induction of hindlimb ischemia. The two groups were thereafter kept sedentary. Exercised mice prior to PAD showed higher exhaustive treadmill running distance and time than sedentary mice. Preventive exercise also increased perfusion, arteriole density, and muscle regeneration in the ischemic hindlimb. Moreover, preventive exercise prevented ischemia-induced increased gene expression of pro-inflammatory M1 macrophages markers and cytokines in the ischemic muscle, while no changes were observed for anti-inflammatory M2 macrophage markers. Flow cytometry analysis showed that the proportion of circulating pro-inflammatory monocyte subtype decreased whereas that of anti-inflammatory monocytes increased with preventive exercise. Overall, we show that exercise initiated before PAD improves endurance performance and hindlimb perfusion in mice probably via inhibition of M1 macrophage polarization and inflammation in the ischemic muscle. Our study provides experimental evidence for a role of regular exercise in primary prevention of PAD.
Collapse
Affiliation(s)
- Maxime Pellegrin
- Division of Angiology, Heart and Vessel Department, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Karima Bouzourène
- Division of Angiology, Heart and Vessel Department, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Lucia Mazzolai
- Division of Angiology, Heart and Vessel Department, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
7
|
Ismaeel A, Greathouse KL, Newton N, Miserlis D, Papoutsi E, Smith RS, Eidson JL, Dawson DL, Milner CW, Widmer RJ, Bohannon WT, Koutakis P. Phytochemicals as Therapeutic Interventions in Peripheral Artery Disease. Nutrients 2021; 13:2143. [PMID: 34206667 PMCID: PMC8308302 DOI: 10.3390/nu13072143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) affects over 200 million people worldwide, resulting in significant morbidity and mortality, yet treatment options remain limited. Among the manifestations of PAD is a severe functional disability and decline, which is thought to be the result of different pathophysiological mechanisms including oxidative stress, skeletal muscle pathology, and reduced nitric oxide bioavailability. Thus, compounds that target these mechanisms may have a therapeutic effect on walking performance in PAD patients. Phytochemicals produced by plants have been widely studied for their potential health effects and role in various diseases including cardiovascular disease and cancer. In this review, we focus on PAD and discuss the evidence related to the clinical utility of different phytochemicals. We discuss phytochemical research in preclinical models of PAD, and we highlight the results of the available clinical trials that have assessed the effects of these compounds on PAD patient functional outcomes.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - K. Leigh Greathouse
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
- Department of Human Sciences and Design, Baylor University, Waco, TX 76798, USA
| | - Nathan Newton
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA;
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - Robert S. Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Jack L. Eidson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - David L. Dawson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Craig W. Milner
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Robert J. Widmer
- Heart & Vascular Department, Baylor Scott & White Medical Center, Temple, TX 76508, USA;
| | - William T. Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| |
Collapse
|
8
|
Yang Q, Leong SA, Chan KP, Yuan XL, Ng TK. Complex effect of continuous curcumin exposure on human bone marrow-derived mesenchymal stem cell regenerative properties through matrix metalloproteinase regulation. Basic Clin Pharmacol Toxicol 2021; 128:141-153. [PMID: 32777138 DOI: 10.1111/bcpt.13477] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023]
Abstract
Curcumin has been reported to be beneficial for cancers, cardiovascular and neurodegenerative diseases, based on its anti-oxidative, anti-inflammation, anti-tumorigenic and neuroprotective properties. With its high-dose application, curcumin toxicity to systemic tissues is a reasonable concern. Here, we report the responses of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) to continuous curcumin exposure. hBM-MSCs were treated with 0.01-100 μmol/L curcumin continuously in vitro for 7 days. 25 μmol/L curcumin or above significantly attenuated hBM-MSC maintenance, whereas 10 μmol/L curcumin reduced hBM-MSC proliferation and hindered their migration with increasing cell apoptosis. Besides, 5 μmol/L curcumin treatment inhibited hBM-MSC adipogenic differentiation, but enhanced osteogenic differentiation, which depended on matrix metalloproteinase (MMP)-13 expression and activity. Furthermore, curcumin treatment reduced MMP1 expression but up-regulated the immunomodulatory gene IDO1 expression. In summary, this study revealed the complex effects of continuous curcumin exposure on hBM-MSC maintenance and regenerative properties through MMP regulation. Given the complex effects of curcumin, its use for biomedical purposes should be carefully considered in treatment length and dosage.
Collapse
Affiliation(s)
- Qichen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Samantha Antonio Leong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
9
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|
10
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
11
|
Kosmac K, Gonzalez‐Freire M, McDermott MM, White SH, Walton RG, Sufit RL, Tian L, Li L, Kibbe MR, Criqui MH, Guralnik JM, S. Polonsky T, Leeuwenburgh C, Ferrucci L, Peterson CA. Correlations of Calf Muscle Macrophage Content With Muscle Properties and Walking Performance in Peripheral Artery Disease. J Am Heart Assoc 2020; 9:e015929. [PMID: 32390569 PMCID: PMC7660852 DOI: 10.1161/jaha.118.015929] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/25/2022]
Abstract
Background Peripheral artery disease (PAD) is a manifestation of atherosclerosis characterized by reduced blood flow to the lower extremities and mobility loss. Preliminary evidence suggests PAD damages skeletal muscle, resulting in muscle impairments that contribute to functional decline. We sought to determine whether PAD is associated with an altered macrophage profile in gastrocnemius muscles and whether muscle macrophage populations are associated with impaired muscle phenotype and walking performance in patients with PAD. Methods and Results Macrophages, satellite cells, and extracellular matrix in gastrocnemius muscles from 25 patients with PAD and 7 patients without PAD were quantified using immunohistochemistry. Among patients with PAD, both the absolute number and percentage of cluster of differentiation (CD) 11b+CD206+ M2-like macrophages positively correlated to satellite cell number (r=0.461 [P=0.023] and r=0.416 [P=0.042], respectively) but not capillary density or extracellular matrix. The number of CD11b+CD206- macrophages negatively correlated to 4-meter walk tests at normal (r=-0.447, P=0.036) and fast pace (r=-0.510, P=0.014). Extracellular matrix occupied more muscle area in PAD compared with non-PAD (8.72±2.19% versus 5.30±1.03%, P<0.001) and positively correlated with capillary density (r=0.656, P<0.001). Conclusions Among people with PAD, higher CD206+ M2-like macrophage abundance was associated with greater satellite cell numbers and muscle fiber size. Lower CD206- macrophage abundance was associated with better walking performance. Further study is needed to determine whether CD206+ macrophages are associated with ongoing reparative processes enabling skeletal muscle adaptation to damage with PAD. Registration URL: https://www.clinicaltrials.gov; Unique identifiers: NCT00693940, NCT01408901, NCT0224660.
Collapse
Affiliation(s)
- Kate Kosmac
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | | | - Mary M. McDermott
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sarah H. White
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | - R. Grace Walton
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | - Robert L. Sufit
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - Lu Tian
- Department of Health Research & PolicyStanford UniversityStanfordCA
| | - Lingyu Li
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Melina R. Kibbe
- Department of SurgeryUniversity of North Carolina School of MedicineChapel HillNC
| | - Michael H. Criqui
- Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCA
| | | | | | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric ResearchUniversity of Florida Institute on AgingGainesvilleFL
| | | | - Charlotte A. Peterson
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| |
Collapse
|
12
|
Bo H, Feng X. Post-treatment curcumin reduced ischemia-reperfusion-induced pulmonary injury via the Notch2/Hes-1 pathway. J Int Med Res 2020; 48:300060519892432. [PMID: 31891282 PMCID: PMC7645365 DOI: 10.1177/0300060519892432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective To investigate the influence of curcumin on the Notch2/Hes-1 pathway after pulmonary injury induction via limb ischemia–reperfusion (I/R). Methods Adult male Sprague–Dawley rats were randomly divided into four groups (n = 30 each): sham, I/R, curcumin post-treatment (I/R+Cur), and inhibitor (I/R+DAPT). Hind-limb ischemia was induced for 4 hours, followed by reperfusion for 4 hours. After ischemia, curcumin (200 mg/kg) or DAPT (0.5 µm) was injected intraperitoneally in the I/R+Cur or I/R+DAPT group, respectively. PaO2 was examined after 4 hours of reperfusion. Pathological changes in the lung and the apoptotic index (AI) were examined. Lung malondialdehyde (MDA), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β levels, the wet/dry (W/D) ratio, semi-quantitative score of lung injury (SSLI), and Notch2 protein and Hes-1 mRNA expression were also examined. Results In the I/R group, inflammatory changes were observed, AI increased, and MDA, SSLI, W/D, TNF-α, IL-1β, Notch2, and Hes1-mRNA expression increased, while PaO2 decreased compared with the Sham group. Pathological changes in the I/R+Cur group were reversed. All indexes in the I/R+DAPT and I/R+Cur group were similar. Conclusion Curcumin post-treatment reduced I/R-induced lung injury in rats. Its mechanism may be related to the inhibition of Notch2/Hes-1 signaling pathway and the release of inflammatory factors.
Collapse
Affiliation(s)
- HaiZou Bo
- Department of Anesthesiology, Affiliated Central Hospital, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - XiaoSun Feng
- Department of Anesthesiology, Affiliated Central Hospital, Shenyang Medical College, Shenyang, Liaoning Province, China
| |
Collapse
|
13
|
Xiang L, Zhang Q, Chi C, Wu G, Lin Z, Li J, Gu Q, Chen G. Curcumin analog A13 alleviates oxidative stress by activating Nrf2/ARE pathway and ameliorates fibrosis in the myocardium of high-fat-diet and streptozotocin-induced diabetic rats. Diabetol Metab Syndr 2020; 12:1. [PMID: 31921358 PMCID: PMC6947902 DOI: 10.1186/s13098-019-0485-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diabetes mellitus is an important risk factor for cardiomyopathy. Increasing oxidative stress may be one of the main factors of diabetic cardiomyopathy. A13, a newly synthesized curcumin analog, was proved to be superior to curcumin in biological activity. However, little know about how A13 performed in diabetic models. In this study, we evaluated the ability of curcumin analog A13 to alleviate oxidative stress and ameliorate fibrosis in the myocardium, and explore the underlying mechanisms. METHODS Intraperitoneal injection of streptozotocin (30 mg/kg in 0.1 M sodium citrate buffer, pH 4.5) induced diabetes in high-fat fed rats. The rats were respectively treated with a daily dose of curcumin or A13 via intragastric intubation for 8 weeks. Myocardial tissue sections were stained with hematoxylin-eosin; oxidative stress was detected by biochemical assays; activation of the Nrf2/ARE pathway was detected by Western blot, immunohistochemical staining and RT-qPCR; myocardial fibrosis was identified by Western blot and Masson trichrome staining. RESULTS Treatment with curcumin analog A13 reduced the histological lesions of the myocardium in diabetic rats. Curcumin and A13 treatment decreased the malondialdehyde level and increased the activity of superoxide dismutase in the myocardium of diabetic rats. Molecular analysis and immunohistochemical staining demonstrated that dose of 20 mg/kg of A13 could activate the Nrf2/ARE pathway. Molecular analysis and Masson staining showed that curcumin analog A13 treatment significantly ameliorated fibrosis in myocardium of these diabetic rats. CONCLUSION Treatment with curcumin analog A13 protects the morphology of myocardium, restores the MDA levels and SOD activity, activates the Nrf2/ARE pathway and ameliorates myocardial fibrosis in diabetic rats. It may be a useful therapeutic agent for some aspects of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lanting Xiang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Chen Chi
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Gu Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Zhongmin Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Qianru Gu
- Department of Pathology, Sir Run Run Shaw Hospital affiliated To Zhejiang University School of Medicine, Hangzhou, Zhejiang People’s Republic of China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| |
Collapse
|
14
|
Receno CN, Liang C, Korol DL, Atalay M, Heffernan KS, Brutsaert TD, DeRuisseau KC. Effects of Prolonged Dietary Curcumin Exposure on Skeletal Muscle Biochemical and Functional Responses of Aged Male Rats. Int J Mol Sci 2019; 20:E1178. [PMID: 30866573 PMCID: PMC6429120 DOI: 10.3390/ijms20051178] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress resulting from decreased antioxidant protection and increased reactive oxygen and nitrogen species (RONS) production may contribute to muscle mass loss and dysfunction during aging. Curcumin is a phenolic compound shown to upregulate antioxidant defenses and directly quench RONS in vivo. This study determined the impact of prolonged dietary curcumin exposure on muscle mass and function of aged rats. Thirty-two-month-old male F344xBN rats were provided a diet with or without 0.2% curcumin for 4 months. The groups included: ad libitum control (CON; n = 18); 0.2% curcumin (CUR; n = 18); and pair-fed (PAIR; n = 18) rats. CUR rats showed lower food intake compared to CON, making PAIR a suitable comparison group. CUR rats displayed larger plantaris mass and force production (vs. PAIR). Nuclear fraction levels of nuclear factor erythroid-2 related-factor-2 were greater, and oxidative macromolecule damage was lower in CUR (vs. PAIR). There were no significant differences in measures of antioxidant status between any of the groups. No difference in any measure was observed between CUR and CON rats. Thus, consumption of curcumin coupled with reduced food intake imparted beneficial effects on aged skeletal muscle. The benefit of curcumin on aging skeletal muscle should be explored further.
Collapse
Affiliation(s)
- Candace N Receno
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Chen Liang
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Donna L Korol
- 107 College Place, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| | - Mustafa Atalay
- Yliopistonranta 1 E, Institute of Biomedicine, Physiology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kevin S Heffernan
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Tom D Brutsaert
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Keith C DeRuisseau
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
15
|
Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea. Molecules 2018; 23:molecules23112778. [PMID: 30373170 PMCID: PMC6278270 DOI: 10.3390/molecules23112778] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system is an efficient integrated network of cellular elements and chemicals developed to preserve the integrity of the organism against external insults and its correct functioning and balance are essential to avoid the occurrence of a great variety of disorders. To date, evidence from literature highlights an increase in immunological diseases and a great attention has been focused on the development of molecules able to modulate the immune response. There is an enormous global demand for new effective therapies and researchers are investigating new fields. One promising strategy is the use of herbal medicines as integrative, complementary and preventive therapy. The active components in medical plants have always been an important source of clinical therapeutics and the study of their molecular pharmacology is an enormous challenge since they offer a great chemical diversity with often multi-pharmacological activity. In this review, we mainly analysed the immunomodulatory/antinflammatory activity of Echinacea spp. and Curcuma longa, focusing on some issues of the phytochemical research and on new possible strategies to obtain novel agents to supplement the present therapies.
Collapse
Affiliation(s)
- Michele Catanzaro
- Department of Drug Sciences-Pharmacology Section, University of Pavia, 27100 Pavia, Italy.
| | - Emanuela Corsini
- Department of Environmental Science and Policy, University of Milano, 20133 Milano, Italy.
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Marco Racchi
- Department of Drug Sciences-Pharmacology Section, University of Pavia, 27100 Pavia, Italy.
| | - Cristina Lanni
- Department of Drug Sciences-Pharmacology Section, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
16
|
Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients 2018; 10:E1553. [PMID: 30347782 PMCID: PMC6213156 DOI: 10.3390/nu10101553] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a principal curcuminoid of turmeric (Curcuma longa), which is commonly used as a spice in cooking and a yellow pigment in the food processing industry. Recent studies have demonstrated that curcumin has a variety of biological activities and pharmacological performances, providing protection and promotion of human health. In addition to presenting an overview of the gut metabolism of curcumin, this paper reviews the current research progress on its versatile bioactivity, such as antioxidant, anti-inflammatory, and immune-regulatory activities, and also intensively discusses its health benefits, including the protective or preventive effects on cancers and diabetes, as well as the liver, nervous system, and cardiovascular systems, highlighting the potential molecular mechanisms. Besides, the beneficial effects of curcumin on human are further stated based on clinical trials. Considering that there is still a debate on the beneficial effects of curcumin, we also discuss related challenges and prospects. Overall, curcumin is a promising ingredient of novel functional foods, with protective efficacy in preventing certain diseases. We hope this comprehensive and updated review will be helpful for promoting human-based studies to facilitate its use in human health and diseases in the future.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ya Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Chen J, Wang J, Zhang X, Zhu H. Inverse Relationship Between Serum Bilirubin Levels and Diabetic Foot in Chinese Patients with Type 2 Diabetes Mellitus. Med Sci Monit 2017; 23:5916-5923. [PMID: 29238034 PMCID: PMC5739530 DOI: 10.12659/msm.907248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Several studies demonstrated that bilirubin, a potent endogenous antioxidant, is a strong protective factor for many diabetic complications such as nephropathy, retinopathy, neuropathy, and vasculopathy. The purpose of this study was to assess the association between serum bilirubin levels and diabetic foot (DF) in Chinese patients with type 2 diabetes mellitus (T2DM). MATERIAL AND METHODS The present cross-sectional study of bilirubin levels in relation to DF was conducted in 1,269 T2DM patients with (n=578) and without (n=691) DF. Blood test results were obtained on hospital admission, including total bilirubin (T-BIL), direct bilirubin (D-BIL), and indirect bilirubin (I-BIL). Data on Wagner classification and amputation procedure in patients with DF were collected by reviewing electronic medical records. Univariate or multivariate analysis were performed to explore the association between bilirubin and DF. RESULTS Serum I-BIL levels were shown to play a protective role regarding the presence and severity of DF (OR=0.75, p=0.029 and OR=0.90, p=0.021, respectively). In addition, in a comparison of the lowest and highest tertiles of serum bilirubin concentration, the highest tertile of serum T-BIL (OR=0.51, p=0.011) and I-BIL (OR=0.28, p<0.001) was significantly related with a lower Wagner grade of DF. Patients with DF in the highest tertiles of T-BIL carried a significantly lower risk of amputation events than those in the lowest tertiles (OR=0.47, p=0.025). CONCLUSIONS The present study provided evidence that decreased serum bilirubin levels were independently associated with the presence and severity of DF and amputation events in patients with DF.
Collapse
Affiliation(s)
- Jifan Chen
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jian Wang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Hong Zhu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
18
|
Zhao L, Gu Q, Xiang L, Dong X, Li H, Ni J, Wan L, Cai G, Chen G. Curcumin inhibits apoptosis by modulating Bax/Bcl-2 expression and alleviates oxidative stress in testes of streptozotocin-induced diabetic rats. Ther Clin Risk Manag 2017; 13:1099-1105. [PMID: 28894373 PMCID: PMC5584885 DOI: 10.2147/tcrm.s141738] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SCOPE The present study was designed to examine the damage caused by high-fat diet and streptozotocin-induced diabetes on the testis of rats and the effects of curcumin against oxidative stress and apoptosis from high-fat diet and diabetes. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin (30 mg/kg in 0.1 M sodium citrate buffer, pH 4.5) in obese rats. The rats in the obese and diabetic groups were treated with a daily dose of curcumin by intragastric intubation (100 mg/kg body weight) for 8 weeks. Testis tissue sections were stained with hematoxylin-eosin, and apoptosis was identified in situ by using terminal deoxynucleotidyl transferase dUTP nick end labeling. RESULTS Curcumin treatment improved the histological appearance of the testis and significantly reduced the apoptosis level in the testicular cells of the obese and the diabetic rats. The expression of proliferating cell nuclear antigen (PCNA) was restored in the testis tissues of diabetic rats at the end of curcumin treatment. Molecular analysis demonstrated that curcumin treatment significantly and simultaneously decreased Bax and increased Bcl-2 expressions, therefore elevating the ratio of Bcl-2/Bax. Furthermore, curcumin treatment significantly decreased malondialdehyde (MDA) and increased superoxide dismutase (SOD) levels in testis tissue samples of the diabetic rats. CONCLUSION Curcumin treatment preserved the morphology of testes; restored the expression of PCNA, MDA, and SOD; and inhibited testicular cell death in diabetic rats. The capability of curcumin in inhibiting oxidative stress and modulating the Bax/Bcl-2-mediated cell death pathway reveals its potential as a therapeutic agent against diabetes.
Collapse
Affiliation(s)
- Lingling Zhao
- Department of Pathology, Zhejiang Provincial Hospital of TCM, Hangzhou.,Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qianru Gu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lanting Xiang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xidan Dong
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Huimin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jinyao Ni
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Li Wan
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guoping Cai
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|