1
|
El-Tahir F, Esh A, Ghorab A, Shendi AM. Chemerin, TNF - α and the degree of albuminuria in patients with diabetic kidney disease. Cytokine 2024; 184:156772. [PMID: 39366065 DOI: 10.1016/j.cyto.2024.156772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Chronic inflammation has been increasingly recognized as an essential pathogenic mechanism for the development and progression of diabetic kidney disease (DKD). Chemerin is an adipokine which has been suggested to be related to inflammation and has been correlated with the development of diabetic complications. We aimed to explore the potential links between chemerin, TNF - α, as a marker of systemic inflammation, and the level of albuminuria in patients with type 2 diabetes mellitus (T2DM). METHOD The study included 84 patients with T2DM and 10 normoalbuminuric non-diabetic controls. Demographic, clinical and laboratory data including chemerin and TNF-α levels were collected. RESULTS A total of 84 diabetic patients were enrolled, 32 males (38.1 %), with mean age 57.9 ± 10.7 years. They were divided into 3 groups: A1: 14 with normalbuminuria, A2: 27 with microalbuminuria, and A3: 43 with macroalbuminuria (uACR < 30, 30-300 and > 300 mg/gm respectively). Chemerin and TNF-α levels increased with the progress of albuminuria (control: 21.3 (14.7 -77), A1: 794 (683-925), A2: 1150 (962.9 - 1221.5) and A3: 1466 (1197.5 - 2002.5) ng/ml; p < 0.001) and (control: 77.9 (59 - 96.8), A1: 85.2 (71-116.3), A2: 87.3 (81 - 97.5) and A3: 99 (85.1 - 142.5) pg/ml; p = 0.009) respectively. Among the diabetics, a significant association was evident between serum chemerin and serum TNF-α (r = 0.53; p < 0.001). On linear stepwise regression analysis, chemerin was significantly associated with TNF-α and HbA1c (unstandardized β 10.881 and 272.68 respectively, p < 0.001); and TNF-α was significantly correlated with chemerin, uACR (unstandardized β 0.059 and 0.004 respectively, p < 0.001) and HbA1c (unstandardized β -13.699, p = 0.014). CONCLUSION Our findings suggest a potential role of chemerin and TNF-α in the development and progression of DKD, and thus support the role of the inflammatory pathway. Larger follow up studies are warranted to further explore the potential links between chemerin, inflammation and DKD.
Collapse
Affiliation(s)
- Fatima El-Tahir
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Asmaa Esh
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Adel Ghorab
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ali M Shendi
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt; Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Lin S, Lin W, Zhong Z, Zhong H, Zhou T, Weng W. The Expression and Molecular Mechanisms of Matrix Metalloproteinase- 9 and Vascular Endothelial Growth Factor in Renal Interstitial Fibrosis in Rats. Curr Mol Med 2024; 24:1540-1549. [PMID: 37936436 DOI: 10.2174/0115665240264823231101103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE To explore a new approach for the treatment of renal interstitial fibrosis (RIF), we detected the expression of matrix metalloproteinase-9 (MMP9) and vascular endothelial growth factor (VEGF). METHODS Twenty-four male Sprague Dawley (SD) rats were randomly divided into 2- week normal control (2NC) group, 4-week NC (4NC) group, 2-week unilateral ureteral obstruction (2UUO) group, and 4-week UUO (4UUO) group. We performed left ureteral ligation on UUO groups. Then, we sacrificed the rats of the 2NC group and 2UUO group at 2 weeks and the other groups at 4 weeks after the surgery. Immunohistochemistry and western blot were applied to detect the expression of MMP9, VEGF, fibronectin (FN), type IV collagen (Col-IV), and transforming growth factor-β1 (TGF-β1). MMP9 levels reduced after UUO surgery. Its expression was less in the 4UUO group than in the 2UUO group (P<0.05). The expression of VEGF, TGF- β1, FN, and Col-IV was higher in UUO groups than in NC groups (P<0.05). The expression of these indicators was higher in the 4UUO group than in the 2UUO group (P<0.05). RESULTS In the correlation analysis, MMP9 levels in UUO groups had a negative correlation with the expression of TGF-β1, VEGF, Col-IV, FN, and RIF index (all P<0.05). In UUO groups, VEGF levels had a positive correlation with the expression of TGF-β1, Col-IV, FN, and RIF index (all P<0.05). CONCLUSION In conclusion, with the aggravation of RIF lesions, MMP9 levels decreased, and VEGF levels increased. Whether there is a mutual inhibition relationship between them remains to be confirmed by further experiments.
Collapse
Affiliation(s)
- Shujun Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Wenshan Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Zhiqing Zhong
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Hongzhen Zhong
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Wenjuan Weng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| |
Collapse
|
3
|
Man AWC, Zhou Y, Reifenberg G, Camp A, Münzel T, Daiber A, Xia N, Li H. Deletion of adipocyte NOS3 potentiates high-fat diet-induced hypertension and vascular remodelling via chemerin. Cardiovasc Res 2023; 119:2755-2769. [PMID: 37897505 PMCID: PMC10757584 DOI: 10.1093/cvr/cvad164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023] Open
Abstract
AIMS Obesity is an epidemic that is a critical contributor to hypertension and other cardiovascular diseases. Current paradigms suggest that endothelial nitric oxide synthase (eNOS/NOS3) in the vessel wall is the primary regulator of vascular function and blood pressure. However, recent studies have revealed the presence of eNOS/NOS3 in the adipocytes of white adipose tissues and perivascular adipose tissues (PVATs). The current understanding of the role of adipocyte NOS3 is based mainly on studies using global knockout models. The present study aimed to elucidate the functional significance of adipocyte NOS3 for vascular function and blood pressure control. METHODS AND RESULTS We generated an adipocyte-specific NOS3 knockout mouse line using adiponectin promoter-specific Cre-induced gene inactivation. Control and adipocyte-specific NOS3 knockout (A-NOS3 KO) mice were fed a high-fat diet (HFD). Despite less weight gain, A-NOS3 KO mice exhibited a significant increase in blood pressure after HFD feeding, associated with exacerbated vascular dysfunction and remodelling. A-NOS3 KO mice also showed increased expression of signature markers of inflammation and hypoxia in the PVATs. Among the differentially expressed adipokines, we have observed an upregulation of a novel adipokine, chemerin, in A-NOS3 KO mice. Chemerin was recently reported to link obesity and vascular dysfunction. Treatment with chemerin neutralizing antibody normalized the expression of remodelling markers in the aorta segments cultured in serum from HFD-fed A-NOS3 KO mice ex vivo. CONCLUSION These data suggest that NOS3 in adipocytes is vital in maintaining vascular homeostasis; dysfunction of adipocyte NOS3 contributes to obesity-induced vascular remodelling and hypertension.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Gisela Reifenberg
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Alica Camp
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
4
|
Peng Z, Wang X, Zhu Q, Wang H, Li B, Pang X, Han J. CMKLR1 Antagonist Alpha-NETA Protects against Diabetic Nephropathy in Mice. Kidney Blood Press Res 2023; 48:405-413. [PMID: 37231814 PMCID: PMC10308536 DOI: 10.1159/000530763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/15/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a common complication in diabetic patients. Chemerin, a novel adipokine, has been associated with renal damage in DN. The chemerin chemokine-like receptor 1 (CMKLR1) has been reported to participate in DN. In this study, we aimed to investigate the effect of a CMKLR1 antagonist, 2-(anaphthoyl)ethyltrimethylammonium iodide (α-NETA), on DN. METHODS To induce diabetes, 8-week-old male C57BL/6J mice were given a single intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Diabetic mice were randomly assigned to receive daily doses of 0, 5, or 10 mg/kg α-NETA for 4 weeks. RESULTS α-NETA dose-dependently induced body weight and reduced fasting blood glucose levels in STZ-induced diabetic mice. Furthermore, α-NETA significantly reduced the expressions of renal injury markers, including serum creatinine, kidney weight/body weight, urine volume, total proteins, and albumin in the urine, and increased creatinine clearance. Periodic acid-Schiff staining also indicated that α-NETA could effectively ameliorate renal injuries in DN mice. In addition, α-NETA inhibited renal inflammation and the expressions of chemerin and CMKLR1 in mice with DN. CONCLUSION In summary, our findings suggested that α-NETA has beneficial effects on the management of DN. Specifically, α-NETA effectively ameliorated renal damage and inflammation in a dose-dependent manner in mice with DN. Thus, targeting the chemerin and CMKLR1 axis with α-NETA may be a promising therapeutic strategy for the treatment of DN.
Collapse
Affiliation(s)
- Zining Peng
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xueyi Wang
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qing Zhu
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huili Wang
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Li
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), Zhengzhou, China
| | - Jiarui Han
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Chen J, Li P, Ye S, Li W, Li M, Ding Y. Systems pharmacology-based drug discovery and active mechanism of phlorotannins for type 2 diabetes mellitus by integrating network pharmacology and experimental evaluation. J Food Biochem 2022; 46:e14492. [PMID: 36385377 DOI: 10.1111/jfbc.14492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022]
Abstract
Phlorotannins, polyphenolic compounds that exist only in brown algae, have an effect on T2DM. However, the structure of phlorotannins is complex and diverse, and the complex role of therapeutic targets and active compounds has not been revealed. In this study, the potential targets and pharmacological effects of phlorotannins in the treatment of T2DM were identified based on network pharmacology and enzyme activity inhibition experiment. In total, 15 phlorotannins and 53 associated targets were yielded. Among them, SRC, ESR1, AKT1, HSP90AB1, and AR were defined as core targets. 527 GO biological processes items and 101 KEGG pathways were obtained, including EGFR tyrosine kinase inhibitor resistance, thyroid hormone signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and VEGF signaling pathway. Phlorotannins could enable resistance against T2DM by inflammatory, survival, gene transcription, proliferation, apoptosis, and atherosclerosis. Finally, α-glucosidase inhibition assay and molecular docking proved the effect of selected phlorotannins on T2DM. PRACTICAL APPLICATIONS: Phlorotannins are a kind of polyphenol compounds that only exists in brown algae. Its structure is polymerized by aromatic precursors phloroglucinol (1,3,5-trihydroxybenzene). They have aroused great interest due to their excellent and valuable biological activities. However, the structure of phlorotannins is complex and diverse, and the complex role of therapeutic targets and active compounds has not been revealed. In this study, the potential targets and pharmacological effects of phlorotannins in the treatment of T2DM were determined basis on network pharmacology and enzyme activity inhibition experiment. In conclusion, the results showed the value of phlorotannins treating on T2DM. Moreover, this study has great significance for improving the medicinal value of phlorotannins and screening natural products for the treatment of T2DM.
Collapse
Affiliation(s)
- Jialiang Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ping Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Gunawan S, Elger T, Loibl J, Fererberger T, Sommersberger S, Kandulski A, Müller M, Tews HC, Buechler C. Urinary chemerin as a potential biomarker for inflammatory bowel disease. Front Med (Lausanne) 2022; 9:1058108. [PMID: 36438059 PMCID: PMC9691457 DOI: 10.3389/fmed.2022.1058108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/03/2023] Open
Abstract
Purpose Systemic levels of the adipokine chemerin are elevated in different inflammatory conditions such as inflammatory bowel disease (IBD). In IBD, chemerin protein expression in colon mucosa is induced and serum chemerin levels are increased. Aim of this study was to identify chemerin protein in human feces and/or urine and to evaluate a possible association with IBD activity. Materials and methods Feces and urine of 40 patients with IBD and the respective sera of 34 patients were collected. Chemerin levels were analyzed by immunoblot in feces and urine samples. In addition, enzyme-linked immunosorbent assay (ELISA) was used to measure chemerin in all urine, feces and serum samples of the patients and in urine of 17 healthy controls. Results Chemerin was not detectable in 80% of the human feces samples by ELISA. Chemerin in human urine was detected by immunoblot and ELISA. Compared to serum levels, urinary concentration was about 6,000-fold lower. Urinary chemerin did not differ between patients with ulcerative colitis (n = 15) and Crohn's disease (n = 25). Urinary chemerin was not related to its serum levels, did not correlate with serum C-reactive protein level and negatively correlated with serum creatinine. Of note, urinary chemerin of patients with a fecal calprotectin > 500 μg/g was significantly higher compared to patients with lower calprotectin levels and compared to healthy controls. Serum creatinine did not differ between the patient groups. Conclusion Urinary chemerin might present a novel non-invasive biomarker for monitoring IBD severity and clinical course.
Collapse
|
7
|
Zhou L, Liu J, Wang L, He Y, Zhang J. Carbocistein improves airway remodeling in asthmatic mice. Am J Transl Res 2022; 14:5583-5590. [PMID: 36105069 PMCID: PMC9452364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The alleviating effects of carbocisteine (S-carboxymethylcysteine, SCMC) have been implicated in chronic obstructive pulmonary disease; however, very little is known about its mechanisms in asthma. In this study, we aimed to investigate the effects of SCMC on airway remodeling in asthmatic mice induced by ovalbumin (OVA). METHODS The asthma mouse model was generated by OVA sensitization and stimulation and subsequently intervened by SCMC or dexamethasone. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected from each group of mice. The TGF-β1 levels in BALF were measured by ELISA. Masson's staining was used to detect collagen fiber deposition in mouse airway tissues, while immunohistochemistry and RT-qPCR were conducted to examine the protein and mRNA expression of TGF-β1 in mouse lung airway tissues, respectively. The correlation between TGF-β1 mRNA expression and the area of collagen fiber deposition in airway tissues was analyzed by Pearson's correlation coefficient. RESULTS The area of collagen fiber deposition in the airway tissues of asthmatic mice was significantly increased, while SCMC alleviated the collagen fiber deposition in the airway tissues. TGF-β1 expression was significantly elevated in BALF and airway tissues of asthmatic mice, while SCMC inhibited TGF-β1 expression. TGF-β1 expression was significantly and positively correlated with collagen fiber deposition in mouse airway tissues. CONCLUSIONS SCMC intervention improves collagen fiber deposition in airway tissues and inhibits TGF-β1 expression in asthmatic mice.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563000, Guizhou, P. R. China
| | - Jibing Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563000, Guizhou, P. R. China
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of ZhongjiangDeyang 618100, Sichuan, P. R. China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563000, Guizhou, P. R. China
| | - Yunfei He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563000, Guizhou, P. R. China
| | - Jianyong Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563000, Guizhou, P. R. China
| |
Collapse
|
8
|
Bragina AE, Tarzimanova AI, Osadchiy KK, Rodionova YN, Kudryavtseva MG, Jafarova ZB, Bayutina DА, Podzolkov VI. Ectopic Fat Depots: Physiological Role And Impact On Cardiovascular Disease Continuum. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Obesity is a non-infectious pandemic. The visceral distribution of adipose tissue is a significant factor in the development of cardiovascular diseases and their complications. Along with the visceral abdominal depot in omentum and subcutaneous tissue, there are other ectopic adipose tissue depots: epicardial adipose tissue (EAT), perivascular adipose tissue (PVAT) and perirenal adipose tissue. This article presents a review of the physiological role and molecular basis of the PVAT and EAT function in healthy, as well as in pathological, conditions; the interaction of adipokines and cytokines, their contribution to the development and progression of cardiovascular diseases. The review discusses well-known facts and controversial issues in this field. Comprehensive investigation of the mechanisms of vascular and myocardial pathology in obese people, along with identification of biomarkers for early prediction of cardiovascular complications, would contribute to the development of targeted preventive measures and choice of therapeutic strategies, which is consistent with the contemporary concept of personalized medicine. We have analyzed domestic and foreign literature sources in eLIBRARY and PubMed scientific libraries for the period of 2001-2020.
Collapse
Affiliation(s)
- Anna E. Bragina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aida I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Konstantin K. Osadchiy
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yulia N. Rodionova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Maria G. Kudryavtseva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Zarema B. Jafarova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Darya А. Bayutina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Valeriy I. Podzolkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Then C, Herder C, Thorand B, Sujana C, Heier M, Meisinger C, Peters A, Koenig W, Rathmann W, Roden M, Stumvoll M, Maalmi H, Then H, Ferrari U, Scherberich J, Seissler J. Association of serum uromodulin with adipokines in dependence of type 2 diabetes. Cytokine 2021; 150:155786. [PMID: 34920231 DOI: 10.1016/j.cyto.2021.155786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The renal tubular glycoprotein uromodulin is associated with obesity and type 2 diabetes, but the underlying mechanisms are elusive. We investigated the association of serum uromodulin with adipokines and tested the effect modification by diabetes status. METHODS The associations of serum uromodulin with eight adipokines were assessed in 795-1080 participants of the KORA F4 study aged 62-81 years using linear regression models adjusted for sex, age, BMI, estimated glomerular filtration rate and diabetes. Significant associations were assessed for effect modification by diabetes status. We further tested using logistic regression whether adjustment for the significant adipokines affected the association of uromodulin with type 2 diabetes. RESULTS Serum uromodulin was inversely associated with chemerin and retinol-binding protein-4 after multivariable adjustment (p < 0.001) and Bonferroni correction for multiple testing. No significant association was observed between uromodulin and the other adipokines (leptin, adiponectin, secreted frizzled-related protein 5, progranulin, omentin-1 and vaspin) after correcting for multiple testing. The association of uromodulin with chemerin and retinol-binding protein-4 was stronger in participants with type 2 diabetes than in participants without diabetes (p for interaction < 0.05). However, inclusion of chemerin and retinol-binding protein-4 in logistic regression models did not attenuate the association of serum uromodulin with diabetes. CONCLUSIONS Serum uromodulin was inversely associated with the predominantly pro-inflammatory adipokines chemerin and retinol-binding protein-4. The associations were stronger in participants with type 2 diabetes compared to participants without diabetes. However, the association of serum uromodulin with type 2 diabetes was independent of chemerin and retinol-binding protein-4.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany; Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.
| | - Christian Herder
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chaterina Sujana
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Haifa Maalmi
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Germany
| | | | - Uta Ferrari
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany; Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany; German Center for Diabetes Research (DZD), Partner München-Neuherberg, Germany
| | | |
Collapse
|
10
|
El Askary A, Gharib AF, Almehmadi M, Bakhuraysah MM, Al Hajjiahmed AA, Al-Hejji LI, Alharthi MS, Shafie A. The role of vitamin D deficiency and elevated inflammatory biomarkers as risk factors for the progression of diabetic nephropathy in patients with type 2 diabetes mellitus. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Albuminuria is the most sensitive marker for the early recognition of DN. Therefore, we aimed to study the risk factors of albuminuria as a marker of DN among diabetic patients. The study included 41 patients with type 2 diabetes mellitus (T2DM), 50 type 2 diabetic nephropathy (T2DN) patients with macroalbuminuria, 43 T2DN patients with microalbuminuria and 38 healthy controls. Logistic regression was used to detect the most significant risk factors for albuminuria. A high statistically significant difference was found between the groups regarding age, sex, body mass index (BMI), diabetes mellitus (DM) duration, glucose, glycated haemoglobin (HbA1c), creatinine, glomerular filtration rate (GFR), lipid profile, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), the albumin–creatinine ratio (ACR), vitamin D, total parathyroid hormone (PTH), urea, total calcium and chemerin (p < 0.001). It was found that the duration of DM, BMI, glucose, GFR, total cholesterol (TC), low-density lipoprotein (LDL), TNF-α, IL-6, CRP, ACR, vitamin D, PTH and chemerin are significant albuminuria risk factors in DN. Vitamin D deficiency and associated inflammatory mediators such as chemerin, TNF-α, IL-6 and CRP are the most essential risk factors for albuminuria in T2DM patients.
Collapse
Affiliation(s)
- Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University , PO Box 11099 , Taif 21944 , Saudi Arabia
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University , PO Box 11099 , Taif 21944 , Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University , PO Box 11099 , Taif 21944 , Saudi Arabia
| | - Maha Mahfouz Bakhuraysah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University , PO Box 11099 , Taif 21944 , Saudi Arabia
| | - Abdulaziz Ali Al Hajjiahmed
- Reference Laboratory, Laboratories and Blood Banks Administration in Al-Ahsa Health Cluster, Ministry of Health , Al-Ahsa , Saudi Arabia
| | - Layla Ibrahim Al-Hejji
- Curative Services for Primary Health Care in Al-Ahsa Health Cluster, Ministry of Health , Al-Ahsa , Saudi Arabia
| | - Mohammed S. Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University , PO Box 11099 , Taif 21944 , Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University , PO Box 11099 , Taif 21944 , Saudi Arabia
| |
Collapse
|
11
|
Jun L, Lin-lin S, Hui S. Chemerin promotes microangiopathy in diabetic retinopathy via activation of ChemR23 in rat primary microvascular endothelial cells. Mol Vis 2021; 27:575-587. [PMID: 34531648 PMCID: PMC8421059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose The correlation between chemerin and diabetic retinopathy (DR) has been demonstrated previously. We aimed to investigate the potential inflammatory and angiogenic roles of chemerin in DR using rat primary retinal microvascular endothelial cells (RRMECs). Methods RRMECs were incubated in low- and high-glucose media, and stable chemerin receptor (ChemR23) knockdown in RRMECs was established by lentiviral infection. Real-time quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and western blotting were employed to investigate the mRNA and protein expression of intercellular adhesion molecule-1 (ICAM-1), vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), and the interleukin-6 receptor (IL-6R) to explore the inflammatory and angiogenic effects of chemerin. A scratch assay was employed to evaluate the effect of chemerin on RRMEC migration. Results Chemerin and TNF-α markedly increased the mRNA and protein expression of ICAM-1 in RRMECs (p<0.001). ChemR23 knockdown may have decreased the ICAM-1 expression under low- and high-glucose conditions (p<0.001). Even in the ChemR23-knockdown group, TNF-α significantly increased the mRNA and protein levels of ICAM-1 under low- and high-glucose conditions (p<0.001). Chemerin promoted VEGF expression under low- and high-glucose conditions. ChemR23 knockdown markedly decreased VEGF levels under low- and high-glucose conditions (p<0.05) and significantly decreased RRMEC migration (p<0.001). Conclusions Chemerin promotes the expression of ICAM-1, the secretion of VEGF, and the migration of RRMECs via the activation of ChemR23.
Collapse
Affiliation(s)
- Li Jun
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin Eye Institute, Tianjin, China
| | - Song Lin-lin
- Tianjin Medical University Eye Hospital, School of Optometry & Eye Institute Tianjin Medical University, Tianjin, China
| | - Song Hui
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin Eye Institute, Tianjin, China
| |
Collapse
|
12
|
Zheng W, Qian C, Xu F, Cheng P, Yang C, Li X, Lu Y, Wang A. Fuxin Granules ameliorate diabetic nephropathy in db/db mice through TGF-β1/Smad and VEGF/VEGFR2 signaling pathways. Biomed Pharmacother 2021; 141:111806. [PMID: 34246190 DOI: 10.1016/j.biopha.2021.111806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a common disease, and patients often do not have satisfactory treatments. We investigated therapeutic effects of Fuxin Granules(FX) on DN and potential molecular mechanisms. We orally administered doses of FX to db/db mice for 10 weeks and measured total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol. H&E, PAS, Masson, and Oil Red O staining were used to observe the structure of kidneys and calculate indices of kidney function. We used pharmacological analysis to investigate potential mechanisms of FX. Relative mRNA and protein levels in the TGF-β1/Smad, TGF-β1/Smad, and VEGF/VEGFR2 pathways were examined. TC, TG, and LDL-C were markedly reduced, lipid accumulation was low, fibrosis reduced, kidney atrophy improved, kidney lipid droplet number significantly reduced, and glomerular filtration function improved by FX treatment. Multi-channel therapeutic effects in DN through the TGF-β1/Smad and VEGF/VEGFR2 signaling pathways occurred, and FX substantially reduced expression of TGF-β1 in the glomeruli. FX significantly inhibited TGF-β1, Smad2/3 total protein levels, Smad2/3 phosphorylation mRNA levels of TGF-β1, Smad2, and Smad3. eNOS, VEGFA, and VEGFR2 expression was regulated, levels of VEGFA and VEGFR2 were decreased, and FX increased eNOS. FX ameliorated symptoms of DN, resulting in marked improvement in hyperglycemia and hyperlipidemia and optimized structure and function of kidneys in db/db mice. FX efficacy was associated with the TGF-β1/Smad and VEGF/VEGFR2 signaling pathways. We verified this potential mechanism and hope that this study will provide benefits for the clinical treatment of DN.
Collapse
Affiliation(s)
- Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangming Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory Cultivation Base for Traditional Chinese Medicine(TCM) Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine(TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory Cultivation Base for Traditional Chinese Medicine(TCM) Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine(TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Based on Network Pharmacology and Molecular Docking to Explore the Underlying Mechanism of Huangqi Gegen Decoction for Treating Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9928282. [PMID: 34035828 PMCID: PMC8121566 DOI: 10.1155/2021/9928282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Background Huangqi Gegen decoction (HGD), a Chinese herb formula, has been widely used to treat diabetic nephropathy in China, while the pharmacological mechanisms are still unclear. Therefore, the present study aims to explore the underlying mechanism of HGD for treating diabetic nephropathy (DN). Materials and Methods Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), UniProt, and SwissTargetPrediction databases were used to search the active ingredients and potential targets of HGD. In addition, multiple disease-related databases were used to collect DN-related targets. Common targets of the protein-protein interaction (PPI) network were established using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. At last, AutoDockVina was used to conduct molecular docking verification for the core components and targets. Results A total of 27 active ingredients and 354 putative identified target genes were screened from HGD, of which 99 overlapped with the targets of DN and were considered potential therapeutic targets. Further analysis showed that the HGD activity of quercetin, formononetin, kaempferol, isorhamnetin, and beta-sitosterol ingredients is possible through VEGFA, IL6, TNF, AKT1, and TP53 targets involved in TNF, toll-like receptors, and MAPK-related pathways, which have anti-inflammatory, antiapoptosis, antioxidation, and autophagy effects, relieve renal fibrosis and renal cortex injury, and improve renal function, thus delaying the development of DN. The molecular docking results showed that quercetin, formononetin, kaempferol, isorhamnetin, beta-sitosterol had a good binding activity with VEGFA, IL6, TNF, AKT1, and TP53. Conclusion This study demonstrated that HGD might take part in the treatment of DN through multicomponent, multitarget, and multichannel combined action.
Collapse
|
14
|
Tao QR, Chu YM, Wei L, Tu C, Han YY. Antiangiogenic therapy in diabetic nephropathy: A double‑edged sword (Review). Mol Med Rep 2021; 23:260. [PMID: 33655322 PMCID: PMC7893700 DOI: 10.3892/mmr.2021.11899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes and the associated complications are becoming a serious global threat and an increasing burden to human health and the healthcare systems. Diabetic nephropathy (DN) is the primary cause of end-stage kidney disease. Abnormal angiogenesis is well established to be implicated in the morphology and pathophysiology of DN. Factors that promote or inhibit angiogenesis serve an important role in DN. In the present review, the current issues associated with the vascular disease in DN are highlighted, and the challenges in the development of treatments are discussed.
Collapse
Affiliation(s)
- Qian-Ru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ying-Ming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuan-Yuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
15
|
Elekofehinti OO, Oyedokun VO, Iwaloye O, Lawal AO, Ejelonu OC. Momordica charantia silver nanoparticles modulate S OCS/JAK/STAT and P13K/Akt/PTEN signalling pathways in the kidney of streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2021; 20:245-260. [PMID: 34178835 DOI: 10.1007/s40200-021-00739-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/10/2021] [Indexed: 12/23/2022]
Abstract
Objectives Diabetes nephropathy (DN) is one of the complications of diabetes mellitus (DM) marked by gradual progressive loss of renal function. SOCS/JAK/STAT and PI3K/Akt/PTEN signalling pathways are among the chain of interactions implicated in the onset, progression and pathology of DN. Momordica charantia (bitter melon) is often used in folk medicine as therapy for DM due to its hypoglycemic properties. This study was designed to evaluate M. charantia silver nanoparticles' therapeutic effect on DN-induced by streptozotocin (STZ) in Wistar rats. Methods The M. charantia nanoparticles used was synthesized using the filtrate from the plant methanolic extract added to 1 mM concentration of aqueous silver nitrate. DM was induced in Wistar rats by intraperitoneal injection of STZ (65 mg/kg). The animals' treatment groups were divided into; Diabetic control (65 mg/kg STZ), Control, and groups treated with silver nitrate (10 mg/kg), M. charantia nanoparticles (50 mg/kg), metformin (100 mg/kg), and plant extract (100 mg/kg). Treatment was terminated after 11 days. RT-PCR determined renal mRNA expression of Akt, PI3k, PTEN, TGF-β, JAK2, STAT3, STAT5, SOCS3, SOCS4 and glucokinase (GCK). Consequently, characterized compounds from M. charantia identified from literatures were docked with PI3K, JAK2 and TGF-β and STAT3 to retrieve potential hits. Results Oral administration of M. charantia nanoparticles (50 mg/kg) to STZ-induced diabetic untreated rats significantly ((p < 0.05) down-regulated the mRNA expression of Akt, PI3k, TGF-β, JAK2, STAT3 and upregulated the mRNA expression of PTEN, SOCS3 and SOCS4, thus establishing the role of M. charantia nanoparticles in alleviating DN in diabetic rats. Additionally, there was a significant up-regulation of glucose metabolizing gene (glucokinase) upon administering M. charantia nanoparticles. Molecular docking results showed 12 compounds from bitter melon with docking score ranging from -6.114 kcal/mol to -8.221 kcal/mol that are likely to exert anti-diabetic properties. Conclusion Observation drawn from this study suggests that M. charantia nanoparticles ameliorate DN through regulation of SOCS/JAK/STAT and PI3K/Akt/PTEN signalling pathways.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Victor Oluwatoyin Oyedokun
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Akeem Olalekan Lawal
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Oluwamodupe Cecilia Ejelonu
- Biochemistry Programme, Department of Chemical Sciences, School of Sciences, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo State Nigeria
| |
Collapse
|
16
|
Wang N, Hu J, Oppong-Gyebi A, Zhu X, Li Y, Yang J, Ruan L, Zhuge Q, Ye S. Elevated blood urea nitrogen is associated with recurrence of post-operative chronic subdural hematoma. BMC Neurol 2020; 20:411. [PMID: 33167883 PMCID: PMC7653870 DOI: 10.1186/s12883-020-01985-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
Background Chronic subdural hematoma (CSDH) is fundamentally treatable with about a 2–31% recurrence rate. Recently, there has been renewed interest in the association between Blood Urea Nitrogen (BUN) and intracranial lesion. Therefore, this paper attempts to show the relationship between BUN and CSDH recurrence. Methods A total of 653 CSDH cases with Burr-hole Irrigation (BHI) were enrolled from December 2014 to April 2019. The analyzed parameters included age, gender, comorbidities, laboratory investigations, medication use and hematoma location. The cases were divided into recurrence and non-recurrence groups while postoperative BUN concentration was further separated into quartiles (Q1 ≤ 4.0 mmol/L, 4.0 < Q2 ≤ 4.9 mmol/L, 4.9 < Q3 ≤ 6.4 mmol/L, Q4 > 6.4 mmol/L). Restricted cubic spline regressions and logistic regression models were performed to estimate the effect of BUN on CSDH recurrence. Results CSDH recurrence was observed in 96 (14.7%) cases. Significant distinctions were found between recurrence and non-recurrence groups in postoperative BUN quartiles of cases (P = 0.003). After adjusting for the potential confounders, the odds ratio of recurrence was 3.069 (95%CI =1.488–6.330, p = 0.002) for the highest quartile of BUN compared with the lowest quartile. In multiple-adjusted spline regression, a high BUN level visually showed a significantly high OR value of recurrence risk. Conclusions Elevated BUN at post-operation is significantly associated with the recurrence of CSDH, and it is indicated that high levels of serum BUN after evacuation may serve as a risk factor for CSDH recurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-020-01985-w.
Collapse
Affiliation(s)
- Ning Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiangnan Hu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Anthony Oppong-Gyebi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Xuanhao Zhu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yihao Li
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Linhui Ruan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Sheng Ye
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
17
|
Ferland DJ, Mullick AE, Watts SW. Chemerin as a Driver of Hypertension: A Consideration. Am J Hypertens 2020; 33:975-986. [PMID: 32453820 PMCID: PMC7759724 DOI: 10.1093/ajh/hpaa084] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The protein chemerin (tazarotene-induced gene, TIG2; RARRES2) is a relatively new adipokine. Many studies support that circulating chemerin levels associate strongly and positively with body mass index, visceral fat, and blood pressure. Here, we focus on the specific relationship of chemerin and blood pressure with the goal of understanding whether and how chemerin drives (pathological) changes in blood pressure such that it could be interfered with therapeutically. We dissect the biosynthesis of chemerin and how current antihypertensive medications change chemerin metabolism. This is followed with a review of what is known about where chemerin is synthesized in the body and what chemerin and its receptors can do to the physiological function of organs important to blood pressure determination (e.g., brain, heart, kidneys, blood vessels, adrenal, and sympathetic nervous system). We synthesize from the literature our best understanding of the mechanisms by which chemerin modifies blood pressure, with knowledge that plasma/serum levels of chemerin may be limited in their pathological relevance. This review reveals several gaps in our knowledge of chemerin biology that could be filled by the collective work of protein chemists, biologists, pharmacologists, and clinicians.
Collapse
Affiliation(s)
- David J Ferland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Adam E Mullick
- Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Klimontov VV, Korbut AI, Orlov NB, Dashkin MV, Konenkov VI. Multiplex Bead Array Assay of a Panel of Circulating Cytokines and Growth Factors in Patients with Albuminuric and Non-AlbuminuricDiabetic Kidney Disease. J Clin Med 2020; 9:3006. [PMID: 32961903 PMCID: PMC7565054 DOI: 10.3390/jcm9093006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
A panel of cytokines and growth factors, mediating low-grade inflammation and fibrosis, was assessed in patients with type 2 diabetes (T2D) and different patterns of chronic kidney disease (CKD). Patients with long-term T2D (N = 130) were classified into four groups: no signs of CKD; estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 without albuminuria; albuminuria and eGFR ≥60 mL/min/1.73 m2; albuminuria and eGFR <60 mL/min/1.73 m2. Thirty healthy subjects were acted as control. Twenty-seven cytokines and growth factors were assessed in serum by multiplex bead array assay. Serum hs-CRP, urinary nephrin, podocine, and WFDC2 were measured by ELISA. Patients with T2D showed elevated IL-1Ra, IL-6, IL-17A, G-CSF, IP-10, MIP-1α, and bFGF levels; concentrations of IL-4, IL-12, IL-15, INF-γ, and VEGF were decreased. IL-6, IL-17A, G-CSF, MIP-1α, and bFGF correlated negatively with eGFR; IL-10 and VEGF demonstrated negative associations with WFDC2; no relationships with podocyte markers were found. Adjusted IL-17A and MIP-1α were predictors of non-albuminuric CKD, IL-13 predicted albuminuria with preserved renal function, meanwhile, IL-6 and hsCRP were predictors of albuminuria with eGFR decline. Therefore, albuminuric and non-albuminuric CKD in T2D patients are associated with different pro-inflammatory shifts in the panel of circulating cytokines.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia; (A.I.K.); (N.B.O.); (M.V.D.); (V.I.K.)
| | | | | | | | | |
Collapse
|
19
|
Meng X, Wei M, Wang D, Qu X, Zhang K, Zhang N, Li X. Astragalus polysaccharides protect renal function and affect the TGF- β/Smad signaling pathway in streptozotocin-induced diabetic rats. J Int Med Res 2020; 48:300060520903612. [PMID: 32475187 PMCID: PMC7263164 DOI: 10.1177/0300060520903612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES The objective was to observe the effects of Astragalus polysaccharides on diabetes and on regulation of the TGF-β/Smad signaling pathway. METHODS A type 2 diabetic rat model was established with a high-fat diet in combination with low-dose streptozotocin (35 mg/kg). Astragalus polysaccharides were applied as treatment intervention and changes in blood glucose and kidney morphology and function were assessed. RESULTS Eight weeks after model establishment, kidney weight as a proportion of total weight (KW/TW) in the high-, medium-, and low-dose Astragalus polysaccharide groups was significantly lower than that in the model group, and the KW/TW value gradually decreased with increasing dose of polysaccharides in each treatment group. Fasting blood glucose in the low- and medium-dose Astragalus polysaccharide groups was numerically lower than that in the model group and fasting blood glucose in rats in the high-dose group was significantly lower than that in the model group. Levels of 24-hour urinary microalbumin, creatinine, blood urea nitrogen, collagens I, III, and IV, α-smooth muscle actin, transforming growth factor-β1, and Smad3 in Astragalus polysaccharide groups (all doses) were significantly lower than those in the model group. CONCLUSIONS Astragalus polysaccharide significantly improved blood glucose and protected kidney function in a rat diabetes model.
Collapse
Affiliation(s)
- Xue Meng
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Mingmin Wei
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Dong Wang
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiaohan Qu
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Kun Zhang
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Nan Zhang
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xinjian Li
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
20
|
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest 2019; 42:1257-1272. [PMID: 31073969 DOI: 10.1007/s40618-019-01052-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
Adipose tissue (AT) is one of the largest endocrine organs contributing to metabolic homeostasis. The functional pleiotropism of AT depends on its ability to secrete a large number of hormones, cytokines, extracellular matrix proteins and growth factors, all influencing many local and systemic physiological and pathophysiological processes. In condition of chronic positive energy balance, adipocyte expansion, hypoxia, apoptosis and stress all lead to AT inflammation and dysfunction, and it has been demonstrated that this sick fat is a main risk factor for many metabolic disorders, such as type 2 diabetes mellitus, fatty liver, cardiovascular disease and cancer. AT dysfunction is tightly associated with aberrant secretion of bioactive peptides, the adipocytokines, and their blood concentrations often reflect the expression in the AT. Despite the existence of an association between AT dysfunction and systemic pro-inflammatory state, most of the circulating molecules detectable in obese and dysmetabolic individuals do not identify specifically the condition of sick fat. Based on this premise, this review provides a concise overview of "classic" and novel promising adipocytokines associated with AT inflammation and discusses possible critical approaches to their interpretation in clinical practice.
Collapse
Affiliation(s)
- I Barchetta
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - F A Cimini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - G Ciccarelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - M G Baroni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| | - M G Cavallo
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
21
|
Zhang R, Wang Q, Yang L. Chemerin induced by
Treponema pallidum
predicted membrane protein Tp0965 mediates the activation of endothelial cell via MAPK signaling pathway. J Cell Biochem 2019; 120:19621-19634. [PMID: 31322756 DOI: 10.1002/jcb.29269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Rui‐Li Zhang
- Department of Dermatology Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University Wuxi China
| | - Qian‐Qiu Wang
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, & National Center for STD Control China Centers for Disease Control and Prevention Nanjing China
| | - Li‐Jia Yang
- Department of Dermatology Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University Wuxi China
| |
Collapse
|
22
|
Gu P, Wang W, Yao Y, Xu Y, Wang L, Zang P, Ma J, Yang C, Liang J, Lu B, Shao J. Increased Circulating Chemerin in Relation to Chronic Microvascular Complications in Patients with Type 2 Diabetes. Int J Endocrinol 2019; 2019:8693516. [PMID: 31379940 PMCID: PMC6662434 DOI: 10.1155/2019/8693516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2DM) is a global epidemic and increases mortality due to its vascular complications. Chemerin has been found to exert a major role in glucose and lipid metabolism. The aim of this study was to explore the correlation between plasma chemerin levels and microangiopathy in patients with T2DM. METHODS A total of 598 T2DM patients were classified into two groups: with and without microvascular complications. Anthropometric parameters and blood pressure were taken. The amounts of glycosylated hemoglobin, glucose, lipid profiles, creatinine, and chemerin concentrations in the blood were determined. The presence and severity of nephropathy, retinopathy, and neuropathy were also evaluated by specific tests. RESULTS Plasma levels of chemerin in diabetic subjects with microvascular complications were markedly elevated compared to those without. The number of microvascular complications increased with high plasma chemerin levels. Patients with high chemerin levels had an increased incidence of nephropathy and retinopathy. Furthermore, the chemerin plasma concentrations increased with the progression of diabetic nephropathy with highest values in macroalbuminuria groups. In contrast, no significant difference was observed in plasma chemerin levels between subjects with and without peripheral neuropathy. Pearson correlation analysis showed that plasma chemerin levels were positively related to duration of diabetes, serum creatinine, and 24-hour urine albumin excretion, even after multiple adjustments. Using logistic regression analysis, plasma chemerin concentrations were independently associated with the presence of nephropathy and retinopathy, not neuropathy. CONCLUSION This study elucidated a positive correlation between increased chemerin levels and the development of some subtypes of diabetic microangiopathy.
Collapse
Affiliation(s)
- Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Yao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yixin Xu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Liping Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian Ma
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Cuihua Yang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Junya Liang
- Hypertension Research Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
23
|
Shang J, Wang L, Zhang Y, Zhang S, Ning L, Zhao J, Cheng G, Liu D, Xiao J, Zhao Z. Chemerin/ChemR23 axis promotes inflammation of glomerular endothelial cells in diabetic nephropathy. J Cell Mol Med 2019; 23:3417-3428. [PMID: 30784180 PMCID: PMC6484295 DOI: 10.1111/jcmm.14237] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/25/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is characterized by inflammation of renal tissue. Glomerular endothelial cells (GEnCs) play an important role in inflammation and protein leakage in urine in DN patients. Chemerin and its receptor ChemR23 are inducers of inflammation. The aim of this study was to investigate the function of chemerin/ChemR23 in GEnCs of DN patients. Immunohistochemical staining and qRT‐PCR were used to measure the expression of chemerin, ChemR23 and inflammatory factors in renal tissues of DN patients. Db/db mice were used as animal model. ChemR23 of DN mice was knocked down by injecting LV3‐shRNA into tail vein. Inflammation, physiological and pathological changes in each group was measured. GEnCs were cultured as an in vitro model to study potential signalling pathways. Results showed that expression of chemerin, ChemR23 and inflammatory factors increased in DN patients and mice. LV3‐shRNA alleviated renal damage and inflammation in DN mice. GEnCs stimulated by glucose showed increased chemerin, ChemR23 and inflammatory factors and decreased endothelial marker CD31. Both LV3‐shRNA and SB203580 (p38 MAPK inhibitor) attenuated chemerin‐induced inflammation and injury in GEnCs. Taken together, chemerin/ChemR23 axis played an important role in endothelial injury and inflammation in DN via the p38 MAPK signalling pathway. Suppression of ChemR23 alleviated DN damage.
Collapse
Affiliation(s)
- Jin Shang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luyao Wang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyi Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Ning
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jifang Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Genyang Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Cho EH, Kim SW. Soluble Dipeptidyl Peptidase-4 Levels Are Associated with Decreased Renal Function in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2019; 43:97-104. [PMID: 30302966 PMCID: PMC6387880 DOI: 10.4093/dmj.2018.0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) is strongly expressed in the kidney, and soluble levels of this protein are used as a marker in various chronic inflammatory diseases, including diabetes, coronary artery disease, and cancer. This study examined the association between the serum soluble DPP-4 levels and renal function or cardiovascular risk in patients with type 2 diabetes mellitus. METHODS In this retrospective analysis, soluble DPP-4 levels were measured in preserved sera from 140 patients with type 2 diabetes mellitus who had participated in our previous coronary artery calcium (CAC) score study. RESULTS The mean±standard deviation soluble DPP-4 levels in our study sample were 645±152 ng/mL. Univariate analyses revealed significant correlations of soluble DPP-4 levels with the total cholesterol (r=0.214, P=0.019) and serum creatinine levels (r=-0.315, P<0.001) and the estimated glomerular filtration rate (eGFR; estimated using the modification of diet in renal disease equation) (r=0.303, P=0.001). The associations of soluble DPP-4 levels with serum creatinine and GFR remained significant after adjusting for age, body mass index, and duration of diabetes. However, no associations were observed between soluble DPP-4 levels and the body mass index, waist circumference, or CAC score. CONCLUSION These data suggest the potential use of serum soluble DPP-4 levels as a future biomarker of deteriorated renal function in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Eun Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
25
|
Yang L, Xue J, Meng X, Wang Y, Wu L, Lv C, Liu T, Bai Y. Effects of total flavonoids from Oxytropis falcata Bunge on the SOCS/JAK/STAT inflammatory signaling pathway in the kidneys of diabetic nephropathy model mice. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219861877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To investigate the effects of total flavonoids from Oxytropis falcata Bunge on the inflammatory signaling pathway suppressor of cytokine signaling (SOCS)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) in diabetic nephropathy KK-Ay mice. KK-Ay mice were used to establish a diabetic nephropathy model. The general condition of the mice treated with different concentrations of total flavonoids from O. falcata was monitored, respectively. Body weight, blood glucose, 24-h urinary albumin (UAlb), serum creatinine (Cre), blood urea nitrogen (BUN), and uric acid (UA) levels were measured at different time points. Hematoxylin and eosin staining quantitative reverse transcription-polymerase chain reaction and western blotting were used to detect changes in renal tissues and glomerular mesangial cells. Four weeks after model establishment, body weight, blood glucose, and 24 h UAlb significantly increased in KK-Ay mice compared with that in control C57BL/6j mice ( P < 0.05). Compared with non-treated model mice, mice treated with total flavonoids from O. falcata for 4 weeks had significantly decreased serum Cre, BUN, and UA; monocyte chemoattractant protein-1(MCP-1), nuclear factor(NF)-κB, interleukin(IL)-6, and transforming growth factor(TGF)-β1, JAK 1, STAT 3 and STAT 4 mRNA levels; and p-JAK2 and p-STAT1 protein levels and significantly increased SOCS-1 and SOCS-3 protein levels in the kidneys. The treatment effects were dose-dependent and same to in vitro. Our results reflected that total flavonoids from O. falcata relieved renal tissue inflammation in diabetic mice by reducing blood glucose levels and inhibiting JAK/STAT signaling, thereby protecting against the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Lixia Yang
- Gansu Province Academy of Chinese Medicine, Lanzhou, China
| | - Jianjun Xue
- Department of Anesthesiology, Gansu Province Hospital of Chinese Medicine, Lanzhou, China
| | - Xiangyun Meng
- Gansu Province Hospital of Chinese Medicine, Lanzhou, China
| | - Yongsheng Wang
- Gansu Province Hospital of Chinese Medicine, Lanzhou, China
| | - Lili Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing
| | - Cuiyan Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing
| | - Tonghua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing
| | - Yu Bai
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
26
|
Helfer G, Wu QF. Chemerin: a multifaceted adipokine involved in metabolic disorders. J Endocrinol 2018; 238:R79-R94. [PMID: 29848608 PMCID: PMC6026924 DOI: 10.1530/joe-18-0174] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is a global public health problem and predisposes individuals to obesity, diabetes and cardiovascular disease. Although the underlying mechanisms remain to be elucidated, accumulating evidence has uncovered a critical role of adipokines. Chemerin, encoded by the gene Rarres2, is a newly discovered adipokine involved in inflammation, adipogenesis, angiogenesis and energy metabolism. In humans, local and circulating levels of chemerin are positively correlated with BMI and obesity-related biomarkers. In this review, we discuss both peripheral and central roles of chemerin in regulating body metabolism. In general, chemerin is upregulated in obese and diabetic animals. Previous studies by gain or loss of function show an association of chemerin with adipogenesis, glucose homeostasis, food intake and body weight. In the brain, the hypothalamus integrates peripheral afferent signals including adipokines to regulate appetite and energy homeostasis. Chemerin increases food intake in seasonal animals by acting on hypothalamic stem cells, the tanycytes. In peripheral tissues, chemerin increases cell expansion, inflammation and angiogenesis in adipose tissue, collectively resulting in adiposity. While chemerin signalling enhances insulin secretion from pancreatic islets, contradictory results have been reported on how chemerin links to obesity and insulin resistance. Given the association of chemerin with obesity comorbidities in humans, advances in translational research targeting chemerin are expected to mitigate metabolic disorders. Together, the exciting findings gathered in the last decade clearly indicate a crucial multifaceted role for chemerin in the regulation of energy balance, making it a promising candidate for urgently needed pharmacological treatment strategies for obesity.
Collapse
Affiliation(s)
- Gisela Helfer
- School of Chemistry and BiosciencesUniversity of Bradford, Bradford, UK
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Correspondence should be addressed to Q-F Wu:
| |
Collapse
|
27
|
Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomed Pharmacother 2018; 101:510-527. [DOI: 10.1016/j.biopha.2018.02.105] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
|
28
|
Wang X, Guo J, Wu Q, Niu C, Cheng G, Liu D, Liu Z, Zhao Z, Xiao J. Chemerin/chemR23 association with endothelial-mesenchymal transition in diabetic nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7408-7416. [PMID: 31966583 PMCID: PMC6965245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 06/10/2023]
Abstract
This study was aimed to analyze the association of chemerin/chemR23 with endothelial-mesenchymal transition (EndMT) in the kidney of rats during the progression of diabetic nephropathy (DN). Eighty male Sprague-Dawley rats were randomly distributed to age-matched control and diabetic nephropathy model groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). Morphological changes in the renal tissues were observed after periodic acid-Schiff staining. Chemerin and chemR23 expression was determined by immunohistochemistry. Co-expression of α-smooth muscle actin (α-SMA) and CD31 was determined by immunofluorescence double-labeling. Expression of all these markers was analyzed by Western blotting. Expression of chemerin, chemR23, and transforming growth factor-β1 (TGF-β1) genes at mRNA level was determined by qRT-PCR. Mild glomerular hypertrophy was observed at 4 weeks and mild glomerular basement membrane thickening and mesangial matrix proliferation at 12 weeks. Immunohistochemistry showed much higher levels of chemerin and chemR23 in diabetic rats compared with the control group. Expression of chemerin, chemR23, and α-SMA proteins increased with disease progression, while CD31 protein expression decreased. Expression of chemerin, chemR23, and TGF-β1 mRNAs also increased. α-SMA and CD31 co-expression increased with disease progression from 4 weeks. Spearman correlation analysis showed that chemerin mRNA levels correlated positively with Chem R23, TGF-β1, α-SMA expression, and CD31 and α-SMA double-positive cell numbers, but negatively with CD31 protein expression. In conclusion, chemerin expression correlates with EndMT in DN model rats.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Qiujie Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Cong Niu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Dong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| |
Collapse
|