1
|
Simmalee K, Kawamatawong T, Vitte J, Demoly P, Lumjiaktase P. Exploring the pathogenesis and clinical implications of asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO): a narrative review. Front Med (Lausanne) 2025; 12:1514846. [PMID: 40313547 PMCID: PMC12044671 DOI: 10.3389/fmed.2025.1514846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025] Open
Abstract
The complexity and diversity of the immune response in patients with asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap present significant challenges for disease management. Relying on a limited number of biomarkers and clinical data is insufficient to fully reveal the immunopathogenesis of these diseases. However, in vitro technologies such as cell analysis, cytokine investigation, and nucleic acid sequencing have provided new insights into the underlying mechanisms of these diseases, leading to the discovery of several biomarkers-including cell degranulation, cell function, secreted cytokines, and single nucleotide polymorphisms-that have potential clinical implications. This paper reviews the immunopathogenesis in asthma, chronic obstructive pulmonary disease, and asthma-COPD overlap and examines the applications of recent in vitro models to detect candidate biomarkers that could enhance diagnostic precision, predict severity, monitor treatments, and develop new treatment strategies. A deeper understanding of the immune response in these diseases, along with the integration of in vitro models into clinical practice, could greatly improve the management of these respiratory diseases, making approaches more personalized and efficient.
Collapse
Affiliation(s)
- Kantapat Simmalee
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Joana Vitte
- Immunology Laboratory, University Hospital of Reims and INSERM UMR-S 1250 P3CELL, University of Reims Champagne-Ardenne, Reims, France
| | - Pascal Demoly
- Division of Allergy, University Hospital of Montpellier and IDESP, University of Montpellier - Inserm, Inria, Montpellier, France
| | - Putthapoom Lumjiaktase
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Vasconcelos JA, Mota AS, Olímpio F, Rosa PC, Damaceno-Rodrigues N, de Paula Vieira R, Taddei CR, Aimbire F. Lactobacillus rhamnosus Modulates Lung Inflammation and Mitigates Gut Dysbiosis in a Murine Model of Asthma-COPD Overlap Syndrome. Probiotics Antimicrob Proteins 2025; 17:588-605. [PMID: 37837484 DOI: 10.1007/s12602-023-10167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
The asthma-COPD overlap syndrome (ACOS) presents lung inflammation similar to both asthma and chronic obstructive pulmonary disease (COPD). Due to the immune response between the lung and gut, it is possible that ACOS individuals present gut dysbiosis. Due to therapeutic limitations in ACOS, Lactobacillus rhamnosus (Lr) have received attention once Lr has been effective in asthma and COPD. However, there is no data about the Lr effect on both lung inflammation and gut dysbiosis in ACOS. Thus, our study investigated the Lr effect on lung inflammation, bronchoconstriction, airway remodeling, and gut dysbiosis in the murine ACOS model. Treated mice with Lr were exposed to HDM and cigarette smoke to induce ACOS. Sixty days after ACOS induction, mice were euthanized. Lung inflammation was evaluated in leukocytes in bronchoalveolar lavage fluid (BALF), airway remodeling, cytokine secretion, and transcription factor expression in the lung. The gut microbiota was assayed by 16S mRNA sequencing from a fecal sample. Leukocyte population, bronchial hyperreactivity, pro-inflammatory cytokines, and airway remodeling were attenuated in Lr-treated ACOS mice. Likewise, IL-4, IL-5, and IL-13, STAT6 and GATA3, as well as IL-17, IL-21, IL-22, STAT3, and RORɣt were reduced after Lr. In addition, IL-2, IL-12, IFN-γ, STAT1, and T-bet as well as IL-10, TGF-β, STAT5, and Foxp3 were restored after the Lr. Firmicutes was reduced, while Deferribacteres was increased after Lr. Likewise, Lr decreased Staphylococcus and increased Mucispirillum in ACOS mice. Lr improves fecal bacterial β-diversity. Our findings show for the first time the Lr effect on lung inflammation and gut dysbiosis in murine ACOS.
Collapse
Affiliation(s)
- Jéssica Aparecida Vasconcelos
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo, 720 - 2° Andar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil
- Lab. Immunopharmacology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, 12231-280, Sao Jose dos Campos, SP, Brazil
| | - Amanda Sodre Mota
- Department of Clinical and Toxicological Analyses - São Paulo, School of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, Cidade Universitária, 05508-000, São Paulo, SP, Brazil
| | - Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo, 720 - 2° Andar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil
- Lab. Immunopharmacology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, 12231-280, Sao Jose dos Campos, SP, Brazil
| | - Paloma Cristina Rosa
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo, 720 - 2° Andar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil
- Lab. Immunopharmacology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, 12231-280, Sao Jose dos Campos, SP, Brazil
| | - Nilsa Damaceno-Rodrigues
- Laboratory of Cell Biology, Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Rodolfo de Paula Vieira
- Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, UniEvangelica, Avenida Universitária Km 3,5, Anapolis, GP, 75083-515, Brazil
| | - Carla Romano Taddei
- Department of Clinical and Toxicological Analyses - São Paulo, School of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, Cidade Universitária, 05508-000, São Paulo, SP, Brazil
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo, 720 - 2° Andar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil.
- Lab. Immunopharmacology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, 12231-280, Sao Jose dos Campos, SP, Brazil.
| |
Collapse
|
3
|
Deng J, Wei L, Chen Y, Li X, Zhang H, Wei X, Feng X, Qiu X, Liang B, Zhang J. Identification of benzo(a)pyrene-related toxicological targets and their role in chronic obstructive pulmonary disease pathogenesis: a comprehensive bioinformatics and machine learning approach. BMC Pharmacol Toxicol 2025; 26:33. [PMID: 39962573 PMCID: PMC11834632 DOI: 10.1186/s40360-025-00842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) pathogenesis is influenced by environmental factors, including Benzo(a)pyrene (BaP) exposure. This study aims to identify BaP-related toxicological targets and elucidate their roles in COPD development. METHODS A comprehensive bioinformatics approach was employed, including the retrieval of BaP-related targets from the Comparative Toxicogenomics Database (CTD) and Super-PRED database, identification of differentially expressed genes (DEGs) from the GSE76925 dataset, and protein-protein interaction (PPI) network analysis. Functional enrichment and immune infiltration analyses were conducted using GO, KEGG, and ssGSEA algorithms. Feature genes related to BaP exposure were identified using SVM-RFE, Lasso, and RF machine learning methods. A nomogram was constructed and validated for COPD risk prediction. Molecular docking was performed to evaluate the binding affinity of BaP with proteins encoded by the feature genes. RESULTS We identified 72 differentially expressed BaP-related toxicological targets in COPD. Functional enrichment analysis highlighted pathways related to oxidative stress and inflammation. Immune infiltration analysis revealed significant increases in B cells, DC, iDC, macrophages, T cells, T helper cells, Tcm, and TFH in COPD patients compared to controls. Correlation analysis showed strong links between oxidative stress, inflammation pathway scores, and the infiltration of immune cells, including aDC, macrophages, T cells, Th1 cells, and Th2 cells. Seven feature genes (ACE, APOE, CDK1, CTNNB1, GATA6, IRF1, SLC1A3) were identified across machine learning methods. A nomogram based on these genes showed high diagnostic accuracy and clinical utility. Molecular docking revealed the highest binding affinity of BaP with CDK1, suggestive of its pivotal role in BaP-induced COPD pathogenesis. CONCLUSIONS The study elucidates the molecular mechanisms of BaP-induced COPD, specifically highlighting the role of oxidative stress and inflammation pathways in promoting immune cell infiltration. The identified feature genes may serve as potential biomarkers and therapeutic targets. Additionally, the constructed nomogram demonstrates high accuracy in predicting COPD risk, providing a valuable tool for clinical application in BaP-exposed individuals.
Collapse
Affiliation(s)
- Jiehua Deng
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Zhong Lu, Shenzhen City, Guangdong Province, 518033, China
| | - Lixia Wei
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Zhong Lu, Shenzhen City, Guangdong Province, 518033, China.
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Yongyu Chen
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaofeng Li
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hui Zhang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xuan Wei
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xin Feng
- Gastroenterology and Respiratory Internal Medicine Department, The Afliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xue Qiu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bin Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jianquan Zhang
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Zhong Lu, Shenzhen City, Guangdong Province, 518033, China.
| |
Collapse
|
4
|
Zhao L, Ding X, Zhou L, Song C, Kang T, Xu Y, Liu Y, Han Y, Zhao W, Zhang B, Xu D, Guo J. Effect of PM 2.5 exposure on susceptibility to allergic asthma in elderly rats treated with allergens. Sci Rep 2025; 15:5594. [PMID: 39955443 PMCID: PMC11830082 DOI: 10.1038/s41598-025-90261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Fine particulate matter 2.5 (PM2.5) is a prevalent atmospheric pollutant that is closely associated with asthma. Elderly patients have a high incidence of asthma with a long course of illness. Our previous studies revealed that exposure to PM2.5 diminishes lung function and exacerbates lung damage in elderly rats. In the present study, we investigated whether PM2.5 exposure influences susceptibility to allergic asthma in elderly rats. Brown-Norway elderly rats were treated with ovalbumin (OVA) for different durations before and after PM2.5 exposure. The results from pulmonary function tests and histopathology indicated that early exposure to allergens prior to PM2.5 exposure increased susceptibility to airway hyperresponsiveness and led to severe lung injury in elderly asthmatic rats. Cytokine microarray analysis demonstrated that the majority of cytokines and chemokines were upregulated in OVA-treated rats before and after PM2.5 exposure. Cytological examination showed no change in eosinophil (EOS) counts, yet the amounts of neutrophils (NEU), white blood cells (WBC), lymphocytes (LYM), and monocytes (MON) in the lung lavage fluid of OVA-treated rats were significantly higher than those in control rats before and after PM2.5 exposure, suggesting that PM2.5 affects noneosinophilic asthma in elderly rats. ELISA results from the plasma and lung lavage fluid revealed that the levels of IgG1, IgE, IgG2a and IgG2b were significantly elevated in OVA-treated rats, whereas the level of IgG2b in the lung lavage fluid was significantly lower in rats treated with OVA prior to PM2.5 exposure compared to those treated afterward. A non-targeted metabolomic analysis of plasma identified 202 metabolites, among which 31 metabolites were differentially abundant. Ten metabolites and 11 metabolic pathways were uniquely detected in OVA-treated rats before PM2.5 exposure. Specifically, there were positive or negative correlations between the levels of Th2-associated cytokines (IL-4, IL-5, and IL-13) and six metabolites in the OVA-treated group before PM2.5 exposure, whereas the levels of IL-4 and IL-5 were negatively correlated with five metabolites in the OVA-treated group after PM2.5 exposure. Our findings suggest that PM2.5 exposure could influence the susceptibility of allergic asthma in response to allergens in elderly rats, potentially through changes in plasma metabolites.
Collapse
Affiliation(s)
- Lianlian Zhao
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Li Zhou
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Chenchen Song
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Taisheng Kang
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Yanfeng Xu
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Yunpeng Liu
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Yunlin Han
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Wenjie Zhao
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, 116026, China.
| | - Jianguo Guo
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China.
| |
Collapse
|
5
|
Abbasi A, Wang D, Stringer WW, Casaburi R, Rossiter HB. Immune system benefits of pulmonary rehabilitation in chronic obstructive pulmonary disease. Exp Physiol 2024. [PMID: 39456127 DOI: 10.1113/ep091678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by pulmonary and systemic inflammation. Inflammatory mediators show relationships with shortness of breath, exercise intolerance and health related quality of life. Pulmonary rehabilitation (PR), a comprehensive education and exercise training programme, is the most effective therapy for COPD and is associated with reduced exacerbation and hospitalization rates and increased survival. Exercise training, the primary physiological intervention within PR, is known to exert a beneficial anti-inflammatory effect in health and chronic diseases. The question of this review article is whether exercise training can also make such a beneficial anti-inflammatory effect in COPD. Experimental studies using smoke exposure mice models suggest that the response of the immune system to exercise training is favourably anti-inflammatory. However, the evidence about the response of most known inflammatory mediators (C-reactive protein, tumour necrosis factor α, interleukin 6, interleukin 10) to exercise training in COPD patients is inconsistent, making it difficult to conclude whether regular exercise training has an anti-inflammatory effect in COPD. It is also unclear whether COPD patients with more persistent inflammation are a subgroup that would benefit more from hypothesized immunomodulatory effects of exercise training (i.e., personalized treatment). Nevertheless, it seems that PR combined with maintenance exercise training (i.e., lifestyle change) might be more beneficial in controlling inflammation and slowing disease progress in COPD patients, specifically in those with early stages of disease.
Collapse
Affiliation(s)
- Asghar Abbasi
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - David Wang
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - William W Stringer
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Richard Casaburi
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Harry B Rossiter
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
6
|
Pradana A, Sari DK, Rusda M, Tarigan AP, Wiyono WH, Soeroso NN, Eyanoer PC, Amin MM. Protective Effects of Probiotics Against Systemic Inflammation in Mice Model with Chronic Obstructive Pulmonary Disease Induced by Cigarette-smoke. Rep Biochem Mol Biol 2024; 13:322-328. [PMID: 40330564 PMCID: PMC12050065 DOI: 10.61186/rbmb.13.3.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/25/2024] [Indexed: 05/08/2025]
Abstract
Background Systemic inflammation is one of hallmarks in chronic obstructive pulmonary disease (COPD), contributing to high morbidity and mortality due to elevated levels of interleukin-6 (IL-6) and reduced level of interleukin-10 (IL-10). Probiotics have the potential to reduce systemic inflammation through the gut-lung axis. This study aims to assess the effect of probiotics compared with an inhaled bronchodilator on serum IL-6 and IL-10 levels in mice model of COPD. Methods This was an in vivo experimental study with a post-test only control group design. Thirty C57BL/6 mice were randomized into five groups; NC (healthy mice), PC (COPD induced mice); T1 (COPD mice treated with a bronchodilator), T2 (COPD mice treated with probiotics) and T3 (COPD mice treated with both a bronchodilator and probiotics). COPD was induced for 12 weeks, followed by a 6-week treatment period. After completing the treatment, serum IL-6 and IL-10 levels were measured using the enzyme-linked immunosorbent assay (ELISA). Results The IL-6 levels in T2 group were reduced to levels comparable to the negative control group (13.5 vs 12.0 pg/ml respectively, p=0.84). The IL-10 levels were higher in T2 group compared to T1 group, however; this difference was not statistically significant (181.4 vs 155.0 respectively, p>0.05). Conclusions In mice model of COPD, probiotics have been shown to lower IL-6 levels and, to a lesser extent, increased IL-10. As a result, probiotics may have a protective effect against systemic inflammation.
Collapse
Affiliation(s)
- Andika Pradana
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Dina Keumala Sari
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Muhammad Rusda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Amira Permatasari Tarigan
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Wiwien Heru Wiyono
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, University of Indonesia, Persahabatan Hospital, Jakarta, Indonesia.
| | - Noni Novisari Soeroso
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Putri Chairani Eyanoer
- Department of Preventive and Community Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Mustafa Mahmud Amin
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
- Department of Psychiatry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| |
Collapse
|
7
|
Wang M, Song J, Yang H, Wu X, Zhang J, Wang S. Gut microbiota was highly related to the immune status in chronic obstructive pulmonary disease patients. Aging (Albany NY) 2024; 16:3241-3256. [PMID: 38349864 PMCID: PMC10929793 DOI: 10.18632/aging.205532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
This study aimed to explore the profile of gut microbiota and immunological state in COPD patients. 80 fecal and blood samples were collected from 40 COPD patients and 40 healthy controls (HC) and analyzed with 16s-rRNA gene sequencing and immunofactor omics analysis to investigate the profile of gut microbiota and immunologic factors (IFs). The linear discriminant analysis (LDA) effect size (LefSe) was used to determine the biomarker's taxa. The random forest and LASSO regression analysis were executed to screen IFs and develop an IFscore model. The correlation between gut microbiota and IFs, along with the IFscore and the diversity of gut microbiota, was evaluated with the Spearman analysis. The α and β diversity showed that the composition and distribution of gut microbiota in the COPD group differed from that of the HC group. 7 differential taxa at the phylum level and 17 differential taxa at the genus level were found. LefSe analysis screened out 5 biomarker's taxa. 32 differential IFs (up-regulated 27 IFs and down-regulated 5 IFs) were identified between two groups, and 5 IFs (CCL3, CXCL9, CCL7, IL2, IL4) were used to construct an IFscore model. The Spearman analysis revealed that 29 IFs were highly related to 5 biomarker's taxa and enriched in 16 pathways. Furthermore, the relationship between the IFscore and gut microbiota diversity was very close. The gut microbiota and IFs profile in COPD patients differed from that in healthy individuals. Gut microbiota was highly related to the immune status in COPD patients.
Collapse
Affiliation(s)
- Mei Wang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Jun Song
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Huizhen Yang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Xiaoyu Wu
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Jin Zhang
- Department of Psychiatry, Jinhua Second People’s Hospital, Jinhua 321000, Zhejiang, China
| | - Sheng Wang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| |
Collapse
|
8
|
Wen C, Yu Z, Wang J, Deng Q, Deng J, Sun Z, Ye Q, Ye Z, Qin K, Peng X. Inhalation of Citrus Reticulata essential oil alleviates airway inflammation and emphysema in COPD rats through regulation of macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117407. [PMID: 37981111 DOI: 10.1016/j.jep.2023.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory respiratory disease. Citrus Reticulata peel, the dried ripe peel of Citrus Reticulata species, has been found to have anti-inflammatory and cough attenuation effects. However, the therapeutic effects and its precise underlying mechanisms of atomizing inhalation using Citrus Reticulata essential oil (CREO) have not yet been fully elucidated. AIM OF THE STUDY The aim of this study was to assess the therapeutic effects of Citrus Reticulata essential oil and its associated anti-inflammatory mechanisms in COPD rat model. METHODS A total of 80 SD rats were randomized into four groups: control group (Con), COPD model group (COPD), COPD + ipratropium bromide (IB), and COPD + citrus reticulata essential oil (CREO). To induce COPD in rats, cigarette smoke (CS) exposure was used, while CREO and IB groups were administered through atomizing inhalation. The clinical signs, pathological lesions of the lung, percentages of antigen-presenting lung macrophages (CD11b/c+/CD86+ cells) and CD8+ T cells, and the content and mRNA expression of cytokines of the lung were analyzed. RESULTS The findings revealed that atomizing inhalation of Citrus reticulata essential oil had therapeutic effects on COPD rats. The treatment resulted in improvement in the body weight and mental status of COPD rats, reduced pathological injury of the lung, and increased proportion of CD11b/c+/CD86+ cells in lung macrophages, while also decreasing the number of CD8+ T cells. In addition, the Citrus Reticulata essential oil reduced the contents of IL-18, IL-17A, IL-12p70, and GM-CSF, downregulated the relative mRNA expression of IFN-γ, IL-4, and MMP-12, and upregulated the mRNA expression of IL-10. CONCLUSIONS Citrus reticulata essential oil can alleviate histological injury of the lung and regulate macrophages and CD8+ T cells in COPD rats. The study suggests that citrus reticulata essential oil could be a potential therapeutic agent for COPD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China
| | - Zhengqiang Yu
- Department of Technology, Sichuan Youngster Technology Co., Ltd, No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, China
| | - Juan Wang
- College of Culture and Education, Tianfu College of Swufe, Mianyang, 621000, China
| | - Qing Deng
- Department of Technology, Sichuan Youngster Technology Co., Ltd, No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, China
| | - Jiajia Deng
- Department of Technology, Sichuan Youngster Technology Co., Ltd, No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, China
| | - Zhenhua Sun
- Department of Technology, Sichuan Youngster Technology Co., Ltd, No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, China
| | - Qiaobo Ye
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhen Ye
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kaihua Qin
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China.
| |
Collapse
|
9
|
Choi YJ, Lee MJ, Byun MK, Park S, Park J, Park D, Kim SH, Kim Y, Lim SY, Yoo KH, Jung KS, Park HJ. Roles of Inflammatory Biomarkers in Exhaled Breath Condensates in Respiratory Clinical Fields. Tuberc Respir Dis (Seoul) 2024; 87:65-79. [PMID: 37822233 PMCID: PMC10758305 DOI: 10.4046/trd.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/12/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Exhaled condensates contain inflammatory biomarkers; however, their roles in the clinical field have been under-investigated. METHODS We prospectively enrolled subjects admitted to pulmonology clinics. We collected exhaled breath condensates (EBC) and analysed the levels of six and 12 biomarkers using conventional and multiplex enzyme-linked immunosorbent assay, respectively. RESULTS Among the 123 subjects, healthy controls constituted the largest group (81 participants; 65.9%), followed by the preserved ratio impaired spirometry group (21 patients; 17.1%) and the chronic obstructive pulmonary disease (COPD) group (21 patients; 17.1%). In COPD patients, platelet derived growth factor-AA exhibited strong positive correlations with COPD assessment test (ρ=0.5926, p=0.0423) and COPD-specific version of St. George's Respiratory Questionnaire (SGRQ-C) score (total, ρ=0.6725, p=0.0166; activity, ρ=0.7176, p=0.0086; and impacts, ρ=0.6151, p=0.0333). Granzyme B showed strong positive correlations with SGRQ-C score (symptoms, ρ=0.6078, p=0.0360; and impacts, ρ=0.6007, p=0.0389). Interleukin 6 exhibited a strong positive correlation with SGRQ-C score (activity, ρ=0.4671, p=0.0378). The absolute serum eosinophil and basophil counts showed positive correlations with pro-collagen I alpha 1 (ρ=0.6735, p=0.0164 and ρ=0.6295, p=0.0283, respectively). In healthy subjects, forced expiratory volume in 1 second (FEV1)/forced vital capacity demonstrated significant correlation with CC chemokine ligand 3 (CCL3)/macrophage inflammatory protein 1 alpha (ρ=0.3897 and p=0.0068). FEV1 exhibited significant correlation with CCL11/eotaxin (ρ=0.4445 and p=0.0017). CONCLUSION Inflammatory biomarkers in EBC might be useful to predict quality of life concerning respiratory symptoms and serologic markers. Further studies are needed.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jae Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kwang Byun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangho Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dongil Park
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Hoon Kim
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Republic of Korea
| | - Youngsam Kim
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Allergy, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ki Suck Jung
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Thudium RF, Arentoft NS, Hoel H, Afzal S, von Stemann JH, Forman JL, Wilcke JT, Benfield T, Trøseid M, Borges ÁH, Ostrowski SR, Vestbo J, Kunisaki KM, Jensen JUS, Nielsen SD. Elevated Levels of Interleukin-1β and Interleukin-10 Are Associated With Faster Lung Function Decline in People With Well-Treated Human Immunodeficiency Virus. J Infect Dis 2023; 228:1080-1088. [PMID: 37366576 DOI: 10.1093/infdis/jiad233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND People with human immunodeficiency virus (PWH) have an increased risk of chronic lung diseases and chronic inflammation. We aimed to investigate if inflammatory markers and monocyte activation are associated with faster lung function decline in PWH. METHODS We included 655 PWH from the Copenhagen Comorbidity in HIV Infection (COCOMO) Study. Eligible participants were aged ≥25 years and had 2 spirometries separated by >2 years. Inflammatory markers (interleukin [IL]-1β, IL-2, IL-6, IL-10, tumor necrosis factor-α, and interferon-γ) were measured at baseline by Luminex, and soluble CD14 and soluble CD163 by enzyme-linked immunosorbent assay. Using linear mixed models, we investigated whether elevated cytokine levels were associated with faster lung function decline. RESULTS The majority of PWH were males (85.2%) with undetectable viral replication (95.3%). We found a faster decline in forced expiratory volume in 1 second (FEV1) in PWH with elevated IL-1β and IL-10, with an additional decline of 10.3 mL/year (95% confidence interval [CI], 2.1-18.6; P = .014) and 10.0 mL/year (95% CI, 1.8-18.2; P = .017), respectively. We found no interaction between smoking and IL-1β or IL-10 on FEV1 decline. CONCLUSIONS Elevated IL-1β and IL-10 were independently associated with faster lung function decline in PWH, suggesting that dysregulated systemic inflammation may play a role in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Rebekka F Thudium
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Nicoline S Arentoft
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Hedda Hoel
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Shoaib Afzal
- The Copenhagen General Population Study, Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev
- Department of Clinical Medicine, Faculty of Health and Medical Sciences
| | | | - Julie L Forman
- Department of Public Health, Section of Biostatistics, University of Copenhagen
| | - Jon T Wilcke
- Department of Respiratory Medicine, Herlev-Gentofte Hospital, Gentofte
| | - Thomas Benfield
- Department of Clinical Medicine, Faculty of Health and Medical Sciences
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre
| | - Marius Trøseid
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Álvaro H Borges
- Department of Infectious Diseases Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences
- Department of Clinical Immunology, Rigshospitalet
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Ken M Kunisaki
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, USA
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jens-Ulrik S Jensen
- Department of Respiratory Medicine, Herlev-Gentofte Hospital, Gentofte
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre
| | - Susanne D Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences
| |
Collapse
|
11
|
Barbosa JAS, da Silva LLS, João JMLG, de Campos EC, Fukuzaki S, Camargo LDN, dos Santos TM, dos Santos HT, Bezerra SKM, Saraiva-Romanholo BM, Lopes FDTQDS, Bonturi CR, Oliva MLV, Leick EA, Righetti RF, Tibério IDFLC. Investigating the Effects of a New Peptide, Derived from the Enterolobium contortisiliquum Proteinase Inhibitor (EcTI), on Inflammation, Remodeling, and Oxidative Stress in an Experimental Mouse Model of Asthma-Chronic Obstructive Pulmonary Disease Overlap (ACO). Int J Mol Sci 2023; 24:14710. [PMID: 37834157 PMCID: PMC10573003 DOI: 10.3390/ijms241914710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesized peptide derived from Enterolobium contortisiliquum (pep3-EcTI) has been associated with potent anti-inflammatory and antioxidant effects, and it may be a potential new treatment for asthma-COPD overlap-ACO). Purpose: To investigate the primary sequence effects of pep3-EcTI in an experimental ACO. BALB/c mice were divided into eight groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep3-EcTI (treated with inhibitor), ACO-DX (treated with dexamethasone), ACO-DX-pep3-EcTI (treated with dexamethasone and inhibitor), and SAL-pep3-EcTI (saline group treated with inhibitor). We evaluated the hyperresponsiveness to methacholine, exhaled nitric oxide, bronchoalveolar lavage fluid (BALF), mean linear intercept (Lm), inflammatory markers, tumor necrosis factor (TNF-α), interferon (IFN)), matrix metalloproteinases (MMPs), growth factor (TGF-β), collagen fibers, the oxidative stress marker inducible nitric oxide synthase (iNOS), transcription factors, and the signaling pathway NF-κB in the airways (AW) and alveolar septa (AS). Statistical analysis was conducted using one-way ANOVA and t-tests, significant when p < 0.05. ACO caused alterations in the airways and alveolar septa. Compared with SAL, ACO-pep3-EcTI reversed the changes in the percentage of resistance of the respiratory system (%Rrs), the elastance of the respiratory system (%Ers), tissue resistance (%Gtis), tissue elastance (%Htis), airway resistance (%Raw), Lm, exhaled nitric oxide (ENO), lymphocytes, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, transforming growth factor (TGF)-β, collagen fibers, and iNOS. ACO-DX reversed the changes in %Rrs, %Ers, %Gtis, %Htis, %Raw, total cells, eosinophils, neutrophils, lymphocytes, macrophages, IL-1β, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, TGF-β, collagen fibers, and iNOS. ACO-DX-pep3-EcTI reversed the changes, as was also observed for the pep3-EcTI and the ACO-DX-pep3-EcTI. Significance: The pep3-EcTI was revealed to be a promising strategy for the treatment of ACO, asthma, and COPD.
Collapse
Affiliation(s)
- Jéssica Anastácia Silva Barbosa
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Luana Laura Sales da Silva
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Juliana Morelli Lopes Gonçalves João
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Elaine Cristina de Campos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Leandro do Nascimento Camargo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Tabata Maruyama dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Henrique Tibucheski dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Suellen Karoline Moreira Bezerra
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Beatriz Mangueira Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Department of Medicine, University City of São Paulo, São Paulo 03071-000, Brazil
| | - Fernanda Degobbi Tenório Quirino dos Santos Lopes
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil; (C.R.B.); (M.L.V.O.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil; (C.R.B.); (M.L.V.O.)
| | - Edna Aparecida Leick
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Iolanda de Fátima Lopes Calvo Tibério
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| |
Collapse
|
12
|
Shah A, Jen R, Laher I, Leung JM, Allen AJH, Van Eden S, Ayas NT. Biomarkers in patients with suspected obstructive sleep apnea and obstructive lung disease: Associations among polysomnographic, demographic and spirometric parameters. CANADIAN JOURNAL OF RESPIRATORY, CRITICAL CARE, AND SLEEP MEDICINE 2023. [DOI: 10.1080/24745332.2023.2178039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Aditi Shah
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Leon Judah Blackmore Sleep Disorders Program, University of British Columbia, Vancouver, BC, Canada
| | - Rachel Jen
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Leon Judah Blackmore Sleep Disorders Program, University of British Columbia, Vancouver, BC, Canada
| | - Ismail Laher
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janice M. Leung
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - AJ Hirsch Allen
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephan Van Eden
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Najib T. Ayas
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Leon Judah Blackmore Sleep Disorders Program, University of British Columbia, Vancouver, BC, Canada
- Critical Care Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Effects of Ipratropium Bromide Combined with Traditional Chinese Medicine Intervention on the Pulmonary Function and Psychological Status of Patients with Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6483785. [PMID: 36798728 PMCID: PMC9928514 DOI: 10.1155/2023/6483785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 02/10/2023]
Abstract
Recently, most scholars have advocated multidisciplinary comprehensive intervention measures for chronic obstructive pulmonary disease (COPD) to improve lung function, relieve symptoms of dyspnea, and improve quality of life. Traditional Chinese medicine (TCM) has rich experience in the treatment of various respiratory system diseases and the rehabilitation of their syndrome differentiation. In this study, total 68 patients with COPD from November 2019 to November 2021 in the hospitals were divided into the control group, ipratropium bromide (IB)-treated group, and IB + TCM-treated group for clinical efficacy observation and to explore the effect of IB combined with TCM on the pulmonary function and psychological status of COPD patients. Patients in the control group were subjected to routine oxygen inhalation, cough and expectorant, and antiviral treatments, while the patients in the IB-treated group were treated with IB and those received in the control group. Patients in the IB + TCM-treated group were treated with IB and TCM intervention. All patients were treated for a month. The results showed that after different interventions, the levels of FEV1, FEV1% pred, FVC, and PEF (P < 0.05) were significantly increased in all the groups, while levels of TNF-α, IL-6, IL-8, and CRP in serum as well as Hamilton Anxiety Scale and Hamilton Depression scores were significantly decreased. Compared with the control group and IB-treated group, the IB + TCM-treated group presented the greatest changes on all abovementioned indicators and the lowest total incidence of adverse reactions, indicating the biggest improvement of IB + TCM on the symptoms of COPD patients. Therefore, the combination of IB and TCM intervention effectively improved the pulmonary function and psychological status of COPD patients and could be used as an important adjunct for COPD treatment.
Collapse
|
14
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
15
|
Blood Eosinophil Endotypes across Asthma and Chronic Obstructive Pulmonary Disease (COPD). Can Respir J 2022; 2022:9656278. [PMID: 36311545 PMCID: PMC9605838 DOI: 10.1155/2022/9656278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Eosinophils were common inflammatory cells involved in the occurrence and development of various inflammatory diseases. Multiple recent studies have pointed to the increasingly important role of eosinophils in respiratory diseases. This article aims to compare the expression differences of blood eosinophil counts between asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO). Methods Patients with asthma, COPD, and ACO who were seen in the First Affiliated Hospital of Guangzhou Medical University from January 2012 to June 2019 were included. We collected information such as age, gender, diagnosis, the eosinophil counts from the medical records. Moreover, the levels of 10 cytokines in the plasma of each group were detected by using the Meso Scale Discovery method. Results We included 9787 patients with asthma, 15806 patients with COPD, and 831 ACO patients. From our results, it can be first found that eosinophil levels were age-related in the three diseases (asthma and ACO: p < 0.001; COPD: P = 0.001); in asthma and COPD, the number of eosinophils in males was more significant than that in females (asthma: p < 0.001; COPD: p = 0.012). Second, asthma patients had higher blood eosinophil counts than those with COPD and ACO (p < 0.001). Moreover, we found out that eosinophil levels were highly expressed in the stable group of all three diseases. Finally, we found that most cytokines in ACO patients showed a downward trend when the level of eosinophils was low, whereas the results were reversed in asthma patients; 7 cytokines had similar trends in COPD and ACO patients. Conclusions In conclusion, eosinophils have their own unique endotypes in asthma, COPD, and ACO patients, which were reflected in the fluctuation of their levels and changes in cytokine secretion.
Collapse
|
16
|
Aldhalmi AK, Al-Athari AJH, Makki Al-Hindy HAA. Association of Tumor Necrosis Factor-α and Myeloperoxidase enzyme with Severe Asthma: A comparative study. Rep Biochem Mol Biol 2022; 11:238-245. [PMID: 36164624 PMCID: PMC9455177 DOI: 10.52547/rbmb.11.2.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α) may stimulate airway hyperresponsiveness in asthma, which is also affected by neutrophils activity. The latter can be determined indirectly by evaluating myeloperoxidase (MPO) activity. The insufficient studies that investigated the combined association of serum TNF-α and MPO with asthma was objective of this study. METHODS A case-control study included 110-asthmatics besides 92-controls. All participants underwent venous sampling for TNF-α and MPO immunoassays. A percentage of predicted "forced expiratory volume in one second (FEV1%)", and the "peak expiratory flow rate (PEF/L)" of all participants were verified. The statistical analyses had done using SPSS V-25. The accuracy, specificity, sensitivity, and significance of both biomarkers to distinguish asthma examined "under the ROC-curves". RESULTS High TNF-α levels observed among the controls(p-0.006), opposing the higher MPO levels among the patients(p-0.00). There were nonsignificant variations of two biomarkers between the treatment groups and nonsignificant correlations of MPO with FEV1 and PEF. There was a significant correlation of MPO with the TNF-α levels of all participants. The TNF-α showed lower sensitivity, specificity, and accuracy to diagnose asthma. There were no MPO differences according to asthma levels. The TNF-α was higher among the severe asthmatics significantly. DISCUSSION TNF-α may be a contributory particle for neutrophilic inflammation of severe asthma. MPO levels were significantly higher among asthmatics, whereas TNF-α levels were lower. TNF-α levels were higher among those with severe compared to mild/moderate asthma. The MPO level has a significant predictive capacity compared to TNF-α for distinguishing asthma from healthy subjects.
Collapse
|
17
|
Farmanzadeh A, Qujeq D, Yousefi T. The Interaction Network of MicroRNAs with Cytokines and Signaling Pathways in Allergic Asthma. Microrna 2022; 11:104-117. [PMID: 35507792 DOI: 10.2174/2211536611666220428134324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
Allergic asthma is a complicated disease that is affected by many factors. Numerous cytokines and signaling pathways are attributed to the cause of asthma symptoms. MicroRNAs (miRNAs) are a group of small non-coding single-stranded RNA molecules that are involved in gene silencing and posttranscriptional regulation of gene expression by targeting mRNAs. In pathological conditions, altered expression of microRNAs differentially regulates cytokines and signaling pathways and therefore, can be the underlying reason for the pathogenesis of allergic asthma. Indeed, microRNAs participate in airway inflammation via inducing airway structural cells and activating immune responses by targeting cytokines and signaling pathways. Thus, to make a complete understanding of allergic asthma, it is necessary to investigate the communication network of microRNAs with cytokines and signaling pathways which is contributed to the pathogenesis of allergic asthma. Here, we shed light on this aspect of asthma pathology by Summarizing our current knowledge of this topic.
Collapse
Affiliation(s)
- Ali Farmanzadeh
- Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
18
|
Cao Y, Li P, Wang Y, Liu X, Wu W. Diaphragm Dysfunction and Rehabilitation Strategy in Patients With Chronic Obstructive Pulmonary Disease. Front Physiol 2022; 13:872277. [PMID: 35586711 PMCID: PMC9108326 DOI: 10.3389/fphys.2022.872277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects the whole body and causes many extrapulmonary adverse effects, amongst which diaphragm dysfunction is one of the prominent manifestations. Diaphragm dysfunction in patients with COPD is manifested as structural changes, such as diaphragm atrophy, single-fibre dysfunction, sarcomere injury and fibre type transformation, and functional changes such as muscle strength decline, endurance change, diaphragm fatigue, decreased diaphragm mobility, etc. Diaphragm dysfunction directly affects the respiratory efficiency of patients and is one of the important pathological mechanisms leading to progressive exacerbation of COPD and respiratory failure, which is closely related to disease mortality. At present, the possible mechanisms of diaphragm dysfunction in patients with COPD include systemic inflammation, oxidative stress, hyperinflation, chronic hypoxia and malnutrition. However, the specific mechanism of diaphragm dysfunction in COPD is still unclear, which, to some extent, increases the difficulty of treatment and rehabilitation. Therefore, on the basis of the review of changes in the structure and function of COPD diaphragm, the potential mechanism of diaphragm dysfunction in COPD was discussed, the current effective rehabilitation methods were also summarised in this paper. In order to provide direction reference and new ideas for the mechanism research and rehabilitation treatment of diaphragm dysfunction in COPD.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
19
|
Yadav RS, Kant S, Tripathi PM, Pathak AK, Mahdi AA. Transcription factor NF-κB, interleukin-1β, and interleukin-8 expression and its association with tobacco smoking and severity in chronic obstructive pulmonary disease. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Tao F, Zhou Y, Wang M, Wang C, Zhu W, Han Z, Sun N, Wang D. Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:95-111. [PMID: 35203060 PMCID: PMC8890943 DOI: 10.4196/kjpp.2022.26.2.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.
Collapse
Affiliation(s)
- Fulin Tao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuanyuan Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Mengwen Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chongyang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wentao Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhili Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Nianxia Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Dianlei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| |
Collapse
|
21
|
Saminan S, Julisafrida L, Ridwan M, Fajri N. COVID-19 Pandemic: What Considerations Should Be Taken during the Assessment and Management of COPD Exacerbation? Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The on-going coronavirus disease 2019 (COVID-19) pandemic could contribute to higher mortality in population with underlying respiratory diseases, including chronic obstructive pulmonary disease (COPD). The aim of this review was to inform readers pertaining to the correlation of COPD exacerbation and severe acute respiratory syndrome-2 (SARS-CoV-2) infection along with considerations that could be taken in the clinical diagnosis and management. The literature search was conducted on Google Scholar, Scopus, and PubMed databases using related terms (such as, but not limited to, “COVID-19,” “SARS-CoV-2,” “COPD management,” “N-acetylcysteine,” and “corticosteroids”) on November 1–9, 2021. Recent studies suggest that COVID-19 and COPD are correlated through three pathways, namely, angiotensin-converting enzyme 2 expression, dysregulation of biological parameters, and occurrence of pneumonia. Early detection of COVID-19 in patients with underlying COPD is difficult because they share similar symptoms, attributed to advanced progression of the infection and subsequently deteriorates lung function. During COPD management, clinicians are expected to take consideration on the effect of systemic corticosteroids if patients develop COVID-19. In conclusion, COVID-19 and COPD and its management are potentially correlated, contributing to the worsening of the disease. There is a need of immediate research to reveal the true correlation between COVID-19 and COPD to improve the management.
Collapse
|
22
|
Lin S, Ma Z, Huang Y, Sun Y, Yi H. Chronic obstructive pulmonary disease is characterized by reduced levels and defective suppressive function of regulatory B cells in peripheral blood. Mol Immunol 2021; 141:87-93. [PMID: 34837778 DOI: 10.1016/j.molimm.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/17/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive, persistent immune response to cigarette smoke, and it has been suggested that immune dysregulation is involved in its pathogenesis. A subset of regulatory B cells (Bregs) with high levels of the surface markers CD24 and CD38 (CD24hiCD38hi) has previously been shown to exert an immunosuppressive function. This study investigated the levels and activity of CD24hiCD38hi Bregs in stable COPD (sCOPD). Testing the peripheral blood from 65 patients with sCOPD and 39 control subjects for CD24hiCD38hi Breg subsets by flow cytometry showed that the patients with sCOPD had significantly lower levels of CD24hiCD38hi Bregs and IL-10+ B cells. The patients with sCOPD had lower serum interleukin-10 levels than the controls. The patients with most severe sCOPD had the lowest levels of CD24hiCD38hi Bregs. Spearman correlation analysis showed that the levels of CD24hiCD38hi Bregs in the patients with sCOPD positively correlated with serum interleukin-10 concentrations but not with levels of C-reactive protein. Compared to healthy controls, functional studies showed that Breg cells from patients with sCOPD exhibit a decreased suppressive function. We conclude that sCOPD is characterized by the exhaustion of CD24hiCD38hi regulatory B cells compartment. Therefore, CD24hiCD38hi Bregs may contribute to the pathogenesis of sCOPD.
Collapse
Affiliation(s)
- Shan Lin
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, 130031, China; Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yuanping Huang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yu Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
23
|
Odimba U, Senthilselvan A, Farrell J, Gao Z. Current Knowledge of Asthma-COPD Overlap (ACO) Genetic Risk Factors, Characteristics, and Prognosis. COPD 2021; 18:585-595. [PMID: 34555990 DOI: 10.1080/15412555.2021.1980870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Asthma-COPD overlap (ACO) is a newly identified phenotype of chronic obstructive airway diseases with shared asthma and COPD features. Patients with ACO are poorly defined, and some evidence suggests that they have worse health outcomes and greater disease burden than patients with COPD or asthma. Generally, there is no evidence-based and universal definition for ACO; several consensus documents have provided various descriptions of the phenotype. In addition, the mechanisms underlying the development of ACO are not fully understood. Whether ACO is a distinct clinical entity with its particular discrete genetic determinant different from asthma and COPD alone or an intermediate phenotype with overlapping genetic markers within asthma and COPD spectrum of obstructive airway disease remains unproven. This review summarizes the current knowledge of the genetic risk factors, characteristics, and prognosis of ACO.
Collapse
Affiliation(s)
- Ugochukwu Odimba
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | | | - Jamie Farrell
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada.,Faculty of Medicine, Health Sciences Centre (Respirology Department), Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Zhiwei Gao
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
24
|
Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L, Spadaro G, Galdiero MR. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 2021; 22:285-300. [PMID: 34342773 PMCID: PMC9110438 DOI: 10.1007/s10238-021-00750-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022]
Abstract
Neutrophils (PMNs) contain and release a powerful arsenal of mediators, including several granular enzymes, reactive oxygen species (ROS) and neutrophil extracellular traps (NETs). Although airway neutrophilia is associated with severity, poor response to glucocorticoids and exacerbations, the pathophysiological role of neutrophils in asthma remains poorly understood. Twenty-four patients with asthma and 22 healthy controls (HCs) were prospectively recruited. Highly purified peripheral blood neutrophils (> 99%) were evaluated for ROS production and activation status upon stimulation with lipopolysaccharide (LPS), N-formylmethionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). Plasma levels of myeloperoxidase (MPO), CXCL8, matrix metalloproteinase-9 (MMP-9), granulocyte–monocyte colony-stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF-A) were measured by ELISA. Plasma concentrations of citrullinated histone H3 (CitH3) and circulating free DNA (dsDNA) were evaluated as NET biomarkers. Activated PMNs from asthmatics displayed reduced ROS production and activation status compared to HCs. Plasma levels of MPO, MMP-9 and CXCL8 were increased in asthmatics compared to HCs. CitH3 and dsDNA plasma levels were increased in asthmatics compared to controls and the CitH3 concentrations were inversely correlated to the % decrease in FEV1/FVC in asthmatics. These findings indicate that neutrophils and their mediators could have an active role in asthma pathophysiology.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Luca Gentile
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
25
|
Lou Y, Ke Q, Cui H, Shang Y, Yang C. Correlation study of cytokine levels in alveolar lavage fluid with exhaled nitric oxide and lung function in children with bronchial asthma. Transl Pediatr 2021; 10:2069-2075. [PMID: 34584877 PMCID: PMC8429859 DOI: 10.21037/tp-21-322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The associations between cytokines in the bronchoalveolar lavage fluid (BALF), lung cytokine expression, fractional exhaled nitric oxide (FeNO) and pulmonary function test results in pediatric asthmatics have not been extensively characterized. This study sought to explore correlations between cytokines BALF, FeNO, and pulmonary function test results. METHODS From October 2018 to October 2020, a prospective study was conducted on 42 children with asthma and 17 children with pulmonary foreign bodies that required bronchoscopy. Pulmonary function tests and FeNO tests were performed on all patients. Patients were divided into a high FeNO group or low FeNO group based on their FeNO results. Interleukin (IL)-4, IL-5, IL-6, IL-8, IL-13, and IL-17 in the BALF were measured by enzyme-linked immunosorbent assays. Pearson correlations were used to assess the correlations between the cytokines in BALF, the pulmonary function test results, and the FeNO results. Pearson correlation was used to calculate the correlation coefficient "r" among alveolar lavage fluid cytokines, lung function, and FeNO. Receiver operating characteristic (ROC) curves were used to determine the area under the curve (AUC), sensitivity, and specificity of BALF cytokines for the high and low FeNO groups. RESULTS IL-4, IL-5, IL-6, IL-8, IL-13, and IL-17 in BALF were significantly correlated with FeNO, but were not significantly correlated with the pulmonary function test results. Cytokine IL-4, IL-5, IL-6, IL-8, IL-13, and IL-17 in BALF were significantly different in the high FeNO, low FeNO, and control groups (all P<0.05). The AUCs for differentiating between low and high FeNO based on BALF cytokines ranged from 0.72 to 0.95. The sensitivity and specificity for discriminating between low and high FeNO based on IL-5 and IL-13 reached 95.7% and 100%, respectively. CONCLUSIONS The cytokine levels of the BALF of children with asthma were significantly elevated, correlated with FeNO, and can be used evaluate airway inflammation in children with asthma.
Collapse
Affiliation(s)
- Ying Lou
- The Second Ward of Pediatrics, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Qiuping Ke
- The Second Ward of Pediatrics, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Huailiang Cui
- The Second Ward of Pediatrics, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Ying Shang
- The Second Ward of Pediatrics, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Chengsheng Yang
- The Second Ward of Pediatrics, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
26
|
Xue H, Xie B, Xu N, Li H, Chen Q, Xie W, Wang H. Etanercept Protected Against Cigarette Smoke Extract-Induced Inflammation and Apoptosis of Human Pulmonary Artery Endothelial Cells via Regulating TNFR1. Int J Chron Obstruct Pulmon Dis 2021; 16:1329-1345. [PMID: 34007171 PMCID: PMC8123949 DOI: 10.2147/copd.s295580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Etanercept (ETN), a tumor necrosis factor-α (TNF-α) inhibitor, has been applied in the treatment of many diseases. However, whether it has effects on chronic obstructive pulmonary disease (COPD) and its interaction with tumor necrosis factor receptor 1 (TNFR1) remained unknown. Methods Histopathological analysis of lung tissues from non-smokers and smokers with or without COPD was conducted using hematoxylin–eosin (H&E) staining, Van Gieson (VG) staining, and terminal transferase-mediated biotin dUTP nick end labeling (TUNEL). TNF-α content was measured using Immunohistochemistry. Correlation analysis among apoptosis rate, smoke index, the FEV1/FVC ratio, and TNF-α-positive cells was performed. After ETN treatment and transfection of overexpressed or silenced TNFR1, levels of inflammatory cytokines, apoptosis and related genes expressions in cigarette smoke extract (CSE)-treated human pulmonary artery endothelial cells (HPAECs) were detected using enzyme-linked immunosorbent assay (ELISA), Hoechst 33342 staining, flow cytometry, quantitative real-time PCR (qRT-PCR) and Western blot. Results Pulmonary arterial remodeling and increased apoptotic and TNF-α+ HPAECs were found in lung tissue of smokers with or without COPD, with higher degrees in smokers with COPD. The numbers of apoptotic and TNF-α+ HPAECs were positively correlated with smoke index, while the FEV1/FVC ratio was negatively correlated with apoptotic HPAECs. In HPAECs, ETN downregulated the expressions of proteins related to CSE-induced apoptosis and the TNF receptor family, decreased CSE-induced cell apoptosis and inflammatory cytokine levels, and inhibited TNFR1 expression and p65 phosphorylation. Overexpressed TNFR1 reversed the effects of ETN on CSE-treated HPAECs, whereas silencing TNFR1 did the opposite. Conclusion ETN protected HPAECs against CSE-induced inflammation and apoptosis via downregulating TNFR1, thus providing a potential therapy for smoking-induced COPD.
Collapse
Affiliation(s)
- Hong Xue
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, People's Republic of China.,Provincial School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Baosong Xie
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, People's Republic of China.,Provincial School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Nengluan Xu
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, People's Republic of China.,Provincial School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Hongru Li
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, People's Republic of China.,Provincial School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Qianshun Chen
- Provincial School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, People's Republic of China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Zhou J, Jin F, Wu F. Clinical significance of changes in serum inflammatory factors in patients with chronic obstructive pulmonary disease and pulmonary infection. J Int Med Res 2021; 49:3000605211013275. [PMID: 34018839 PMCID: PMC8150426 DOI: 10.1177/03000605211013275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is often accompanied by pulmonary infection, inflammatory responses, decreased immunity, and decreased lung function. The relationships among the pulmonary inflammation index (PII), lung function, and immunity in COPD patients with pulmonary infection remain unclear. METHODS This retrospective observational study enrolled 234 participants (patients with COPD and pulmonary infection, patients with COPD without pulmonary infection, and healthy individuals) from January 2017 to December 2019. RESULTS Levels of interleukin (IL)-6 were lower and levels of IL-8 were higher in patients with COPD and pulmonary infection. Levels of white blood cells (WBCs), C-reactive protein (CRP), IL-6, IL-8, tumor necrosis factor (TNF)-α and CD8+ cells were higher, while levels of CD3+ and CD4+ cells, the CD4+/CD8+ ratio, forced expiratory volume in 1 s (FEV1), FEV1 % predicted (FEV1%pred), and FEV1/forced vital capacity (FVC) (FEV1%FVC) were lower in patients with COPD and pulmonary infection. Levels of WBCs, CRP, IL-6, IL-8, and TNF-α were negatively associated with FEV1, FEV1%pred and FEV1%FVC. CONCLUSIONS Patients with COPD and pulmonary infection have high PIIs, decreased immunity, and poor lung function. PII is closely related to lung function and may represent a useful biomarker for the assessment of patients with COPD and pulmonary infection.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Feng Jin
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Feng Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Boisen ML, Fernando RJ, Kolarczyk L, Teeter E, Schisler T, La Colla L, Melnyk V, Robles C, Rao VK, Gelzinis TA. The Year in Thoracic Anesthesia: Selected Highlights From 2020. J Cardiothorac Vasc Anesth 2021; 35:2855-2868. [PMID: 34053812 DOI: 10.1053/j.jvca.2021.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/20/2022]
Abstract
Selected highlights in thoracic anesthesia in 2020 include updates in the preoperative assessment and prehabilitation of patients undergoing thoracic surgery; updates in one-lung ventilation (OLV) pertaining to the devices used for OLV; the use of dexmedetomidine for lung protection during OLV and protective ventilation, recommendations for the care of thoracic surgical patients with coronavirus disease 2019; a review of recent meta-analyses comparing truncal blocks with paravertebral and thoracic epidural blocks; and a review of outcomes after initiating the enhanced recovery after surgery guidelines for lung and esophageal surgery.
Collapse
Affiliation(s)
- Michael L Boisen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rohesh J Fernando
- Cardiothoracic Section, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Lavinia Kolarczyk
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Emily Teeter
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Travis Schisler
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Luca La Colla
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Vladyslav Melnyk
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - Constantin Robles
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Vidya K Rao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA
| | - Theresa A Gelzinis
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
29
|
Mostafa TM, El-Azab GA, Atia GA, Lotfy NS. The Effectiveness of 3 Combined Therapeutic Regimens in Egyptian Patients with Moderate-to-Severe Chronic Obstructive Pulmonary Disease: A Randomized Double-Blind Prospective Pilot Study. CURRENT THERAPEUTIC RESEARCH 2021; 94:100625. [PMID: 34306265 PMCID: PMC8296082 DOI: 10.1016/j.curtheres.2021.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND There are differences of opinion about both the most effective combined therapeutic strategy and the clinical benefit of inhaled corticosteroids in nonasthmatic patients with chronic obstructive pulmonary disease. Furthermore, many inflammatory cytokines are reportedly correlated with severity of the disease. OBJECTIVES To compare the effectiveness of long acting β-agonist + long-acting muscarinic antagonist (LABA + LAMA) versus LABA + inhaled corticosteroid and LAMA + inhaled corticosteroid in nonasthmatic patients with moderate-to-severe chronic obstructive pulmonary disease. To assess the changes that occurred in plasma concentrations of tumor necrosis factor α, fibrinogen, and interleukin 6, and correlate these with disease activity. METHODS In this pilot study, 45 nonasthmatic patients with moderate to severe chronic obstructive pulmonary disease were randomized into 3 groups with 15 patients in each group. Group I (LABA + inhaled corticosteroid) received formoterol/budesonide, group II (LAMA + inhaled corticosteroid) received tiotropium/budesonide and group III (LABA + LAMA) received formoterol/tiotropium for 12 weeks. Patients were assessed initially and then at 4 and 12 weeks by measuring the changes that occurred in forced expiratory volume in 1 second as a percent of predicted and in the modified Medical Research Council dyspnea scale. Plasma concentrations of tumor necrosis factor α, fibrinogen, and interleukin 6 were simultaneously measured. RESULTS The 3 study groups were statistically similar with respect to their demographic data and disease characteristics. All therapeutic options produced an improvement in forced expiratory volume in 1 second as a percent of predicted and in the modified Medical Research Council dyspnea scale as well as a reduction in plasma concentrations of the inflammatory markers. The effects produced by the three therapeutic combinations on forced expiratory volume in 1 second as a percent of predicted, plasma tumor necrosis factor α, interleukin 6, and fibrinogen concentrations were statistically similar after 4 and 12 weeks (4 weeks after treatment: P = 0.358, P = 0.284, P = 0.155, and P = 0.155, respectively, and 12 weeks after treatment: P = 0.710, P = 0.773, P = 0.240, and P = 0.076, respectively). CONCLUSIONS In nonasthmatic patients with moderate to severe chronic obstructive pulmonary disease, the 3 therapeutic combinations showed similar effectiveness. The results of this pilot study also suggest that inflammatory markers can be used to track disease activity. Clinicaltrials.gov identifier: NCT04520230. (Curr Ther Res Clin Exp. 2021; 82:XXX-XXX).
Collapse
Affiliation(s)
- Tarek M. Mostafa
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal A. El-Azab
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada A. Atia
- Chest Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noran S. Lotfy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
30
|
Phillips G, Czekala L, Behrsing HP, Amin K, Budde J, Stevenson M, Wieczorek R, Walele T, Simms L. Acute electronic vapour product whole aerosol exposure of 3D human bronchial tissue results in minimal cellular and transcriptomic responses when compared to cigarette smoke. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/2397847320988496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The use of electronic vapour products (EVPs) continues to increase worldwide and with advances in cell culture systems, molecular biology and the computational sciences there is also accumulating evidence of their potential reduced toxicity and reduced potential harm when compared to cigarette smoke. To further understand the potential risks and health effects associated with exposure to EVP aerosols we have assessed the cellular and transcriptomic response from a commercially available lung tissue culture system (MucilAirTM) following a single sub-cytotoxic exposure to cigarette smoke and the equivalent nicotine delivered dose of EVP aerosol. The transcriptomic, cellular (cilia beat frequency (CBF) and percent active area (%AA), trans epithelial electrical resistance (TEER), histology) and cytokine release were assessed at 4- and 48- hours following recovery from air, EVP aerosol (8.4% V/V: mybluTM blueberry flavour, 2.4% nicotine) and 3R4F smoke (3.5% V/V: exposure). No pathological changes were observed at either recovery time point from any exposure. Air and EVP aerosol exposure had no effect on CBF, %AA nor TEER at 48 hours. Exposure to cigarette smoke resulted in a decrease in TEER, an increase in CBF and the release of proinflammatory cytokines at both recovery time points. Although the number of significantly expressed genes was minimal following exposure to EVP aerosol, exposure to 3R4F smoke resulted in a significant upregulation of several disease relevant pathways. These data provide evidence that following an acute exposure to EVP aerosol there is significantly less damage to lung cells in culture than the equivalent, nicotine based, dose of cigarette smoke.
Collapse
Affiliation(s)
- Gary Phillips
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, United Kingdom
| | - Lukasz Czekala
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, United Kingdom
| | - Holger P Behrsing
- Respiratory Toxicology, Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Khalid Amin
- University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Jessica Budde
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Hamburg, Germany
| | - Matthew Stevenson
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, United Kingdom
| | - Roman Wieczorek
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Hamburg, Germany
| | - Tanvir Walele
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, United Kingdom
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, United Kingdom
| |
Collapse
|
31
|
Bouazza B, Hadj-Said D, Pescatore KA, Chahed R. Are Patients with Asthma and Chronic Obstructive Pulmonary Disease Preferred Targets of COVID-19? Tuberc Respir Dis (Seoul) 2021; 84:22-34. [PMID: 33099990 PMCID: PMC7801803 DOI: 10.4046/trd.2020.0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic, known as coronavirus disease 2019 (COVID-19), is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus first identified in patients from Wuhan, China. Since December 2019, SARS-CoV-2 has spread swiftly around the world, infected more than 25 million people, and caused more than 800,000 deaths in 188 countries. Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) appear to be risk factors for COVID-19, however, their prevalence remains controversial. In fact, studies in China reported lower rates of chronic respiratory conditions in patients with COVID-19 than in the general population, while the trend is reversed in the United States and Europe. Although the underlying molecular mechanisms of a possible interaction between COVID-19 and chronic respiratory diseases remain unknown, some observations can help to elucidate them. Indeed, physiological changes, immune response, or medications used against SARS-CoV-2 may have a greater impact on patients with chronic respiratory conditions already debilitated by chronic inflammation, dyspnea, and the use of immunosuppressant drugs like corticosteroids. In this review, we discuss importance and the impact of COVID-19 on asthma and COPD patients, the possible available treatments, and patient management during the pandemic.
Collapse
Affiliation(s)
- Belaid Bouazza
- Department of Biochemistry and Microbiology, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University, Tizi-Ouzou, Algeria
| | - Dihia Hadj-Said
- Department of Biochemistry and Microbiology, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University, Tizi-Ouzou, Algeria
| | | | - Rachid Chahed
- Cabinet Médical Privé, Spécialité de Pneumologie, Tizi-Ouzou, Algeria
| |
Collapse
|
32
|
Evaluation of Naringenin as a Promising Treatment Option for COPD Based on Literature Review and Network Pharmacology. Biomolecules 2020; 10:biom10121644. [PMID: 33302350 PMCID: PMC7762561 DOI: 10.3390/biom10121644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by incompletely reversible airflow limitation and seriously threatens the health of humans due to its high morbidity and mortality. Naringenin, as a natural flavanone, has shown various potential pharmacological activities against multiple pathological stages of COPD, but available studies are scattered and unsystematic. Thus, we combined literature review with network pharmacology analysis to evaluate the potential therapeutic effects of naringenin on COPD and predict its underlying mechanisms, expecting to provide a promising tactic for clinical treatment of COPD.
Collapse
|
33
|
Immunomodulatory Effects of Hydrolyzed Seawater Pearl Tablet (HSPT) on Th1/Th2 Functionality in a Mice Model of Chronic Obstructive Pulmonary Disease (COPD) Induced by Cigarette Smoke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5931652. [PMID: 33281913 PMCID: PMC7688355 DOI: 10.1155/2020/5931652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death around the world. The present study is designed to investigate whether hydrolyzed seawater pearl tablet (HSPT) has immunoregulatory effects on the Th1/Th2 functionality in cigarette smoke-induced COPD model mice. The determination of the amino acid composition of HSPT was carried out by high-performance liquid chromatography (HPLC) with precolumn phenylisothiocyanate (PITC) derivatization. COPD model mice were constructed by cigarette smoking (CS) treatment and HSPT was administered. HSPT inhibited the infiltration of inflammation in the airway of the lung, reduced influx of eosinophils (EOSs), lymphocytes (LYMs), neutrophils (NEUs), and macrophages (MACs) in the bronchoalveolar lavage fluid (BALF), decreased the levels of IFN-γ, IL-2, IL-4, and IL-10 in the serum and lung, and decreased the expression of aforementioned cytokines in the spleen and lung in CS-treated mice. Besides, HSPT also had the ability to reduce the amount of CD3+CD4+ T cells and modulate the Th1/Th2 balance. Taken together, this study supports the consensus that CS is a critical factor to induce and aggravate COPD. HSPT could regulate the balance of Th1/Th2 in CS-induced COPD model mice, indicating its effects on inhibiting the development of COPD.
Collapse
|
34
|
Pinkston R, Zaman H, Hossain E, Penn AL, Noël A. Cell-specific toxicity of short-term JUUL aerosol exposure to human bronchial epithelial cells and murine macrophages exposed at the air-liquid interface. Respir Res 2020; 21:269. [PMID: 33069224 PMCID: PMC7568376 DOI: 10.1186/s12931-020-01539-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023] Open
Abstract
Backgroud JUUL, an electronic nicotine delivery system (ENDS), which first appeared on the US market in 2015, controled more than 75% of the US ENDS sales in 2018. JUUL-type devices are currently the most commonly used form of ENDS among youth in the US. In contrast to free-base nicotine contained in cigarettes and other ENDS, JUUL contains high levels of nicotine salt (35 or 59 mg/mL), whose cellular and molecular effects on lung cells are largely unknown. In the present study, we evaluated the in vitro toxicity of JUUL crème brûlée-flavored aerosols on 2 types of human bronchial epithelial cell lines (BEAS-2B, H292) and a murine macrophage cell line (RAW 264.7). Methods Human lung epithelial cells and murine macrophages were exposed to JUUL crème brûlée-flavored aerosols at the air–liquid interface (ALI) for 1-h followed by a 24-h recovery period. Membrane integrity, cytotoxicity, extracellular release of nitrogen species and reactive oxygen species, cellular morphology and gene expression were assessed. Results Crème brûlée-flavored aerosol contained elevated concentrations of benzoic acid (86.9 μg/puff), a well-established respiratory irritant. In BEAS-2B cells, crème brûlée-flavored aerosol decreased cell viability (≥ 50%) and increased nitric oxide (NO) production (≥ 30%), as well as iNOS gene expression. Crème brûlée-flavored aerosol did not affect the viability of either H292 cells or RAW macrophages, but increased the production of reactive oxygen species (ROS) by ≥ 20% in both cell types. While crème brûlée-flavored aerosol did not alter NO levels in H292 cells, RAW macrophages exposed to crème brûlée-flavored aerosol displayed decreased NO (≥ 50%) and down-regulation of the iNOS gene, possibly due to increased ROS. Additionally, crème brûlée-flavored aerosol dysregulated the expression of several genes related to biotransformation, inflammation and airway remodeling, including CYP1A1, IL-6, and MMP12 in all 3 cell lines. Conclusion Our results indicate that crème brûlée-flavored aerosol causes cell-specific toxicity to lung cells. This study contributes to providing scientific evidence towards regulation of nicotine salt-based products.
Collapse
Affiliation(s)
- Rakeysha Pinkston
- Department of Environmental Toxicology, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Hasan Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Ekhtear Hossain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
35
|
Beneficial Effects of Naringenin in Cigarette Smoke-Induced Damage to the Lung Based on Bioinformatic Prediction and In Vitro Analysis. Molecules 2020; 25:molecules25204704. [PMID: 33066647 PMCID: PMC7587370 DOI: 10.3390/molecules25204704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Naringenin is found mainly in citrus fruits, and is thought to be beneficial in the prevention and control of lung diseases. This study aims to investigate the mechanisms of naringenin against the damage in the lung caused by cigarette smoke. A system bioinformatic approach was proposed to predict the mechanisms of naringenin for protecting lung health. Then, we validated this prediction in BEAS-2B cells treated with cigarette smoke extract (CSE). System bioinformatic analysis indicated that naringenin exhibits protective effects on lung through the inhibition of inflammation and suppression of oxidative stress based on a multi-pathways network, mainly including oxidative stress pathway, Nrf2 pathway, Lung fibrosis pathway, IL-3 signaling pathway, and Aryl hydrocarbon receptor pathway. The in vitro results showed that naringenin significantly attenuated CSE-induced up-regulation of IL-8 and TNF-α. CSE stimulation increased the mRNA expressions of Nrf2, HO-1, and NQO1; the levels of total protein and nuclear protein of Nrf2; and the activity of SOD on days 2 and 4; but decreased these indexes on day 6. Naringenin can balance the antioxidant system by regulating Nrf2 and its downstream genes, preliminarily validating that Nrf2 pathway is involved in the protection offered by naringenin against cigarette smoke-induced damage to the lung. It suggests that dietary naringenin shows possible potential use in the management of lung health.
Collapse
|
36
|
Effect of Dexmedetomidine on Postoperative Lung Injury during One-Lung Ventilation in Thoracoscopic Surgery. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4976205. [PMID: 33083468 PMCID: PMC7557917 DOI: 10.1155/2020/4976205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Objective To investigate the effect of dexmedetomidine on postoperative lung injury in patients undergoing thoracoscopic surgery. Methods From March 2019 to October 2019, 40 patients were randomly divided into two groups: dexmedetomidine group (group D) and control group (group C). Except recording the general condition of the patients in both groups preoperatively and intraoperatively, the oxygenation index (OI) and alveolar-arterial oxygen partial pressure difference (A-aDO2) were monitored at admission (T0), immediately after one-lung ventilation (T1), 0.5 h after one-lung ventilation (T2), and 15 minutes after inhaling air before leaving the room (T3). The content of IL-8 in arterial blood was measured by enzyme-linked immunosorbent assay (ELISA) at T0 and T2, and the expression of AQP1 protein in isolated lung tissue was measured by immunohistochemistry and Western blot. The incidence of postoperative pulmonary complications (atelectasis, pneumonia, and acute respiratory distress syndrome) was used as the index of lung injury. Results There was no significant difference in the general condition before and during operation between the two groups. There was no significant difference in arterial blood IL-8 content between the two groups at the T0 time point, but the arterial blood IL-8 content at the T2 time point was significantly higher than that at the T0 time point, especially in group C. The results of immunohistochemistry and Western blot showed that the expression level of AQP1 protein in the isolated lung tissue of group D was significantly higher than that of group C (P < 0 05). At T3, the OI of group D was significantly higher than that of group C, and the A-aDO2 of group D was significantly lower than that of group C (P < 0.05). There was no significant difference in the incidence of postoperative PPCs between the two groups. Conclusion Dexmedetomidine can reduce the level of plasma IL-8 and upregulate the expression of AQP1 in the lung tissue of patients undergoing thoracoscopic surgery under one-lung ventilation, but it has no significant effect on the incidence of postoperative PPCs. Dexmedetomidine can be safely used in thoracoscopic surgery and has a certain protective effect on lung injury.
Collapse
|
37
|
Ghosh N, Choudhury P, Kaushik SR, Arya R, Nanda R, Bhattacharyya P, Roychowdhury S, Banerjee R, Chaudhury K. Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir Res 2020; 21:126. [PMID: 32448302 PMCID: PMC7245917 DOI: 10.1186/s12931-020-01390-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Asthma-COPD overlap (ACO) refers to a group of poorly studied and characterised patients reporting with disease presentations of both asthma and COPD, thereby making both diagnosis and treatment challenging for the clinicians. They exhibit a higher burden in terms of both mortality and morbidity in comparison to patients with only asthma or COPD. The pathophysiology of the disease and its existence as a unique disease entity remains unclear. The present study aims to determine whether ACO has a distinct metabolic and immunological mediator profile in comparison to asthma and COPD. Methods Global metabolomic profiling using two different groups of patients [discovery (D) and validation (V)] were conducted. Serum samples obtained from moderate and severe asthma [n = 34(D); n = 32(V)], moderate and severe COPD [n = 30(D); 32(V)], ACO patients [n = 35(D); 40(V)] and healthy controls [n = 33(D)] were characterized using gas chromatography mass spectrometry (GC-MS). Multiplexed analysis of 25 immunological markers (IFN-γ (interferon gamma), TNF-α (tumor necrosis factor alpha), IL-12p70 (interleukin 12p70), IL-2, IL-4, IL-5, IL-13, IL-10, IL-1α, IL-1β, TGF-β (transforming growth factor), IL-6, IL-17E, IL-21, IL-23, eotaxin, GM-CSF (granulocyte macrophage-colony stimulating factor), IFN-α (interferon alpha), IL-18, NGAL (neutrophil gelatinase-associated lipocalin), periostin, TSLP (thymic stromal lymphopoietin), MCP-1 (monocyte chemoattractant protein- 1), YKL-40 (chitinase 3 like 1) and IL-8) was also performed in the discovery cohort. Results Eleven metabolites [serine, threonine, ethanolamine, glucose, cholesterol, 2-palmitoylglycerol, stearic acid, lactic acid, linoleic acid, D-mannose and succinic acid] were found to be significantly altered in ACO as compared with asthma and COPD. The levels and expression trends were successfully validated in a fresh cohort of subjects. Thirteen immunological mediators including TNFα, IL-1β, IL-17E, GM-CSF, IL-18, NGAL, IL-5, IL-10, MCP-1, YKL-40, IFN-γ, IL-6 and TGF-β showed distinct expression patterns in ACO. These markers and metabolites exhibited significant correlation with each other and also with lung function parameters. Conclusions The energy metabolites, cholesterol and fatty acids correlated significantly with the immunological mediators, suggesting existence of a possible link between the inflammatory status of these patients and impaired metabolism. The present findings could be possibly extended to better define the ACO diagnostic criteria, management and tailoring therapies exclusively for the disease.
Collapse
Affiliation(s)
- Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sandeep Rai Kaushik
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rakesh Arya
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ranjan Nanda
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Rintu Banerjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
38
|
Hu L, Liu F, Li L, Zhang L, Yan C, Li Q, Qiu J, Dong J, Sun J, Zhang H. Effects of icariin on cell injury and glucocorticoid resistance in BEAS-2B cells exposed to cigarette smoke extract. Exp Ther Med 2020; 20:283-292. [PMID: 32550884 PMCID: PMC7296294 DOI: 10.3892/etm.2020.8702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) exert a therapeutic effect in numerous chronic inflammatory diseases. However, chronic obstructive pulmonary disease (COPD) tends to be GC-resistant. Icariin, a major component of flavonoids isolated from Epimedium brevicornum Maxim (Berberidaceae), significantly relieves symptoms in patients with COPD. However, the mechanism of action remains unclear and further investigation is required to establish whether it may serve as an alternative or complementary therapy for COPD. The aim of the present study was to determine the effects of icariin in human bronchial epithelial cells exposed to cigarette smoke extract (CSE) and to determine whether icariin reverses GC resistance. The results revealed that icariin significantly increased the proliferation of CSE-exposed cells. Furthermore, icariin significantly increased protein expression of the anti-inflammatory factor interleukin (IL)-10 and significantly decreased protein expression of the pro-inflammatory factors IL-8 and tumor necrosis factor α. Icariin also attenuated the expression of the cellular matrix remodelling biomarkers matrix metallopeptidase 9 and tissue inhibitor of metalloproteinase 1, and decreased the production of reactive oxygen species (ROS). In addition, icariin regulated the expression of GC resistance-related factors, such as GC receptors, histone deacetylase 2, nuclear factor erythroid-2-related factor 2 and nuclear factor κ B. The results obtained in the present study suggested that icariin may decrease CSE-induced inflammation, airway remodelling and ROS production by mitigating GC resistance. In conclusion, icariin may potentially be used in combination with GCs to increase therapeutic efficacy and reduce GC resistance in COPD.
Collapse
Affiliation(s)
- Lingli Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
39
|
Yao Y, Zhou J, Diao X, Wang S. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Respir Dis 2020; 13:1753466619866096. [PMID: 31390957 PMCID: PMC6688146 DOI: 10.1177/1753466619866096] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Patients diagnosed with chronic obstructive pulmonary disease (COPD) have
increased risks for a series of physical and mental illnesses. Tumor
necrosis factor-α (TNF-α) has been reported to participate in the
development of COPD and its complications. However, the values of blood
TNF-α level used in the diagnosis of COPD remains controversial. In view of
this, we performed a systematic review and meta-analysis to evaluate the
correlation between TNF-α level and COPD. Methods: We searched PubMed, Web of Science, Embase and CNKI up to May 2018. The
selection criteria were set according to the PICOS framework. A
random-effects model was then applied to evaluate the overall effect sizes
by calculating standard mean difference (SMD) and its 95% confidence
intervals (CIs). Results: A total of 40 articles containing 4189 COPD patients and 1676 healthy
controls were included in this meta-analysis. The results indicated a
significant increase in TNF-α level in the COPD group compared with the
control group (SMD: 1.24, 95% CI: 0.78–1.71,
p < 0.00001). According to the subgroup analyses, we
noted that TNF-α level was associated with predicted first second of forced
expiration (FEV1) (%) and study region. However, no association
between TNF-α level and COPD was found when the participants were
nonsmokers, and the mean age was less than 60 years. Conclusions: Our results indicated that TNF-α level was increased in COPD patients when
compared with healthy controls. Illness progression and a diagnosis of COPD
might contribute to higher TNF-α levels. However, the underlying mechanism
still remains unknown and needs further investigation. The reviews of this paper are available via the supplemental
material section.
Collapse
Affiliation(s)
- Yang Yao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China
| | - Jing Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China
| | - Xin Diao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China
| | - Shengyu Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710002, PR China
| |
Collapse
|
40
|
Lin MC, Livneh H, Chen WJ, Lai NS, Lu MC, Tsai TY. Association of Chinese Herbal Medicines Use with Development of Chronic Obstructive Pulmonary Disease Among Patients with Rheumatoid Arthritis: A Population-Based Cohort Study. Int J Chron Obstruct Pulmon Dis 2020; 15:691-700. [PMID: 32280208 PMCID: PMC7125333 DOI: 10.2147/copd.s233441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose Rheumatoid arthritis (RA) patients appear to report a higher risk of chronic obstructive pulmonary disease (COPD). While Chinese herbal medicine (CHMs) is proven to lower COPD risk, the scientific evidence regarding its effect in relation to COPD onset among them is limited. This longitudinal cohort study aimed to determine the relationship between CHMs use and the COPD risk in RA patients. Methods Using the nationwide claim data, 8349 patients newly diagnosed with RA and simultaneously free of COPD between 1998 and 2010 were eligible for enrollment. From this sample, we enrolled 3360 CHMs users and 3360 non-CHMs users, randomly selected using propensity scores matching from the remaining cases. They were followed until the end of 2012 to record COPD incidence. The hazard ratio (HR) of COPD with regard to CHMs use was estimated by the Cox proportional hazards regression model. Results In the follow-up period, 136 CHMs users and 202 non-CHMs users developed COPD, representing incidence rates of 5.16 and 7.66, respectively, per 1000 person-years. CHMs use was associated with a 32% lower subsequent risk of COPD (adjusted HR: 0.68, 95% Confidence Interval: 0.54–0.84). Eight commonly prescribed CHMs were discovered to be associated with lower COPD risk: Yan Hu Suo, Sānɡ Zhī, Dang Shen, Huang Qin, Jia-Wei-Xiao-Yao-San, Shu-Jing-Huo-Xue-Tang, Du-Huo-Ji-Sheng-Tang and Ge-Gen-Tang. Conclusion A significant association of CHMs use with a lower risk of COPD onset in RA patients was found, suggesting that CHMs could be integrated into conventional therapy to reduce COPD risk.
Collapse
Affiliation(s)
- Miao-Chiu Lin
- Department of Nursing, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR 97207-0751, USA
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan
| | - Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Tzung-Yi Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.,Department of Nursing, Tzu Chi University of Science and Technology, Hualien 62247, Taiwan.,Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan
| |
Collapse
|
41
|
Gurgone D, McShane L, McSharry C, Guzik TJ, Maffia P. Cytokines at the Interplay Between Asthma and Atherosclerosis? Front Pharmacol 2020; 11:166. [PMID: 32194407 PMCID: PMC7064545 DOI: 10.3389/fphar.2020.00166] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) is an important comorbidity in a number of chronic inflammatory diseases. However, evidence in highly prevalent respiratory disease such as asthma are still limited. Epidemiological and clinical data are not univocal in supporting the hypothesis that asthma and CVD are linked and the mechanisms of this relationship remain poorly defined. In this review, we explore the relationship between asthma and cardiovascular disease, with a specific focus on cytokine contribution to vascular dysfunction and atherosclerosis. This is important in the context of recent evidence linking broad inflammatory signaling to cardiovascular events. However inflammatory regulation in asthma is different to the one typically observed in atherosclerosis. We focus on the contribution of cytokine networks encompassing IL-4, IL-6, IL-9, IL-17A, IL-33 but also IFN-γ and TNF-α to vascular dysfunction in atherosclerosis. In doing so we highlight areas of unmet need and possible therapeutic implications.
Collapse
Affiliation(s)
- Danila Gurgone
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Lucy McShane
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charles McSharry
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
42
|
Yeh JJ, Lin CL, Kao CH. Associations among chronic obstructive pulmonary disease with asthma, pneumonia, and corticosteroid use in the general population. PLoS One 2020; 15:e0229484. [PMID: 32092112 PMCID: PMC7039502 DOI: 10.1371/journal.pone.0229484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To evaluate the association among chronic obstructive pulmonary disease (COPD) with asthma, steroid use, and pneumonia in the general population. Methods Using Taiwan’s National Health Insurance Research Database to identify patients with incident pneumonia, we established a COPD with asthma cohort of 12,538 patients and a COPD cohort of 25,069 patients. In both cohorts, the risk of incident pneumonia was assessed using multivariable Cox proportional hazards models. Results The adjusted hazard ratio (aHR) with 95% confidence interval (CI) for incident pneumonia was 2.38 (2.14, 2.66) in the COPD with asthma cohort, regardless of age, sex, comorbidities, and drug use. COPD cohort without inhaled corticosteroids (ICSs) use served as a reference. The aHR (95% CI) for COPD cohort with ICSs use was 1.34 (0.98, 1.83); that for COPD with asthma cohort without ICSs use was 2.46 (2.20, 2.76); and that for COPD with asthma cohort with ICSs use was 2.32 (1.99, 2.72). COPD cohort without oral steroids (OSs) use served as a reference; the aHR (95% CI) for COPD with asthma cohort without OSs use and with OSs use was 3.25 (2.72, 3.89) and 2.38 (2.07, 2.74), respectively. Conclusions The COPD with asthma cohort had a higher risk of incident pneumonia, regardless of age, sex, comorbidities, and ICSs or OSs use. COPD cohort with ICSs use did not have a notable risk of incident pneumonia. The COPD with asthma cohort had a higher risk of incident pneumonia, even without ICSs/OSs use.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi, Taiwan
- Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- * E-mail: ,
| |
Collapse
|
43
|
Liu J, Liu L, Sun J, Luo Q, Yan C, Zhang H, Liu F, Wei Y, Dong J. Icariin Protects Hippocampal Neurons From Endoplasmic Reticulum Stress and NF-κB Mediated Apoptosis in Fetal Rat Hippocampal Neurons and Asthma Rats. Front Pharmacol 2020; 10:1660. [PMID: 32082160 PMCID: PMC7005524 DOI: 10.3389/fphar.2019.01660] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Icariin is a main component of the Chinese medicinal plant Epimedium brevicornu Maxim, exhibits potent activity against inflammatory diseases. Our previous data demonstrated the valid bioactivity of icariin on mitigating rodent asthma. Endoplasmic reticulum (ER) stress and nuclear factor-κB (NF-κB) pathway were involved in the pathogenesis of asthma. However, it remains poorly defined that whether icariin could inhibit ER stress and NF-κB mediated apoptosis in asthma and further influence the central neural system. Herein, we investigated the effects of icariin on primary cultured fetal rat hippocampal neurons and OVALPS-OVA induced asthma rat model. Asthma rat models were established by ovalbumin (OVA) and lipopolysaccharide (LPS) intraperitoneal injection and OVA inhalational challenge. Airway resistance was analyzed to evaluate lung function after last challenge and pathological changes were detected on lung tissues. Assessment of inflammatory cells counts in bronchoalveolar lavage fluids (BALF) were performed and ELISA was used to determine levels of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and interferon-γ in serum. Protein expression of BiP and IRE-1α, XBP-1s and phosphorylation-IκBα (p-IκBα), IκBα, and p65 as well as cytochrome c, caspase-3 (cleaved caspase-3), and caspase-9 (cleaved caspase-9) were tested by Western blot. We found that icariin could remarkably improve pulmonary function and reduce inflammatory cells in the lung, levels of inflammatory cytokines, and ER stress related proteins as well as NF-κB were prominently suppressed by icariin. Our results suggested that icariin had an inhibitory effect on airway inflammation and neuroprotective effect on ER stress and NF-κB mediated apoptosis in asthma rats and cultured fetal rat hippocampal neurons, which may provide new mechanistic insights into the asthma prevention and treatment of icariin.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
44
|
IL10 rs1800872 Is Associated with Non-Steroidal Anti-Inflammatory Drugs Exacerbated Respiratory Disease in Mexican-Mestizo Patients. Biomolecules 2020; 10:biom10010104. [PMID: 31936183 PMCID: PMC7023146 DOI: 10.3390/biom10010104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) exacerbated respiratory disease (N-ERD) is a disease integrated by asthma, nasal polyps, and hypersensitivity to non-steroidal anti-inflammatory drugs (NSAID). Genetic association studies have explored single nucleotide polymorphisms (SNPs) in genes involved in theoretical pathophysiological mechanisms, but most of these lack replication of findings in second populations. Our objective was to evaluate the association of SNPs in candidate genomic regions described in Asian and European subjects with N-ERD in Mexican-mestizo patients. We designed a replicative study in two stages. We included 381 SNPs selected by fine mapping of associated genes in a microarray, which were tested in three groups: N-ERD (N), asthma (A), and control group (CG); by means of GoldenGate array, positive results by genetic models were validated in the second stage in another population through qPCR with the same methodology. In the allelic model, we identified 11 SNPs in N vs. CG comparison, and five in N vs. A and A vs. CG, respectively. By genetics models, all SNPs in PPARG, rs13239058 in TBXAS1, and rs1554286 and rs1800872 in IL10 were associated in both models. In the second stage, only rs1800872CC showed an association in the dominant model comparing N vs. GC, p = 0.004, OR = 0.44. In conclusion, rs1800872 in IL10 was the only associated with N-ERD in Mexican-mestizo patients.
Collapse
|
45
|
Murakami-Malaquias-da-Silva F, Rosa EP, Oliveira JG, Avelar IS, Palma-Cruz M, Fernandes Silva JG, Rigonato-Oliveira NC, Bussadori SK, Negreiros RM, Ligeiro-de-Oliveira AP, Lino-Dos-Santos-Franco A, Horliana AC. The role of periodontal treatment associated with photodynamic therapy on the modulation of systemic inflammation in the experimental model of asthma and periodontitis. Photodiagnosis Photodyn Ther 2019; 29:101619. [PMID: 31841684 DOI: 10.1016/j.pdpdt.2019.101619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The association of Periodontitis (P) with several systemic diseases, among them asthma (A), has been previously studied. As periodontal treatment (TTO) associated with photodynamic therapy (PDT) is able to treat P, the aim of this study is to verify whether periodontitis exerts systemic effects on asthma, and whether TTO, associated or not with PDT, is capable of altering the systemic course of both pathologies. METHODS 64 male Balb/c mice were divided into 8 groups (n = 8): Basal (B), P, P + TTO, P + TTO + PDT, Asthma, A + P, A + P + TTO, A + P + TTO + PDT. After 43 days, all animals were euthanized. The total and differential leukocyte count in serum, platelet count, alveolar bronchial lavage cell count, femoral lavage cell count in addition to the reactivity of the trachea, lung edema and gingiva cytokines were analyzed. The frequency of inflammatory cells was assessed via flow cytometry. One-way ANOVA test was used, followed by the Student-Newman-Keuls post-test. RESULTS There was an increase in the number of blood circulating eosinophils in group A when compared to group B (p < 0.01); this characterized the asthma experimental model. P (p < 0.05) presented a lower amount of cytokine TNF-α in the gingiva when compared to the Asthma group. Apart from that, there was no statistical difference found for the other analyzed parameters. CONCLUSION These data contributed to elucidate that P and A, associated or not with TTO and PDT, are not able to interfere with the systemic parameters of Balb/c mice.
Collapse
Affiliation(s)
| | - Ellen Perim Rosa
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Jessica Gonzaga Oliveira
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Isabella Sena Avelar
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Marlon Palma-Cruz
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Joao Gabriel Fernandes Silva
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | | | - Sandra Kalil Bussadori
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Renata Matalon Negreiros
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Ana Paula Ligeiro-de-Oliveira
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| | - Anna Carolina Horliana
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| |
Collapse
|
46
|
Li J, Chen X, Qu Y. Effects of cyclophosphamide combined with prednisone on TNF-α expression in treatment of patients with interstitial lung disease. Exp Ther Med 2019; 18:4443-4449. [PMID: 31777548 PMCID: PMC6862246 DOI: 10.3892/etm.2019.8099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/06/2019] [Indexed: 12/25/2022] Open
Abstract
Effects of cyclophosphamide combined with prednisone on TNF-α expression in the treatment of patients with interstitial lung disease (ILD), and its clinical significance were investigated. A prospective analysis was performed on 198 patients with ILD in Jinan Central Hospital Affiliated to Shandong University from January 2010 to December 2017. Among them, 101 patients treated with cyclophosphamide combined with prednisone were assigned in the combined treatment group, and 97 patients treated with prednisone alone in the control group. Patients in the two groups were compared in terms of lung function, St. George's Respiratory Questionnaire (SGRQ) score, clinical efficacy, adverse reactions and TNF-α expression levels before and after treatment. After treatment, the patients in the combined treatment group had significantly higher forced vital capacity (FVC) and forced expiratory volume in first second (FEV1) compared with the control group, but significantly lower diffusing capacity of lung for carbon monoxide (DLCO) and DLCO% (P<0.05). In both groups, patients after treatment had higher FVC and FEV1, but lower DLCO and DLCO% (P<0.05), compared with before treatment, while SGRQ score before treatment was higher than that after treatment (P<0.05). Compared with control group, the combined treatment group had significantly more patients with complete remission (CR) and higher total effective rate, however less patients with stable disease (SD) (P<0.05). Patients with adverse reactions in the combined treatment group were less than those in the control group (P<0.05). After treatment, TNF-α expression level in the combined treatment group was significantly lower than that in the control group (P<0.05), and TNF-α expression before treatment was higher than that after treatment in both groups (P<0.05). In conclusion, cyclophosphamide combined with prednisone is effective and safe in the treatment of ILD without severe adverse reactions, reducing TNF-α expression level, and therefore is worthy of clinical application.
Collapse
Affiliation(s)
- Jun Li
- Department of Respiratory Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiuling Chen
- Department of Gynaecology and Obstetrics, First People's Hospital of Jinan, Jinan, Shandong 250014, P.R. China
| | - Yunping Qu
- Department of Stomatology, First People's Hospital of Jinan, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
47
|
Yao W, Sun Y, Sun Y, Chen P, Meng Z, Xiao M, Yang X. A Preliminary Report of the Relationship Between Gene Polymorphism of IL-8 and Its Receptors and Systemic Inflammatory Response Syndrome Caused by Wasp Stings. DNA Cell Biol 2019; 38:1512-1518. [PMID: 31613654 DOI: 10.1089/dna.2019.4855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The plasma levels of interleukin-8 (IL-8) and its receptors (CXCR1 and CXCR2) play a significant role in the development of systemic inflammatory response syndrome (SIRS), but it is not clear how these proteins are involved in wasp sting patients developing SIRS. To study potential genetic factors predisposing to the risk of SIRS caused by wasp sting injury, we determined the plasma levels of IL-8 and its receptors among SIRS patients with wasp sting injury and investigated the association of single-nucleotide polymorphisms of these genes with SIRS. A total of 225 patients were divided into the SIRS group (n = 62) and non-SIRS group (control, n = 163), and we associated polymorphisms in IL-8 [rs4073 (-251T>A), rs2227532 (-845C>T), rs2227307 (+396G>T), rs2227306 (+781T>C), CXCR1 rs2234671 (+860C>G), CXCR2 [rs2230054 (+811T>C), rs57929613 (+1235C>T), and rs60626131 (+1440A>G)] with SIRS with a linear additive model. In terms of protein expression, the IL-8, CXCR1, and CXCR2 plasma levels were significantly higher in the SIRS group than in the control group (p < 0.001). Significantly higher frequencies were observed for the IL-8 - 251T allele (AT+TT), CXCR2 + 811T allele (CT+TT), and +1235C allele (TC+CC) in the SIRS group, when compared with the control group, with odds ratio (OR) = 3.971 (95% confidence interval [CI], 1.618-9.734), p = 0.003; OR = 4.223 (95% CI, 1.863-9.571), p = 0.001; and OR = 4.012 (95% CI, 1.773-9.079), p = 0.001; respectively. In addition, SIRS is more likely to occur in males, patients with number of wasp stings ≥10 stings, and stings in the limbs. The current study suggests that the IL-8 - 251T allele (AT+TT) and IL-8 receptor CXCR2 + 811C allele (CT+TT) and +1235T allele (TC+CC) could be risk factors among SIRS patients with wasp sting injury.
Collapse
Affiliation(s)
- Wei Yao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuwen Sun
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuhui Sun
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ping Chen
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhongji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Xiao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xianyi Yang
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
48
|
Wang W, Zha G, Zou JJ, Wang X, Li CN, Wu XJ. Berberine Attenuates Cigarette Smoke Extract-induced Airway Inflammation in Mice: Involvement of TGF-β1/Smads Signaling Pathway. Curr Med Sci 2019; 39:748-753. [PMID: 31612392 DOI: 10.1007/s11596-019-2101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Although several studies confirmed that berberine may attenuate airway inflammation in mice with chronic obstructive pulmonary disease (COPD), its underlying mechanisms were not clear until now. We aimed to establish an experiment mouse model for COPD and to investigate the effects of berberine on airway inflammation and its possible mechanism in COPD model mice induced by cigarette smoke extract (CSE). Twenty SPF C57BL/6 mice were randomly divided into PBS control group, COPD model group, low-dose berberine group and high-dose berberine group, 5 mice in each group. The neutrophils and macrophages were examined by Wright's staining. The levels of inflammatory cytokines TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay. The expression levels of TGF-β1, Smad2 and Smad3 mRNA and proteins in lung tissues were respectively detected by quantitative real-time polymerase chain reaction and Western blotting. It was found that CSE increased the number of inflammation cells in BALF, elevated lung inflammation scores, and enhanced the TGF-β1/Smads signaling activity in mice. High-dose berberine restrained the alterations in the COPD mice induced by CSE. It was concluded that high-dose berberine ameliorated CSE-induced airway inflammation in COPD mice. TGF-β1/Smads signaling pathway might be involved in the mechanism. These findings suggested a therapeutic potential of high-dose berberine on the CSE-induced airway inflammation.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gan Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin-Jing Zou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xun Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chun-Nian Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-Jun Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
49
|
Dastan F, Salamzadeh J, Pourrashid MH, Edalatifard M, Eslaminejad A. Effects of High-Dose Vitamin D Replacement on the Serum Levels of Systemic Inflammatory Biomarkers in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. COPD 2019; 16:278-283. [PMID: 31550915 DOI: 10.1080/15412555.2019.1666812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is associated with increased inflammatory responses to noxious particles, which can be further enhanced during Acute Exacerbation of COPD (AECOPD). Considering the important immunoregulatory function of vitamin D, high prevalence of Vitamin D Deficiency (VDD) in COPD patients and a negative link between vitamin D levels and inflammatory biomarkers, suggests the seemingly interesting mechanism of vitamin D effects on inflammation resolution during the conventional treatment of AECOPD. The admitted AECOPD patients with VDD were recruited and randomly allocated to receive either 300,000 IU of intramuscular vitamin D (n = 35) or placebo (n = 35). Primary outcomes included inflammation resolution dynamics, which were assessed by monitoring the serum levels of IL-6, IL-8, and hs-CRP. Symptom recovery was evaluated based on the modified Medical Research Council (mMRC) dyspnea scale on the 1st and 6th days of admission. Secondary outcomes included the length of hospital stay (LOS) and 30-day mortality rates. Inflammatory biomarkers were highest at Day 1. Baseline vitamin D levels were 11.25 ± 3.09 and 10.59 ± 3.90 ng/ml (P = 0.45), which reached 11.35 ± 3.16 and 18.17 ± 4.24 by Day 6 (P < 0.001) in the placebo and, vitamin-D groups, respectively. IL-6 levels significantly decreased in the vitamin-D vs. placebo group on the 6th day (P = 0.02); however, no significant differences were observed in IL-8 (P = 0.15) and hs-CRP (P = 0.24) levels, mMRC scale (P = 0.45), LOS (P = 0.20), and mortality rates (P = 0.61). Vitamin D replacement as adjunctive therapy may accelerate inflammation resolution in hospitalized AECOPD patients. Further studies were needed to establish vitamin D exact role on inflammation resolution in AECOPD.
Collapse
Affiliation(s)
- Farzaneh Dastan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jamshid Salamzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mouhamad Hassan Pourrashid
- Department of Clinical Pharmacy, School of Pharmacy, Ardabil University of Medical Sciences , Ardabil , Iran
| | - Maryam Edalatifard
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Eslaminejad
- Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
50
|
Fibronectin precoating wound bed enhances the therapeutic effects of autologous epidermal basal cell suspension for full-thickness wounds by improving epidermal stem cells' utilization. Stem Cell Res Ther 2019; 10:154. [PMID: 31506090 PMCID: PMC6737622 DOI: 10.1186/s13287-019-1236-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background Autologous epidermal basal cell suspension therapy has been proven to be one of the most effective treatments for full-thickness wounds. However, we found there remain obvious defects that significantly confined the utilization and function of the epidermal basal cells (EBCs), especially the epidermal stem cells (ESCs) in it. This study investigated whether precoating fibronectin (FN) on the wound bed before spraying EBCs could overcome these defects and further explored its possible mechanisms. Methods In the in vitro study, EBCs were isolated from the donor skin of patients who needed skin grafting. Different concentrations of FN were used to precoat culture dishes before cell culture; the adherent efficiency, proliferation and migration ability of ESCs were analyzed and compared with traditional collagen IV precoating. In the in vivo study, Sprague–Dawley (SD) rats with full-thickness skin wounds were selected as full-thickness wounds’ model. For the experiment groups, 20 μg/ml FN was precoated on the wound bed 10 min before EBC spray. The quality of wound healing was estimated by the residual wound area rate, wound healing time, and hematoxylin and eosin (H&E) staining. Expression of ESC markers, neovascular markers, inflammation markers, and collagen formation and degradation markers was elucidated by immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and RT-qPCR analysis. Results The in vitro study showed that the dishes precoated with 20 μg/ml FN had a similar adherent efficiency and colony formation rate with collagen IV, but it could improve the proliferation and migration of ESCs significantly. Similarly, in the in vivo study, precoating FN on wound bed before EBC spray also significantly promote wound healing by improving ESCs’ utilization efficiency, promoting angiogenesis, decreasing inflammations, and regulating collagen formation and degradation. Conclusion FN precoating wound bed before EBC spray could significantly promote full-thickness wound healing by improving the utilization and function of the ESCs and further by promoting angiogenesis, decreasing inflammations, and regulating collagen formation and degradation. Graphical abstract ![]()
Collapse
|