1
|
Li C, Tang S, Hu T, Zhou C, Chen Y, Hu Z, Pan J, Chen J, Wang Y. Exploring the potential mechanism of action of Wutou-Guizhi decoction in the treatment of rheumatoid arthritis through network pharmacology analysis. Comput Biol Chem 2025; 115:108314. [PMID: 39765191 DOI: 10.1016/j.compbiolchem.2024.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 02/26/2025]
Abstract
As a widely recognized traditional Chinese medicine (TCM) decoction prescription in China, numerous studies have shown that Wutou-Guizhi decoction (WTGZD) exhibits significant therapeutic efficacy for Rheumatoid arthritis (RA). Nevertheless, the underlying molecular mechanisms have yet to be fully elucidated. This study aims to establish a database of active ingredients for WTGZD and identify RA-related target genes. The WTGZD-RA-Potential target gene network and protein-protein interaction network were constructed, followed by gene ontology (GO) analysis and functional enrichment analysis utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG). Cell proliferation was confirmed through CCK8 assay. Target gene identification was performed via real-time PCR using quantitative methods, and western blot analysis was conducted. In the course of this investigation, 95 active components of drugs and 34 targets associated with rheumatoid arthritis were identified. Through the utilization of network pharmacology analysis, we were able to identify a total of 17 essential active components of WTGZD and pinpoint 12 significant targets linked to rheumatoid arthritis (RA). Our findings suggest a consistent interaction between the key components of WTGZD and the critical targets associated with RA. Subsequent qPCR analysis revealed that stigmasterol, a principal constituent of WTGZD, exhibited inhibitory effects on the expression of various RA-related factors, such as TNF-α, IL-1β, MAPK8, MMP1, MMP3, and MMP9. Moreover, WTGZD effectively mitigated the increased protein expression of MMP-1 and MAPK8 induced by LPS stimulation, both of which are integral components of the IL-17 signaling pathway. These results suggest that WTGZD may play a significant role in the therapeutic intervention of rheumatoid arthritis by suppressing inflammatory immune responses.
Collapse
Affiliation(s)
- Changhong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Shiyi Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Tianqi Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Chenkang Zhou
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Yuxin Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Zhaoting Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jie Chen
- Department of ICU, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325015, China.
| |
Collapse
|
2
|
Banu H, Al-Shammari E, Shahanawaz S, Azam F, Patel M, Alarifi NA, Ahmad MF, Adnan M, Ashraf SA. Insights into the Therapeutic Targets and Molecular Mechanisms of Eruca sativa Against Colorectal Cancer: An Integrated Approach Combining Network Pharmacology, Molecular Docking and Dynamics Simulation. Pharmaceuticals (Basel) 2025; 18:453. [PMID: 40283891 PMCID: PMC12030293 DOI: 10.3390/ph18040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: This study presents a novel and comprehensive investigation into the anti-colorectal cancer (CRC) effects and underlying mechanisms of Eruca sativa (E. sativa) using an integrated approach combining network pharmacology, molecular docking and molecular dynamics simulation. Methods: Using an integrated approach, six bioactive compounds and 40 potential targets were identified. A compound-target network was constructed, and enrichment analysis was performed to explore the key pathways influenced by E. sativa. Molecular docking analysis was used to evaluate the binding interactions between the identified compounds and key CRC-related targets (AKT1, PGR, MMP9, and PTGS2). Furthermore, molecular dynamics simulation was utilized to confirm the stability and reliability of these interactions. Results: The study found that E. sativa exhibits strong anticancer potential, particularly through major compounds such as β-ionone, 1-octanol, isorhamnetin, 2-hexenal, propionic acid, and quercetin. Molecular docking revealed favorable binding interactions between these compounds and key CRC targets, with quercetin and isorhamnetin showing the highest binding affinities. Additionally, molecular dynamics simulations validated the stability of these interactions, reinforcing their therapeutic relevance. Conclusions: This study provides valuable insights into the pharmacological mechanisms of E. sativa against CRC, highlighting its potential as a natural anticancer agent. These findings pave the way for future clinical studies to validate the efficacy and safety of E. sativa and its bioactive compounds, potentially contributing to the development of novel, plant-based therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (H.B.)
| | - Eyad Al-Shammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (H.B.)
| | - Syed Shahanawaz
- Department of Physiotherapy, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Mitesh Patel
- Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India;
- Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| | | | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia;
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (H.B.)
| |
Collapse
|
3
|
Li X, Huang Y, He Y, Ye A. Wogonoside alleviates the proliferation and promotes the apoptosis in liver cancer cells by regulating PI3K/Akt signaling pathway. Discov Oncol 2025; 16:244. [PMID: 40011302 DOI: 10.1007/s12672-025-01995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
INTRODUCTION Primary liver cancer is associated with high morbidity and mortality rate. In about 50% of cases, primary liver cancer is related to the phosphoinositide-3-kinase (PI3K)/Akt signaling pathway. Wogonoside is an active component extracted from Scutellaria baicalensis. Its antitumor effects in liver cancer are scarcely known. AIM This study explores the correlation between wogonoside and the PI3K/Akt signaling pathway in liver cancer in vitro. METHODS THLE-2 cells and HepG2 cells were treated with different concentrations of wogonoside to establish low-, medium- and high- dose groups, and the concentration of each dose group was determined by CCK-8 assay. Subsequent experiments were evaluated the viability, proliferation, invasion, wound healing, apoptosis rate of HepG2 cells, as well as the expression levels of relevant targets. In silico network pharmacology was performed to investigate the relationship between wogonoside and the PI3K/Akt signaling pathway, providing insights into the connection between wogonoside and liver cancer. RESULTS Compared with the control group, the viability, proliferation, invasion, migration and wound healing ability of wogonoside-treated HepG2 cells were significantly declined in a dose- and time-dependent manner. Wogonoside significantly reduced the relative expression level of Bcl-2/Bax relative protein. Wogonoside also decreased the relative protein expression of phospho-PI3K/PI3K and phospho-AKT/AKT and the mRNA levels of PI3K and AKT. In addition, potential key genes, biological processes, and pathways associated with the therapeutic effects of wogonoside on liver cancer were explored. CONCLUSION Wogonoside can alleviate the proliferation and promote the apoptosis of HepG2 cells, which may be related to the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xinfang Li
- Department of Clinical Lab, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311800, Zhejiang Province, China
- Zhuji People's Hospital of Zhejiang Province, Shaoxing University, Shaoxing, 311899, Zhejiang Province, China
| | - Yitong Huang
- Department of Internal Medicine, Zhuji Maternal and Child Health Hospital, Shaoxing, 311899, Zhejiang, China
| | - Yibo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310003, Zhejiang Province, China
| | - Angzhi Ye
- Department of Clinical Lab, Zhuji Central Hospital, Zhugong Road 98, Shaoxing, 311800, Zhejiang Province, China.
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China.
| |
Collapse
|
4
|
Tubtimsri S, Chuenbarn T, Manmuan S. Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells. BMC Complement Med Ther 2025; 25:34. [PMID: 39885507 PMCID: PMC11780952 DOI: 10.1186/s12906-025-04782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Plant flavonoids such as quercetin are useful for both the therapeutic and preventive care of a variety of illnesses. Nevertheless, their antitumor efficacy against KON oral cancer is still unknown. Therefore, the aim of this investigation was to examine quercetin's anti-growth, anti-migrative, and anti-invasive characteristics. The cell cycle arrest property and mitochondrial function disruption of quercetin were also investigated. Additionally, the cellular mechanism responsible for inducing apoptosis and the anti-metastasis mechanism were identified. METHODS KON cells were treated with quercetin in order to test the anticancer activity of this compound. The MTT colorimetric assay was used to examine the cell viability of the treated cells in comparison to MRC-5 fibroblast cells. After being exposed to the detrimental effects of quercetin, the morphology of the KON cells was examined using DAPI and FDA double staining, as well as Hoechst 33,258 and AO double staining. Annexin V-FITC with a flow cytometer and DCFDA labeling were used to detect apoptosis induction and the ROS production associated with cell death. Quercetin's ability to stop the cell cycle was evaluated via PI staining and the flow cytometer. The examination included anti-proliferative, anti-migration, and anti-invasion activities. Values for the transepithelial electrical resistance, or TEER, were measured. Ultimately, the mechanisms of action of the apoptotic markers and genes implicated in the metastatic process were clarified. RESULTS Quercetin treatment reduced the vitality of KON cells and had minimal effect on MRC cells. Following quercetin treatment, the characterization of apoptosis and cell death in KON cells was observed. When quercetin was applied to KON cells, the generation of ROS increased. Furthermore, it was discovered that quercetin increased the percentage of dead cells and cell cycle arrests in the S and G2/M phases. Moreover, quercetin inhibited KON cells' capacity for migration and invasion in addition to their effects on cell stability and structure. As a result of identifying the mechanism responsible for inducing apoptosis and preventing metastasis, quercetin was found to downregulate the expression of BCL-2/BCL-XL while increasing the expression of BAX. TIMP-1 expression was upregulated while MMP-2 and MMP-9 were downregulated. Quercetin's anticancer properties and specific mechanisms of action in relation to KON cells were clarified. CONCLUSION Quercetin is greatly cytotoxic in oral cancer cells, triggering cells undergoing apoptosis and ROS-mediated cell death, possessing S and G2/M cell cycle arrest properties, and exhibiting anti-metastatic activities. Finally, this discovery opens up a wide range of possibilities for developing an anti-oral cancer drug and further investigating its effectiveness in vivo and in clinical trials as an alternative cancer treatment.
Collapse
Affiliation(s)
- Sukannika Tubtimsri
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Tiraniti Chuenbarn
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Suwisit Manmuan
- Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand.
| |
Collapse
|
5
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
6
|
Elbaki BTA, Sameh H, El-Haleem MRA, Abd-Elsattar AA. Possible protective effect of quercetin on lung injury induced by skeletal muscle ischemia reperfusion (IR) injury of adult male albino rats: Histological and biochemical study. J Mol Histol 2024; 56:48. [PMID: 39699779 DOI: 10.1007/s10735-024-10303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/13/2024] [Indexed: 12/20/2024]
Abstract
When a lower limb is injured, the most delicate organs that are at risk of harm are the lungs. Among the flavonoids, quercetin is a significant component that is found in apples and onions in the highest proportions. Numerous biological actions, including as anti-inflammatory, antioxidant, and anti-cancer properties, have been linked to quercetin. To investigate the impact of quercetin on lung injury induced by skeletal muscle ischemia reperfusion (IR) injury. Three equal groups of twenty-four adult rats were used: control, Ischemia-reperfusion (IR) group and IR group treated with quercetin. Rats in (IR) group were exposed to ischemia by ligation of femoral artery for 2h then after removal of the clamp, reperfusion was estabilished for another 24h. IR group treated with quercetin, rats were underwent hind limb IR as described in group II then were given quercetin that was administered at a dose of 20mg/kg intraperitoneally. Measurement of cytokines in serum, MDA in tissue homogenate and VEGF in serum and tissue homogrnate in addition to mRNA expression level and detection of protein level of both sirtuin-1(SIRT1) and NF-κB were assessed at the end of experiment. Histological and immunohistochemical assessment of the lungs were also carried. IR group showed notable rise of inflammatory cytokines such as IL-1β, IL-6 and TNF-α in addition to high level of VEGF and MDA in IR group when compared to the IR group treated with quercetin. Also, gene expression and protein level of SIRT1 were reduced while NF-κB mRNA expression and protein level were significantly upregulated in IR group compared to IR group treated with quercetin. Histologically, IR group indicated marked histological alterations of lung tissue. Also, IR showed strong brownish cytoplasmic immunostaining for iNOS and abundance of Ki67-positive cells. These alterations were significantly reversed in IR group treated with quercetin. Biochemical and immunohistochemical findings of this study demonstrate that quercetin administration have protective effects against lung injury induced by lower limb IR.
Collapse
Affiliation(s)
- Bassant T Abd Elbaki
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hend Sameh
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal R Abd El-Haleem
- Department of Histology and Cell Biology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Alyaa A Abd-Elsattar
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
7
|
Khuanekkaphan M, Netsomboon K, Fristiohady A, Asasutjarit R. Development of Quercetin Solid Dispersion-Loaded Dissolving Microneedles and In Vitro Investigation of Their Anti-Melanoma Activities. Pharmaceutics 2024; 16:1276. [PMID: 39458607 PMCID: PMC11514592 DOI: 10.3390/pharmaceutics16101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Melanoma is a skin cancer that requires early treatment to prevent metastasis. In particular, the superficial spreading melanoma, excisional surgery with local administration of anti-cancer drugs via microneedles is currently considered a potential combination therapy. Quercetin is a natural flavonoid having activities against melanoma cells. Unfortunately, the therapeutic effect is limited by its poor water solubility. Objectives: This study aimed to develop formulations of solid dispersion-loaded dissolving microneedles (SD-DMNs) of quercetin and to investigate their in vitro activities against melanoma cells. Methods: Quercetin solid dispersions (Q-SDs) were prepared using polyvinylpyrrolidone K30 (PVP) via a solvent technique. The optimized Q-SD was selected for preparing Q-SD-loaded dissolving microneedles (Q-SD-DMNs) using a mold casting method. Results: Q-SDs had higher water solubility than that of quercetin by 5-10 times depending on the ratio of quercetin-to-PVP. The presence of quercetin in the Q-SD and Q-SD-DMN were in an amorphous form. The obtained Q-SD-DMNs had pyramid-shaped microneedles. Their strength depended on the compositions, i.e., ratios of hyaluronic acid-to-sodium carboxymethylcellulose and the content of Q-SD. An optimized Q-SD-DMN increased the in vitro skin permeation of quercetin compared to that of microneedles containing quercetin (without being processed). From the molecular investigations, the optimized Q-SD-DMN reduced the viability of the A375 cells (melanoma cells) through the induction of cell apoptosis. It suppressed Bcl-2 gene expression and led to a lower content of Bcl-2 in the cells. Conclusions: The optimized Q-SD-DMN has a potential for use in further in vivo studies as a synergistic method of melanoma treatment.
Collapse
Affiliation(s)
- Monsicha Khuanekkaphan
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand;
| | - Kesinee Netsomboon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand;
| | - Adryan Fristiohady
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93132, Indonesia;
| | - Rathapon Asasutjarit
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand;
| |
Collapse
|
8
|
Islam MT, Jang NH, Lee HJ. Natural Products as Regulators against Matrix Metalloproteinases for the Treatment of Cancer. Biomedicines 2024; 12:794. [PMID: 38672151 PMCID: PMC11048580 DOI: 10.3390/biomedicines12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers are currently the major cause of mortality in the world. According to previous studies, matrix metalloproteinases (MMPs) have an impact on tumor cell proliferation, which could lead to the onset and progression of cancers. Therefore, regulating the expression and activity of MMPs, especially MMP-2 and MMP-9, could be a promising strategy to reduce the risk of cancers. Various studies have tried to investigate and understand the pathophysiology of cancers to suggest potent treatments. In this review, we summarize how natural products from marine organisms and plants, as regulators of MMP-2 and MMP-9 expression and enzymatic activity, can operate as potent anticancer agents.
Collapse
Affiliation(s)
- Md. Towhedul Islam
- Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Nak Han Jang
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
9
|
Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, Bader GN. Flavonoids as promising molecules in the cancer therapy: An insight. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 6:100167. [PMID: 38144883 PMCID: PMC10733705 DOI: 10.1016/j.crphar.2023.100167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer continues to increase global morbidity and mortality rates. Despite substantial progress in the development of various chemically synthesized anti-cancer drugs, the poor prognosis of the disease still remains a big challenge. The most common drawback of conventional cancer therapies is the emergence of drug resistance eventually leading to the discontinuation of chemotherapy. Moreover, advanced target-specific therapies including immunotherapy and stem cell therapy are expensive enough and are unaffordable for most patients in poorer nations. Therefore, alternative and cheaper therapeutic strategies are needed to complement the current cancer treatment approaches. Phytochemicals are bioactive compounds produced naturally by plants and have great potential in human health and disease. These compounds possess antiproliferative, anti-oxidant, and immunomodulatory properties. Among the phytochemicals, flavonoids are very effective in treating a wide range of diseases from cardiovascular diseases and immunological disorders to cancer. They scavenge reactive oxygen species (ROS), inhibit cancer metastasis, modulate the immune system and induce apoptotic or autophagic cell death in cancers. This review will discuss the potential of various phytochemicals particularly flavonoids in attempts to target various cancers.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Nasir Nisar
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, India
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| |
Collapse
|
10
|
Fan T, Chen X, Yang F, Li Y, Gao Q, Li S, Chen X, Chen X. A network pharmacology and bioinformatics exploration of the possible molecular mechanisms of Fuzheng Xiaoliu Granule for the treatment of hepatocellular carcinoma. J Clin Transl Res 2023; 9:182-194. [PMID: 37275579 PMCID: PMC10238106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
Background and Aim Hepatocellular carcinoma (HCC) is one of the ten most common malignant tumors in the world, and it is a major problem in the world. Traditional Chinese medicine (TCM) has many advantages in the prevention and treatment of HCC, but its complicated mechanism of action is difficult to clarify, which limits its research and development. The continuous development of bioinformation technology provides new methods and opportunities for the research of TCM. This study used modern network pharmacology and bioinformatic methods to explore the possible molecular mechanism of the Chinese herbal compound Fuzheng Xiaoliu Granule (FZXLG) to treat HCC, to provide a theoretical basis for their clinical application and basic research, to promote the modernization of TCM, and to promote its worldwide application. Methods The active ingredients of FZXLG were collected and screened through TCMSP, BATMAN-TCM, and other databases. The targets of FZXLG were predicted by PubChem and SwissTargetPrediction; HCC disease-related targets were obtained by GeneCards, OMIM, and other disease databases, and the potential gene targets of FZXLG for HCC treatment were screened. The "Prescription-TCMs-Ingredients-Targets" network of FZXLG for the treatment of HCC was constructed, along with the screening of core effective components. The differentially expressed genes (DEGs) of HCC tumor and non-tumor adjacent tissues combined with clinical data in the TCGA database were analyzed to obtain the prognostic genes of HCC. Then, FZXLG genes affecting HCC prognosis were screened and further screening the core target genes. The correlation between core gene expression with prognosis, immune cell infiltration, and immunohistochemical changes in HCC patients was studied. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology enrichment analysis of the FZXLG genes affecting HCC prognosis were performed using DAVID database. AutoDockTools software was then used for molecular docking verification. Results The ten core effective ingredients of FZXLG for HCC treatment included multiple flavonoids ingredients such as quercetin, luteolin, and formononetin. 11 core targets of FZXLG affecting the prognosis of HCC were screened, among which estrogen receptor 1 (ESR1) and catalase (CAT) were favorable prognostic factors, while EGF, MMP9, CCNA2, CCNB1, CDK1, CHEK1, and E2F1 were adverse prognostic factors. MMP9 and EGF were positively correlated with six TIIC subsets. The different expression levels of CAT, PLG, AR, MMP9, CCNA2, CCNB1, CDK1, and E2F1 were correlated with the immunohistochemical staining changes in normal liver and liver cancer. KEGG pathway enrichment analysis yielded 33 pathways including cell cycle, p53, hepatitis B, and other signaling pathways. Molecular docking verified that the main core components had good binding to the protective prognostic core targets ESR1 and CAT. Conclusions FZXLG may treat HCC through multiple ingredients, multiple targets, and multiple pathways, affecting the prognosis, immune microenvironment, and immunohistochemical changes of HCC. Relevance for Patients FZXLG is a Chinese herbal compound for the treatment of HCC, with significant clinical efficacy. However, the mechanism of action is unclear and lacks theoretical support, which limits its popularization application. This study preliminarily revealed its molecular mechanism, providing a theoretical basis for its clinical application, which can better guide its clinical popularization application, and also provide a new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Tianyu Fan
- Department of Gastroenterology, Henan University of Chinese Medicine, Zhengzhou City 450000, Henan Province, China
| | - Xi Chen
- Department of Gastroenterology, Henan University of Chinese Medicine, Zhengzhou City 450000, Henan Province, China
| | - Fangming Yang
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of CM, Zhengzhou City 450000, Henan Province, China
| | - Yanjie Li
- Department of Gastroenterology, Henan University of Chinese Medicine, Zhengzhou City 450000, Henan Province, China
| | - Qi Gao
- Department of Gastroenterology, Henan University of Chinese Medicine, Zhengzhou City 450000, Henan Province, China
| | - Shanyi Li
- Department of Gastroenterology, Henan University of Chinese Medicine, Zhengzhou City 450000, Henan Province, China
| | - Xinju Chen
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of CM, Zhengzhou City 450000, Henan Province, China
| | - Xiaoqi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of CM, Zhengzhou City 450000, Henan Province, China
| |
Collapse
|
11
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Duan N, Hu X, Zhou R, Li Y, Wu W, Liu N. A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Mol Nutr Food Res 2023; 67:e2200435. [PMID: 36698331 DOI: 10.1002/mnfr.202200435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is the local environment where malignant cells strive and survive, composed of cancer cells and their surroundings, regulating essential tumor survival, and promotion functions. Dietary flavonoids are abundantly present in common vegetables and fruits and exhibit good anti-cancer activities, which significantly inhibit tumorigenesis by targeting TME constituents and their interaction with cancer cells. This review aims to synthesize information concerning the modulation of TME by dietary flavonoids, as well as to provide insights into the molecular basis of its potential anti-tumor activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the TME processes, involving cell proliferation, invasion and migration, continuous angiogenesis, and immune inflammation. This study will provide a theoretical basis for the development of the leading compound targeting TME for anti-cancer therapies from these dietary flavonoids.
Collapse
Affiliation(s)
- Namin Duan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.,Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
13
|
Nassef NAA, Abd-El Hamid MS, Abusikkien SA, Ahmed AI. Quercetin ameliorates acute lung injury in a rat model of hepatopulmonary syndrome. BMC Complement Med Ther 2022; 22:320. [PMID: 36463144 PMCID: PMC9719635 DOI: 10.1186/s12906-022-03785-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/09/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Common bile duct ligation (BDL) is a rat experimental model to induce biliary cirrhosis. Lung fibrosis and pulmonary vascular angiogenesis and congestion are the most common complications of biliary cirrhosis that is known as hepatopulmonary syndrome. The aim of the present work is to investigate the acute lung injury in a BDL model and to investigate the possible protective effect of quercetin on this injury. METHODS Twenty-four adult male albino rats of the Wister strain (weighing 150-250 g). Animals were divided into 3 groups, with 8 rats each: Group I: Sham-operated group (control). Group II: Bile duct ligation group (BDL) sacrificed after 28 days from the surgery. Group III: Quercetin-treated bile duct ligation group (Q-BDL) was given orally by gastric gavage in a dose of 50 mg/kg/day, starting from the 4th day of the operation until the 28th day. At the end of the experiment, at day 28, all rats were sacrificed. Lung specimens were processed to measure Endothelin B receptor gene expression by PCR, lung surfactant by ELISA, "eNO" s by immunohistochemistry. Histological assessment was done using; H&E, Masson's trichrome, PAS, toluidine blue-stained semi-thin sections, transmission electron microscope. Histomorphometric and statistical studies were done. RESULTS BDL group showed significant increase in lung index together with mononuclear cellular infiltration denoting lung inflammatory state. Also, the significant increase in pulmonary endothelial nitric oxide synthase ("eNO" s) area percent and endothelin B receptor (ETB) gene expression indicates enhanced angiogenesis. Pulmonary surfactant concentration was significantly decreased together with thickening of interalveolar septa denoting lung injury and fibrosis. Quercetin led to significant decrease in lung index, pulmonary "eNO" s area percent, ETB gene expression and significant increase in pulmonary surfactant concentration. Quercetin treatment improved histological changes and morphometric measurements, limited mononuclear cellular infiltration and decreased perivascular and perialveolar collagen deposition. CONCLUSION Quercetin ameliorates the hepatopulmonary syndrome-induced lung injury through its anti-inflammatory, antioxidative and antifibrotic effects.
Collapse
Affiliation(s)
- Noha Abdel-Aziz Nassef
- grid.7269.a0000 0004 0621 1570Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal S. Abd-El Hamid
- grid.7269.a0000 0004 0621 1570Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samy A. Abusikkien
- grid.7269.a0000 0004 0621 1570Lecturer of Anatomy, Rabigh Faculty of Medicine, King Abdulaziz University, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Asmaa Ibrahim Ahmed
- grid.7269.a0000 0004 0621 1570Assistant Professor of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Moradian M, Saadat M, Sohrabniya F, Afifian M. The comparative evaluation of the effects of quercetin, α-tocopherol, and chlorhexidine dentin pretreatments on the durability of universal adhesives. Clin Exp Dent Res 2022; 8:1638-1644. [PMID: 36189633 PMCID: PMC9760145 DOI: 10.1002/cre2.667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate and compare the effects of chlorhexidine, quercetin, and α-tocopherol on the shear bond strength of universal adhesives in the short (24h) and long term (6 months). MATERIAL AND METHODS Ninety-six extracted sound molars were collected and divided randomly into four groups: control (no treatment), 2% chlorhexidine, 10% α-tocopherol, and 1% quercetin. The solutions were prepared and applied to the teeth for 60 s, followed by application of All-Bond universal adhesive and composite build-up. Half of the specimens in each group (n = 12) were tested for shear bond strength (SBS) after 24 h of storage and the other half were kept in distilled water for 6 months and then tested for shear bond strength. The shear bond strength test was performed and the failure modes were determined using a stereomicroscope. The data were analyzed using two-way analysis of variance and Tukey's post hoc tests with p ˂ .05 as the significance level. RESULTS The results of the two-way analysis of variance test showed that there was no significant difference in immediate SBS, and after 6 months, α-tocopherol had the lowest SBS in comparison to the control and CHX subgroups (p < .05). The t-test showed that the shear bond strength in the α-tocopherol and quercetin groups was significantly decreased after 6 months. CONCLUSION It can be concluded that the solutions used in this study had no adverse effect on immediate SBS. After 6 months, the CHX could preserve SBS in comparison to other groups.
Collapse
Affiliation(s)
- Marzieh Moradian
- Department of Operative Dentistry, School of DentistryOral and Dental Disease Research Center, Shiraz University of Medical SciencesShirazIran
| | - Maryam Saadat
- Department of Operative Dentistry, School of DentistryOral and Dental Disease Research Center, Shiraz University of Medical SciencesShirazIran
| | - Fatemeh Sohrabniya
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Mohammad Afifian
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| |
Collapse
|
15
|
Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-Rad J, Hano C, Calina D, Cho WC. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol 2022; 10:1005910. [PMID: 36247004 PMCID: PMC9557130 DOI: 10.3389/fcell.2022.1005910] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
In today's scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand, India
| | - Praveen Dhyani
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | | | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, Chartres, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Moradian M, Saadat M, S. Shiri MH, Sohrabniya F. Comparative evaluation of the postbleaching application of sodium ascorbate, alpha-tocopherol, and quercetin on shear bond strength of composite resin to enamel. Clin Exp Dent Res 2022; 8:1598-1604. [PMID: 36106470 PMCID: PMC9760164 DOI: 10.1002/cre2.655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate and compare the impacts of the postbleaching application of sodium ascorbate, alpha-tocopherol, and quercetin on the shear bond strength (SBS) of composite resin. MATERIAL AND METHODS 60 extracted intact maxillary first premolars were collected and were randomly divided into five experimental groups as follows (n=12): Group A (negative control): no bleaching, Group B (positive control): bleaching with 40% hydrogen peroxide (HP), Group C: HP±10% sodium ascorbate for 10min, Group D: HP±10% alpha-tocopherol for 10min, and Group E: HP±1% quercetin for 10min. Composite bonding was done immediately after bleaching for Groups B-E and without any treatment for Group A. After being stored in distilled water at room temperature for 24h, all specimens were tested for SBS in the universal testing machine. One-way analysis of variance and Tukey's post-hoc test were used to analyze the SBS values of all groups. RESULTS The results showed that the bonding of composite to the unbleached group exhibited the highest mean value of SBS (22.68±2.91MPa). Among the antioxidant-treated groups, the highest SBS value was detected in quercetin-treated specimens (15.45±1.58MPa), which was significantly different from the positive control group (p<.05). CONCLUSION It could be concluded that 10% quercetin applied for 10min increased the bond strength to bleached enamel, but it was not able to reverse it completely.
Collapse
Affiliation(s)
- Marzieh Moradian
- Department of Operative Dentistry, Oral and Dental Disease Research Center, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Maryam Saadat
- Department of Operative Dentistry, Oral and Dental Disease Research Center, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Mohammad Hossein S. Shiri
- Student Research Committee, Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Fatemeh Sohrabniya
- Student Research Committee, Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| |
Collapse
|
17
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
18
|
Chen Y, Liao W, Yuan A, Xu H, Yuan R, Cao J. MiR-181a reduces radiosensitivity of non-small-cell lung cancer via inhibiting PTEN. Panminerva Med 2022; 64:374-383. [PMID: 32506887 DOI: 10.23736/s0031-0808.20.03976-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study is to explore the effect of micro ribonucleic acid (miR)-181a on the radiosensitivity of non-small cell lung cancer (NSCLC) and its potential mechanism of action. METHODS The differentially expressed miRNAs were screened in lung cancer tissues of radiotherapy-resistant and non-radiotherapy-resistant NSCLC patients, and verified via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Next, the effects of different miRNA expressions on patients' survival time were discussed, and target genes of miR-181a were predicted. The effect of miR-181a expression on radiosensitivity was determined using cell counting kit-8 (CCK-8) assay and flow cytometry. The direct target of miR-181a was verified via luciferase reporter assay. Phosphatase and tensin homolog deleted on chromosome ten (PTEN) was overexpressed using lentiviruses, and then whether miR-181a reduces radiosensitivity via targeting PTEN was detected via CCK-8 assay and flow cytometry. Finally, Western blotting was performed to detect the protein expression of PTEN. RESULTS The screening results of microarray expression profile assay revealed that 15 miRNAs had significant differences in lung cancer tissues of radiotherapy-resistant NSCLC patients compared with those in non-radiotherapy-resistant NSCLC patients. The results of RT-qPCR showed that hsa-miR-181a, hsa-miR-199b, hsa-miR-489 and hsa-miR-589 were significantly up-regulated in the lung cancer tissues of radiotherapy-resistant NSCLC patients compared with those in non-radiotherapy-resistant NSCLC patients. In addition, it was found that the survival time of NSCLC patients was obviously prolonged in hsa-miR-181a low-expression group and hsa-miR-589 high-expression group, but hsa-miR-489 and hsa-miR-199b had no significant influence on the survival time of NSCLC patients. According to KEGG enrichment analysis, the target genes of miR-181a were evidently enriched in the phosphatidylinositol 3-hydroxy kinase (PI3K)/protein kinase B (AKT) signaling pathway, NSCLC signaling pathway and other cancer signaling pathways. Under the radiation dose of 2, 4, 6 and 8 Gy, the survival rate of A549 cells rose in miR-181a mimic group, but declined in miR-181a inhibitor group. Moreover, compared with that in model group, the radiotherapy-induced apoptosis was markedly inhibited in miR-181a mimic group, but markedly promoted in miR-181a inhibitor group. It was also observed that the response of cells to radiotherapy-induced apoptosis was remarkably weakened in miR-181a mimic + PTEN overexpression group compared with that in miR-181a mimic group. Finally, miR-181a mimic group had a significantly lower protein expression of PTEN and significantly higher protein expressions of CXC chemokine receptor 4 (CXCR4), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), p-AKT1 and p-mammalian target of rapamycin (mTOR) than model group, while miR-181a inhibitor group had the opposite protein expressions. The protein expressions of CXCR4, p-STAT3, p-AKT1 and p-mTOR were obviously lower in miR-181a mimic + PTEN overexpression group than those in miR-181a mimic group. CONCLUSIONS MiR-181a reduces the radiosensitivity of NSCLC via inhibiting PTEN expression.
Collapse
Affiliation(s)
- Yanfen Chen
- Department of Pediatrics, Zhongshan Guzhen People's Hospital, Zhongshan, China
| | - Wenjiang Liao
- Department of Pediatrics, Zhongshan Guzhen People's Hospital, Zhongshan, China
| | - Anhui Yuan
- Department of Pediatrics, Zhongshan Guzhen People's Hospital, Zhongshan, China
| | - Hua Xu
- Department of Emergency Medicine, Zhongshan Guzhen People's Hospital, Zhongshan, China
| | - Ruilin Yuan
- Department of Rehabilitation, Zhongshan Guzhen People's Hospital, Zhongshan, China
| | - Jianwei Cao
- Kanyi VIP Outpatient Clinic, Zhongshan People's Hospital, Zhongshan, China -
| |
Collapse
|
19
|
Tsuchiya A, Kobayashi M, Kamatari YO, Mitsunaga T, Yamauchi K. Development of flavonoid probes and the binding mode of the target protein and quercetin derivatives. Bioorg Med Chem 2022; 68:116854. [PMID: 35667156 DOI: 10.1016/j.bmc.2022.116854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
This study investigated the mechanism underlying anti-cancer cell migration activity of quercetin derivatives by investigating the binding mode of the target protein. Five flavonoid probes were newly synthesized, and pull down assay using synthesized flavonoid probes indicated matrix metalloproteinase-1 (MMP-1) as the target protein of quercetin derivatives. Quercetin and 3-O-methylquercetin (3MQ) inhibited MMP-1. SPR analysis demonstrated dose dependent interaction between quercetin derivatives and recombinant MMP-1 catalytic domain. And 1H-15N heteronuclear single quantum coherence (HSQC) NMR analysis using 15N-labeled MMP-1 catalytic domain indicated that 3MQ interacted around metal ions in the MMP-1. The development of flavonoid probes can broaden the possibility to discover the new target proteins and elucidate the core mechanisms of the multi bioactivity of flavonoids.
Collapse
Affiliation(s)
- Ayaka Tsuchiya
- United Graduate School of Agricultural Science, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Miho Kobayashi
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu 501-1193, Japan; Life Science Research Center, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Yuji O Kamatari
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu 501-1193, Japan; Life Science Research Center, Gifu University, Gifu, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Tohru Mitsunaga
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Kosei Yamauchi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
20
|
A Sulfated Polysaccharide from Red Algae ( Gelidium crinale) to Suppress Cells Metastasis and MMP-9 Expression of HT1080 Cells. Foods 2022; 11:foods11152360. [PMID: 35954126 PMCID: PMC9368188 DOI: 10.3390/foods11152360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfated polysaccharides from red algae have a variety of biological activities, especially antitumor activities. Matrix metalloproteinase-9 (MMP-9) is a proteolytic metalloenzyme that degrades the central part of the extracellular matrix (ECM) and promotes tumor metastasis. In this research, we have investigated the influence and mechanism of GNP (sulfated polysaccharide from Gelidium crinale) on tumor metastasis and MMP-9 expression of human fibrosarcoma (HT1080) cells. The results inflected that the concentration of GNP below 100 μg/mL has no toxicity to HT1080 cells, but showed excellent activity in inhibiting cells migration and invasion. In addition, GNP effectively inhibits the mRNA of MMP-9 and reduces its expression and activity by regulating nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPK) and mTOR/PI3K/Akt signaling pathways. GNP has great potential as MMP-9 inhibitor and could be developed as a functional food or drug to prevent tumor metastasis.
Collapse
|
21
|
Antioxidant Quercetin 3-O-Glycosylated Plant Flavonols Contribute to Transthyretin Stabilization. CRYSTALS 2022. [DOI: 10.3390/cryst12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants are rich in secondary metabolites, which are often useful as a relevant source of nutraceuticals. Quercetin (QUE) is a flavonol aglycone able to bind Transthyretin (TTR), a plasma protein that under pathological conditions can lose its native structure leading to fibrils formation and amyloid diseases onset. Here, the dual nature of five quercetin 3-O-glycosylated flavonol derivatives, isolated from different plant species, such as possible binders of TTR and antioxidants, was investigated. The crystal structure of 3-O-β-D-galactopyranoside in complex with TTR was solved, suggesting that not only quercetin but also its metabolites can contribute to stabilizing the TTR tetramer.
Collapse
|
22
|
Trinh NT, Nguyen TMN, Yook JI, Ahn SG, Kim SA. Quercetin and Quercitrin from Agrimonia pilosa Ledeb Inhibit the Migration and Invasion of Colon Cancer Cells through the JNK Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:ph15030364. [PMID: 35337161 PMCID: PMC8951172 DOI: 10.3390/ph15030364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Considering the high metastatic potential of colorectal cancer (CRC), the inhibition of metastasis is important for anti-CRC therapy. Agrimonia pilosa Ledeb (A. pilosa) is a perennial herbaceous plant that is widely distributed in Asia. The extracts of A. pilosa have shown diverse pharmacological properties, such as antimicrobial, anti-inflammatory, and antitumor activities. In the present study, the antimetastatic activity of A. pilosa was evaluated. Methanol extraction from the roots of A. pilosa was performed by high-performance liquid chromatography (HPLC) and 12 fractions were obtained. Among these, fraction 4 showed the most potent inhibitory effect on the migration of colon cancer cells. Using LC-HR MS analysis, quercetin and quercitrin were identified as flavonoids contained in fraction 4. Like fraction 4, quercetin and quercitrin effectively inhibited the migration and invasion of RKO cells. While the level of E-cadherin was increased, the levels of N-cadherin and vimentin were decreased by the same agents. Although they all activate the p38, JNK, and ERK signaling pathways, only SP600125, an inhibitor of the JNK pathway, specifically inhibited the effect of fraction 4, quercetin, and quercitrin on cell migration. An in vivo experiment also confirmed the antitumor activity of quercetin and quercitrin. Collectively, these results suggest that A. pilosa and its two flavonoids, quercetin and quercitrin, are candidates for the antimetastatic treatment of CRC.
Collapse
Affiliation(s)
- Nguyet-Tran Trinh
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
| | - Thi Minh Ngoc Nguyen
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
| | - Jong-In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Sang-Gun Ahn
- Department of Pathology, Chosun University College of Dentistry, Gwangju 61452, Korea;
| | - Soo-A Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
- Correspondence: ; Tel.: +82-54-770-2836
| |
Collapse
|
23
|
Luo Z, Huang J, Li E, He X, Meng Q, Huang X, Shen X, Yan C. An Integrated Pharmacology-Based Strategy to Investigate the Potential Mechanism of Xiebai San in Treating Pediatric Pneumonia. Front Pharmacol 2022; 13:784729. [PMID: 35237157 PMCID: PMC8885115 DOI: 10.3389/fphar.2022.784729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Xiebai San (XBS) is a traditional Chinese medicine (TCM) prescription that has been widely used to treat pediatric pneumonia since the Song dynasty. To reveal its underlying working mechanism, a network pharmacology approach was used to predict the active ingredients and potential targets of XBS in treating pediatric pneumonia. As a result, 120 active ingredients of XBS and 128 potential targets were screened out. Among them, quercetin, kaempferol, naringenin, licochalcone A and isorhamnetin showed to be the most potential ingredients, while AKT1, MAPK3, VEGFA, TP53, JUN, PTGS2, CASP3, MAPK8 and NF-κB p65 showed to be the most potential targets. IL-17 signaling pathway, TNF signaling pathway and PI3K-Akt signaling pathway, which are involved in anti-inflammation processes, immune responses and apoptosis, showed to be the most probable pathways regulated by XBS. UPLC-Q/Orbitrap HRMS analysis was then performed to explore the main components of XBS, and liquiritin, quercetin, kaempferol, licochalcone A and glycyrrhetinic acid were identified. Molecular docking analysis of the compounds to inflammation-associated targets revealed good binding abilities of quercetin, kaempferol, licochalcone A and liquiritin to NF-κB p65 and of quercetin and kaempferol to Akt1 or Caspase-3. Moreover, molecular dynamics (MD) simulation for binding of quercetin or kaempferol to NF-κB p65 revealed dynamic properties of high stability, high flexibility and lowbinding free energy. In the experiment with macrophages, XBS markedly suppressed the (Lipopolysaccharides) LPS-induced expression of NF-κB p65 and the production of pro-inflammatory cytokines IL-6 and IL-1β, supporting XBS to achieve an anti-inflammatory effect through regulating NF-κB p65. XBS also down-regulated the expression of p-Akt (Ser473)/Akt, Bax and Caspase-3 and up-regulated the expression of Bcl-2, indicating that regulating Akt1 and Caspase-3 to achieve anti-apoptotic effect is also the mechanism of XBS for treating pediatric pneumonia. Our study helped to reveal the pharmacodynamics material basis as well as the mechanism of XBS in treating pediatric pneumonia.
Collapse
Affiliation(s)
- Zhuohui Luo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Honz Pharmaceutical Co., Ltd., Haikou, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ennian Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqi Meng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | |
Collapse
|
24
|
Shang X, Yuan H, Dai L, Liu Y, He J, Chen H, Li H, Li X. Anti-Liver Fibrosis Activity and the Potential Mode of Action of Ruangan Granules: Integrated Network Pharmacology and Metabolomics. Front Pharmacol 2022; 12:754807. [PMID: 35115923 PMCID: PMC8805709 DOI: 10.3389/fphar.2021.754807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Ruangan granules (RGGs) have been used to treat liver fibrosis with good clinical efficacy for many years. However, the potential mechanism of action of RGGs against liver fibrosis is still unclear. In this study, we evaluated the quality and safety of this preparation and aimed to explore the anti-liver fibrosis activity and potential mode of action of RGGs using network pharmacology and metabolomics. The results showed that RGGs contained abundant ferulic acid, salvianolic acid B and paeoniflorin, and at the given contents and doses, RGGs were safe and presented anti-liver fibrosis activity. They presented anti-liver fibrosis activity by improving liver function (ALT and AST, p < 0.01) and pathology and decreasing fibrosis markers in the serum of rats caused by CCl4, including HA, LN, PC III, HYP, CoII-V, and α-SMA, and the oxidant stress and inflammatory response were also alleviated in a dose-dependent manner, especially for high-dose RGGs (p < 0.01). Further studies showed that RGGs inhibited the activation of the PI3K-Akt signaling pathway in rats induced by CCl4, regulated pyrimidine metabolism, improved oxidative stress and the inflammatory response by regulating mitochondrial morphology, and alleviated liver fibrosis. Luteolin, quercetin, morin and kaempferol were active compounds and presented the cytotoxicity toward to LX-02 cells. This study provides an overall view of the mechanism underlying the action of RGGs protecting against liver fibrosis.
Collapse
Affiliation(s)
- Xiaofei Shang
- Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huixin Yuan
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Lixia Dai
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jian He
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huan Chen
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiuhui Li
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Li C, Pan J, Xu C, Jin Z, Chen X. A Preliminary Inquiry Into the Potential Mechanism of Huang-Lian-Jie-Du Decoction in Treating Rheumatoid Arthritis via Network Pharmacology and Molecular Docking. Front Cell Dev Biol 2022; 9:740266. [PMID: 35127697 PMCID: PMC8807552 DOI: 10.3389/fcell.2021.740266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Huang-Lian-Jie-Du decoction (HLJDD) has been widely applied to treat inflammation-associated diseases for thousands of years in China. However, the concrete molecular mechanism of HLJDD in the treatment of rheumatoid arthritis (RA) remains unclear. In this work, network pharmacology and molecular docking were applied to preliminarily analyze the potential active ingredients, drug targets, and related pathways of HLJDD on treating RA. A total of 102 active compounds with corresponding 189 targets were identified from HLJDD, and 41 common targets were further identified by intersecting with RA-related targets. Functional enrichment analysis was performed to screen the biological pathways associated with RA. Ten hub targets were further identified through constructing the protein–protein interaction (PPI) network of common targets, which were mainly enriched in the interleukin-17 (IL-17) signaling pathway, tumor necrosis factor (TNF) signaling pathway, and Toll-like receptor signaling pathway. Furthermore, a complex botanical drugs-ingredients-hub-targets-disease network was successfully constructed. The molecular docking results exhibited that these vital ingredients of HLJDD had a stable binding to the hub targets. Among these ingredients, quercetin (MOL000098) was the most common molecule with stable binding to all the targets, and PTGS2 was considered the most important target with multiple regulations by the most active ingredients. In vitro, we successfully validated the inhibitory role of quercetin in the cellular proliferation of human RA fibroblast-like synoviocyte cell line (MH7A cells). These findings indicated that the potential mechanisms of HLJDD for RA treatment might be attributed to inhibiting the immune-inflammatory response, reducing the release of chemokines, and alleviating the destruction of extracellular matrix (ECM) in the synovial compartment.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang Xu
- Department of Intensive Care Unit, Hua Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhenlin Jin
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xupeng Chen, ; Zhenlin Jin ,
| | - Xupeng Chen
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xupeng Chen, ; Zhenlin Jin ,
| |
Collapse
|
26
|
Araújo NPDS, de Matos NA, Oliveira M, de Souza ABF, Castro TDF, Machado-Júnior PA, de Souza DMS, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Quercetin Improves Pulmonary Function and Prevents Emphysema Caused by Exposure to Cigarette Smoke in Male Mice. Antioxidants (Basel) 2022; 11:antiox11020181. [PMID: 35204064 PMCID: PMC8868486 DOI: 10.3390/antiox11020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.
Collapse
Affiliation(s)
- Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil;
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
- Correspondence:
| |
Collapse
|
27
|
Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 (KIF23). Bioengineered 2022; 13:1103-1114. [PMID: 34983303 PMCID: PMC8805966 DOI: 10.1080/21655979.2021.2017629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is closely associated with chronic liver disease and possesses a high incidence. DEP domain containing 1B (DEPDC1B) expression has been found to be upregulated in HCC according to bioinformatics analysis. This paper sought to study the specific role of DEPDC1B in HCC. The data of DEPDC1B expression and individual overall survival in HCC and normal liver tissues were acquired from UALCAN database. The association between DEPDC1B and the downstream signal, kinesin family member 23 (KIF23), was determined using LinkedOmics and STRING database, and subsequently confirmed by co-immunoprecipitation assay. The expression levels of DEPDC1B and KIF23 in normal hepatic epithelial cells and HCC cell lines were assessed by RT-qPCR and Western blotting, respectively. Following transfection with small interference RNA-DEPDC1B, the influences of DEPDC1B knockdown on cell proliferation, colony formation, cell cycle, cell invasion, migration, and KIF23 expression were evaluated. In addition, the effects of KIF23 overexpression on the above aspects of HCC cells were also determined, as well as the expression level of p53 signaling-related proteins. The results indicated that DEPDC1B was highly expressed in HCC cells. DEPDC1B knockdown inhibited the proliferation, migration, invasion, cycle, and KIF23 expression in HCC cells. Moreover, KIF23 overexpression reversed the inhibitory effect of DEPDC1B knockdown in HCC cells and the activation of the p53 signaling. In conclusion, DEPDC1B knockdown exerts anti-cancer role in HCC by activating the p53 signaling through KIF23.
Collapse
Affiliation(s)
- Enhua Shen
- Department of Infectious Diseases, Jilin Province Faw General Hospital, Changchun, Jilin, China
| | - Jingzhi Zhang
- Department of Critical Care Medicine, Zibo Integrated Chinese and Western Medicine Hospital, Zibo, Shandong, China
| | - Yujuan Lu
- Department of Infectious Disease, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
28
|
Zou H, Ye H, Kamaraj R, Zhang T, Zhang J, Pavek P. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153736. [PMID: 34560520 DOI: 10.1016/j.phymed.2021.153736] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Quercetin is a natural flavonoid, which widely exists in nature, such as tea, coffee, apples, and onions. Numerous studies have showed that quercetin has multiple biological activities such as anti-oxidation, anti-inflammatory, and anti-aging. Hence, quercetin has a significant therapeutic effect on cancers, obesity, diabetes, and other diseases. In the past decades, a large number of studies have shown that quercetin combined with other agents can significantly improve the overall therapeutic effect, compared to single use. PURPOSE This work reviews the pharmacological activities of quercetin and its derivatives. In addition, this work also summarizes both in vivo and in vitro experimental evidence for the synergistic effect of quercetin against cancers and metabolic diseases. METHODS An extensive systematic search for pharmacological activities and synergistic effect of quercetin was performed considering all the relevant literatures published until August 2021 through the databases including NCBI PubMed, Scopus, Web of Science, and Google Scholar. The relevant literatures were extracted from the databases with following keyword combinations: "pharmacological activities" OR "biological activities" OR "synergistic effect" OR "combined" OR "combination" AND "quercetin" as well as free-text words. RESULTS Quercetin and its derivatives possess multiple pharmacological activities including anti-cancer, anti-oxidant, anti-inflammatory, anti-cardiovascular, anti-aging, and neuroprotective activities. In addition, the synergistic effect of quercetin with small molecule agents against cancers and metabolic diseases has also been confirmed. CONCLUSION Quercetin cooperates with agents to improve the therapeutic effect by regulating signal molecules and blocking cell cycle. Synergistic therapy can reduce the dose of agents and avoid the possible toxic and side effects in the treatment process. Although quercetin treatment has some potential side effects, it is safe under the expected use conditions. Hence, quercetin has application value and potential strength as a clinical drug. Furthermore, quercetin, as the main effective therapeutic ingredient in traditional Chinese medicine, may effectively treat and prevent coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove CZ500 05, Czech Republic
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove CZ500 05, Czech Republic.
| |
Collapse
|
29
|
Baby J, Devan AR, Kumar AR, Gorantla JN, Nair B, Aishwarya TS, Nath LR. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J Food Biochem 2021; 45:e13761. [PMID: 34028054 DOI: 10.1111/jfbc.13761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023]
Abstract
Chemopreventive approaches with food-derived phytochemicals are progressively rising as a significant aspect of tumor management and control. Herein, we have showcased the major phytoconstituents belonging to the group of flavanoid, as anti-cancer agents used for the treatment and prevention of hepatocellular carcinoma (HCC). Sorafenib is the sole drug used for the treatment of advanced HCC, but its clinical application is limited because of its severe adverse effects and drug resistance. Diet-based chemoprevention seems to be the way forward for this disease of malignant nature. As HCC is derived from a chronic inflammatory milieu, the regular incorporation of bioactive phytochemicals in the diet will confer protection and prevent progression to hepatocarcinogenesis. Many preclinical studies proved that the health benefits of flavonoids confer cytotoxic potential against various types of cancers including hepatocellular carcinoma. As flavonoids with excellent safety profile are abundantly present in common vegetables and fruits, they can be better utilized for chemoprevention and chemosensitization in such chronic condition. This review highlights the plausible role of the eight most promising flavonoids (Curcumin, Kaempferol, Resveratrol, Quercetin, Silibinin, Baicalein, Galangin and Luteolin) as key orchestrators of chemoprevention in hepatocellular carcinoma with preclinical and clinical evidence. An attempt to address the challenges in its clinical translation is also included. This review also provides an insight into the close association of HCC and metabolic disorders which may further decipher the chemopreventive effect of dietary bioactive from a proof of concept to extensive clinical translation. PRACTICAL APPLICATIONS: According to GLOBOCAN 2020 database, it is estimated that 905,677 new cases of liver cancer and approximately 830,180 deaths related to that. The cancer incidence and mortality are almost similar as it is diagnosed at an advanced stage in patients where systemic drug therapy is the sole approach. Due to the emergence of multidrug resistance and drug-related toxicities, most of the patient can not adhere to the therapy regimen. Flavonoids are known to be a potential anticancer agent with an excellent safety profile. These are found to be effective preclinically against hepatocellular carcinoma through modulation of numerous pathways in hepatocarcinogenesis. But, the bioavailability issue, lack of well designed-validated clinical evidence, the possibility of food-drug interaction etc limit its clinical utility. The research inputs mainly to overcome pharmacokinetic issues along with suitable validation of efficacy and toxicity will be a critical point for establishing flavonoids as an effective, safe, affordable therapeutics.
Collapse
Affiliation(s)
- Jasmine Baby
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | | | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Thanatharayil Sathian Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
30
|
Santos TS, dos Santos IDD, Pereira-Filho RN, Gomes SVF, Lima-Verde IB, Marques MN, Cardoso JC, Severino P, Souto EB, de Albuquerque-Júnior RLC. Histological Evidence of Wound Healing Improvement in Rats Treated with Oral Administration of Hydroalcoholic Extract of Vitis labrusca. Curr Issues Mol Biol 2021; 43:335-352. [PMID: 34208147 PMCID: PMC8929082 DOI: 10.3390/cimb43010028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Plant extracts rich in phenolic compounds have been demonstrated to accelerate wound healing, but their use by oral route has been poorly studied. The leaves of Vitis labrusca are rich in phenolic acids and flavonoids. The goal of this study was to assess the healing properties of the oral administration of hydroalcoholic extract of V. labrusca leaves (HEVL) in a murine model. HEVL was obtained by Soxhlet and dynamic maceration, and their yield and phenolic acids and flavonoid contents were determined. For the wound healing assay, 8 mm wounds were performed on the back of 48 Wistar rats, assigned into four groups (n = 12): CTR (distilled water), HEVL100, HEVL200, and HEVL300 (HEVL at 100, 200, and 300 mg/kg, respectively). On days 7 and 14, wound closure rates were assessed, and the healing wounds were subjected to histological analysis. Soxhlet-obtained extract was selected for the wound healing assay because it provided a higher yield and phenolic acid and flavonoid contents. HEVL significantly reduced leukocytosis in the peripheral blood (p < 0.05), accelerated wound closure (p < 0.05), and improved collagenization (p < 0.05) on day 7, as well as enhanced the epidermal tissue thickness (p < 0.001) and elastic fiber deposition on day 14 (p < 0.01). Furthermore, HEVL promoted an increase in the histological grading of wound healing on both days 7 and 14 (p < 0.01). The doses of 200 and 300 mg/kg provided better results than 100 mg/Kg. Our data provide histological evidence that the oral administration of HEVL improves wound healing in rodents. Therefore, the extract can be a potential oral medicine for healing purposes.
Collapse
Affiliation(s)
- Tarsizio S. Santos
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
| | - Izabella D. D. dos Santos
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
| | - Rose N. Pereira-Filho
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| | - Silvana V. F. Gomes
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
| | - Isabel B. Lima-Verde
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| | - Maria N. Marques
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| | - Juliana C. Cardoso
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| | - Patricia Severino
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Eliana B. Souto
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ricardo L. C. de Albuquerque-Júnior
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| |
Collapse
|
31
|
Ghafouri-Fard S, Hussen BM, Taheri M, Ayatollahi SA. Emerging role of circular RNAs in breast cancer. Pathol Res Pract 2021; 223:153496. [PMID: 34052769 DOI: 10.1016/j.prp.2021.153496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
Circular RNAs (cirRNAs) are generally considered as non-coding RNAs which can act as molecular sponges for miRNAs, exert regulatory roles in transcription or splicing, and interplay with RNA binding proteins. These single-stranded transcripts can affect tumor growth, the metastatic ability of cancer cells, stemness properties, and resistance to therapeutic options. Recent investigations have shown the crucial effects of circrNAs in the evolution of breast cancer. Signature of circRNAs in breast cancer samples has been mostly assessed through microarray-based methods revealing up-regulation of some circRNAs such as circ-TFF1, circACAP2, circ-TFCP2L1, hsa_circ_0000519, circDENND4C, circPLK1 and circRNA_069718, while down-regulation of other circRNAs such as hsa_circ_0000375, circYap, hsa_circ_0025202, circTADA2A-E6, circASS1 and circRNA_BARD1 in breast cancer samples. Mechanistically, these transcripts mainly affect breast cancer tumorigenesis via serving as sponges for miRNAs. In the current manuscript, we explore the results of researches that appraised the role of circRNAs in breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
32
|
Wu Q, Hu Y. Systematic Evaluation of the Mechanisms of Mulberry Leaf (Morus alba Linne) Acting on Diabetes Based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2021; 24:668-682. [PMID: 32928080 DOI: 10.2174/1386207323666200914103719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is one of the most common endocrine metabolic disorder- related diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) have been reported to exert important activities of anti-diabetic. OBJECTIVE In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes. METHODS Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was carried out. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes were used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The biological networks were constructed to analyze the mechanisms as follows: (1) compound-target network; (2) common target-compound network; (3) common targets protein interaction network; (4) compound-diabetes protein-protein interactions (ppi) network; (5) target-pathway network; and (6) compound-target-pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method. RESULTS 17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by the String database. Furthermore, the potential targets were used for GO and pathway enrichment analysis. Eight key active compounds (quercetin, Iristectorigenin A, 4- Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin. CONCLUSION Based on network pharmacology and molecular docking, this study provided an important systematic and visualized basis for further understanding of the synergy mechanism of ML acting on diabetes.
Collapse
Affiliation(s)
- Qiguo Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yeqing Hu
- Department of Pharmacy, Anqing Medical College, Anqing 246052, China
| |
Collapse
|
33
|
Liu Y, Li CL, Xu QQ, Cheng D, Liu KD, Sun ZQ. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol Res Pract 2021; 222:153455. [PMID: 33962176 DOI: 10.1016/j.prp.2021.153455] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Esophageal carcinoma has poor prognosis and novel therapies for esophageal carcinoma are urgently needed. Quercetin is a natural flavonoid compound that can be found in many foods. In this study, we investigated the effects of quercetin on invasion and angiogenesis of esophageal cancer cells. METHODS Human esophageal cancer cell line Eca109 was treated with 5 μg/mL or 10 μg/mL of quercetin. Colony formation assay was performed. Cell migration and invasion were evaluated by wound healing and transwell assays, respectively. Human umbilical vein/vascular endothelium cells (CLR-1730) were treated with Eca109 conditioned medium, and the effects of quercetin on CLR-1730 were evaluated by wound healing and tube formation assays. Protein levels of VEGF-A, MMP9, and MMP2 were determined by Western blotting. RESULTS The ability of colony forming in Eca109 was reduced with the administration of 10 μg/mL quercetin, but there was no difference between the 5 μg/mL quercetin group and control. The migration distance and the number of invasive cells were significantly reduced in the 10 μg/mL quercetin group. At the lower level of quercetin at 5 μg/mL, only the invasion of cells was significantly inhibited. In endothelial cells treated with Eca109 conditioned medium, cell migration and tube forming ability were suppressed. The decreased protein levels of VEGF-A, MMP9, and MMP2 were observed at the 10 μg/mL quercetin group. CONCLUSION Quercetin suppressed the invasion and angiogenesis of esophageal cancer cells, and the effects were associated with the decreased expression of VEGF-A, MMP2, and MMP9.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Cai-Li Li
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China.
| | - Qian-Qian Xu
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Dan Cheng
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Ke-Di Liu
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Ze-Qun Sun
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
34
|
Hong SY, Ha AW, Kim W. Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes. Nutr Res Pract 2021; 15:444-455. [PMID: 34349878 PMCID: PMC8313392 DOI: 10.4162/nrp.2021.15.4.444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/OBJECTIVES Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferator-activated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.
Collapse
Affiliation(s)
- Seo Young Hong
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea.,Natural Nutraceuticals Industrialization Research Center, Dankook University, Cheonan 31116, Korea
| | - Wookyoung Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
35
|
Li X, Tang H, Tang Q, Chen W. Decoding the Mechanism of Huanglian Jiedu Decoction in Treating Pneumonia Based on Network Pharmacology and Molecular Docking. Front Cell Dev Biol 2021; 9:638366. [PMID: 33681222 PMCID: PMC7930397 DOI: 10.3389/fcell.2021.638366] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
Huang-Lian-Jie-Du decoction (HLJDD) has been used to treat pneumonia for thousands of years in China. However, our understanding of its mechanisms on treating pneumonia is still unclear. In the present work, network pharmacology was used to analyze the potential active ingredients and molecular mechanisms of HLJDD on treating pneumonia. A total of 102 active ingredients were identified from HLJDD, among which 54 were hit by the 69 targets associated with pneumonia. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we obtained the main pathways associated with pneumonia and those associated with the mechanism of HLJDD in the treatment of pneumonia. By constructing the protein-protein interaction network of common targets, 10 hub genes were identified, which were mainly involved in the tumor necrosis factor (TNF) signaling pathway, interleukin 17 (IL-17) signaling pathway, and nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Moreover, the results of molecular docking showed that the active ingredients of HLJDD had a good affinity with the hub genes. The final results indicate that HLJDD has a greater effect on bacterial pneumonia than on viral pneumonia. The therapeutic effect is mainly achieved by regulating the host immune inflammatory response and oxidative stress reaction, antibacterial microorganisms, alleviating the clinical symptoms of pneumonia, repairing damaged cells, and inhibiting cell migration.
Collapse
Affiliation(s)
- Xianhai Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Tang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Qiang Tang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Life Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
36
|
Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, Fan X, Ma R, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Sci Rep 2021; 11:2220. [PMID: 33500463 PMCID: PMC7838196 DOI: 10.1038/s41598-020-80780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Oligoasthenozoospermia (OA) is one of the most common types of male infertility affecting sperm count and sperm motility. Unfortunately, it is difficult for existing drugs to fundamentally improve the sperm quality of OA patients, because the pathological mechanism of OA has not been fully elucidated yet. Morinda officinalis-Lycium barbarum coupled-herbs (MOLBCH), as traditional Chinese Medicines, has been widely used for treating OA over thousands of years, but its molecular mechanism is still unclear. For this purpose, we adopted a comprehensive approach integrated network pharmacology and molecular docking to reveal the bioactive components and potential targets of MOLBCH against OA. The results showed that MOLBCH alleviated apoptosis, promoted male reproductive function, and reduced oxidant stress in the treatment of OA. Ohioensin-A, quercetin, beta-sitosterol and sitosterol were the key bioactive components. Androgen receptor (AR), Estrogen receptor (ESR1), Mitogen-activated protein kinase 3 (MAPK3), RAC-alpha serine/threonine-protein kinase (AKT1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the core potential targets. PI3K/Akt signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications were the most representative pathways. Moreover, molecular docking was performed to validate the strong binding interactions between the obtained core components and targets. These observations provide deeper insight into the pathogenesis of OA and can be used to design new drugs and develop new therapeutic instructions to treat OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yafei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ru Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
37
|
Ciccone L, Vandooren J, Nencetti S, Orlandini E. Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:86. [PMID: 33498927 PMCID: PMC7911533 DOI: 10.3390/ph14020086] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Several studies have reported neuroprotective effects by natural products. A wide range of natural compounds have been investigated, and some of these may play a beneficial role in Alzheimer's disease (AD) progression. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, have been implicated in AD. In particular, MMP-2 and MMP-9 are able to trigger several neuroinflammatory and neurodegenerative pathways. In this review, we summarize and discuss existing literature on natural marine and terrestrial compounds, as well as their ability to modulate MMP-2 and MMP-9, and we evaluate their potential as therapeutic compounds for neurodegenerative and neuroinflammatory diseases, with a focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven—Herestraat 49—Box 1044, 3000 Leuven, Belgium;
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, via Santa Maria 53, 56126 Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
38
|
Wang N, Muhetaer G, Zhang X, Yang B, Wang C, Zhang Y, Wang X, Zhang J, Wang S, Zheng Y, Zhang F, Wang Z. Sanguisorba officinalis L. Suppresses Triple-Negative Breast Cancer Metastasis by Inhibiting Late-Phase Autophagy via Hif-1α/Caveolin-1 Signaling. Front Pharmacol 2020; 11:591400. [PMID: 33381039 PMCID: PMC7768086 DOI: 10.3389/fphar.2020.591400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sanguisorba officinalis L. (SA) is a common herb for cancer treatment in the clinic, particularly during the consolidation phase to prevent occurrence or metastasis. Nevertheless, there are limited studies reporting the molecular mechanisms about its anti-metastatic function. It is well demonstrated that autophagy is one of the critical mechanisms accounting for metastasis and anti-cancer pharmacological actions of Chinese herbs. On the threshold, the regulatory effects and molecular mechanisms of SA in suppressing autophagy-related breast cancer metastasis were investigated in this study. In vitro findings demonstrated that SA potently suppressed the proliferation, colony formations well as metastasis process in triple-negative breast cancer. Network and biological analyses predicted that SA mainly targeted caveolin-1 (Cav-1) to induce anti-metastatic effects, and one of the core mechanisms was via regulation of autophagy. Further experiments—including western blotting, transmission electron microscopy, GFP-mRFP-LC3 immunofluorescence, and lysosomal-activity detection—validated SA as a potent late-stage autophagic inhibitor by increasing microtubule-associated light chain 3-II (LC3-II) conversion, decreasing acidic vesicular-organelle formation, and inducing lysosomal dysfunction even under conditions of either starvation or hypoxia. Furthermore, the anti-autophagic and anti-metastatic activity of SA was Cav-1-dependent. Specifically, Cav-1 knockdown significantly facilitated SA-mediated inhibition of autophagy and metastasis. Furthermore, hypoxia inducible factor-1α (Hif-1α) overexpression attenuated the SA-induced inhibitory activities on Cav-1, autophagy, and metastasis, indicating that SA may have inhibited autophagy-related metastasis via Hif-1α/Cav-1 signaling. In both mouse breast cancer xenograft and zebrafish xenotransplantation models, SA inhibited breast cancer growth and inhibited late-phase autophagy in vivo, which was accompanied by suppression of Hif-1α/Cav-1 signaling and the epithelial-mesenchymal transition. Overall, our findings not only indicate that SA acts as a novel late-phase autophagic inhibitor with anti-metastatic activities in triple-negative breast cancer, but also highlight Cav-1 as a regulator in controlling late-phase autophagic activity.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Gulizeba Muhetaer
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiaotong Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Bowen Yang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.,Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Caiwei Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xuan Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Juping Zhang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Fengxue Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| |
Collapse
|
39
|
Network Pharmacology-Based Strategy to Investigate Pharmacological Mechanisms of Qiaoshao Formula for Treatment of Premature Ejaculation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1418634. [PMID: 33273947 PMCID: PMC7676949 DOI: 10.1155/2020/1418634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
Background Qiaoshao (QS) formula, a traditional Chinese medicine (TCM) comprising seven herbs, has been clinically proven to have a favorable treatment effect on premature ejaculation (PE). However, its underlying pharmacological mechanisms in the treatment of PE need to be further clarified. Methods In the present study, a network pharmacology-based strategy was adopted. The active compounds of QS formula were obtained from the Chinese medicine database, and the potential targets of these compounds were collected from the DrugBank database to construct compound-compound targets network. PE-related targets were identified from human disease databases and used to construct the protein-protein interaction (PPI) networks. Compound-disease target PPI network was constructed by merging the PPI network of disease-targets and compound-targets. Cluster and enrichment analyses were performed on the PPI network of disease targets and compound-disease targets. The influence of QS formula on serum 5-HT, NO, oxytocin, and thyroid hormones of PE patients was verified. Results Four primary pharmacological networks of QS formula were constructed, including the compound-compound targets network, PPI network of PE-related targets and compound-disease targets, and the QS-PE mechanism network. The module and pathway enrichment analyses revealed that the QS formula had the potential to affect varieties of biological process and pathways, such as nitric oxide biosynthetic process, oxytocin, thyroid hormone, TNF, PI3K-Akt, and the HIF-1 signaling pathway, that play an important role in the pathogenesis of PE. Meanwhile, the QS formula has been clinically confirmed to regulate the serum level of 5-HT, NO, oxytocin, and TT in PE patients. Conclusion This study preliminarily discovered the potential targets and pathways of QS formula in the treatment of PE, which laid a good foundation for further experimental research.
Collapse
|
40
|
Wang W, Ning J, He Y, Zhai L, Xiang F, Yao L, Ye L, Wu L, Ji T, Tang Z. Unveiling the mechanism of Astragalus membranaceus in the treatment of gastrointestinal cancers based on network pharmacology. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Ozkan E, Bakar-Ates F. Potentiation of the Effect of Lonidamine by Quercetin in MCF-7 human breast cancer cells through downregulation of MMP-2/9 mRNA Expression. AN ACAD BRAS CIENC 2020; 92:e20200548. [PMID: 33237147 DOI: 10.1590/0001-3765202020200548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Combination therapies are becoming increasingly important to develop an effective treatment in cancer. Lonidamine is frequently used in cancer treatment, but it's often preferred to be used in combination with other drugs because of its side effects. In the present study, the efficacy of the combination of lonidamine with quercetin, a flavonoid of natural origin, on human MCF-7 breast cancer cells was evaluated. The results showed that the combined use of the compounds significantly increased cytotoxicity compared to administration alone (p<0.0001). In addition, while lonidamine induced a cell cycle arrest in the G2/M phase, administration of quercetin and its combination with lonidamine arrested the cell division at S point, indicating the synergistic strength of quercetin on cytotoxicity. The combination of quercetin and lonidamine significantly induced apoptosis of MCF-7 cells (p<0.0001) and increased caspase levels (p<0.0001). In this study, the combination of quercetin and lonidamine has been evaluated for the first time and the combination treatment decreased MMP-2/-9 mRNA expression more potently than the effects of the compounds alone. The results showed that lonidamine was more effective when combined with quercetin, and their combination may be a candidate for a novel strategy of treatment for breast cancer.
Collapse
Affiliation(s)
- Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Dogol Street, 06560, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Dogol Street, 06560, Ankara, Turkey
| |
Collapse
|
42
|
Khater M, Greco F, Osborn HMI. Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules 2020; 25:E4712. [PMID: 33066630 PMCID: PMC7594036 DOI: 10.3390/molecules25204712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract: An imbalance of angiogenesis contributes to many pathologies such as cancer, arthritis and retinopathy, hence molecules that can modulate angiogenesis are of considerable therapeutic importance. Despite many reports on the promising antiangiogenic properties of naturally occurring flavonoids, no flavonoids have progressed to the clinic for this application. This systematic review and meta-analysis therefore evaluates the antiangiogenic activities of a wide range of flavonoids and is presented in two sections. The first part of the study (Systematic overview) included 402 articles identified by searching articles published before May 2020 using ScienceDirect, PubMed and Web of Science databases. From this initial search, different classes of flavonoids with antiangiogenic activities, related pathologies and use of in vitro and/or in/ex vivo angiogenesis assays were identified. In the second part (Meta-analysis), 25 studies concerning the antiangiogenic evaluation of flavonoids using the in vivo chick chorioallantoic membrane (CAM) assay were included, following a targeted search on articles published prior to June 2020. Meta-analysis of 15 out of the 25 eligible studies showed concentration dependent antiangiogenic activity of six compared subclasses of flavonoids with isoflavones, flavonols and flavones being the most active (64 to 80% reduction of blood vessels at 100 µM). Furthermore, the key structural features required for the antiangiogenic activity of flavonoids were derived from the pooled data in a structure activity relationship (SAR) study. All in all, flavonoids are promising candidates for the development of antiangiogenic agents, however further investigations are needed to determine the key structural features responsible for their activity.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre, Cairo 12622, Egypt
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| |
Collapse
|
43
|
Systematic Elucidation of the Mechanism of Quercetin against Gastric Cancer via Network Pharmacology Approach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3860213. [PMID: 32964029 PMCID: PMC7486643 DOI: 10.1155/2020/3860213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
This study was aimed at elucidating the potential mechanisms of quercetin in the treatment of gastric cancer (GC). A network pharmacology approach was used to analyze the targets and pathways of quercetin in treating GC. The predicted targets of quercetin against GC were obtained through database mining, and the correlation of these targets with GC was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, the protein-protein interaction (PPI) network was constructed, and overall survival (OS) analysis of hub targets was performed using the Kaplan–Meier Plotter online tool. Finally, the mechanism was further analyzed via molecular docking of quercetin with the hub targets. Thirty-six quercetin-related genes were identified, 15 of which overlapped with GC-related targets. These targets were further mapped to 319 GO biological process terms and 10 remarkable pathways. In the PPI network analysis, six hub targets were identified, including AKT1, EGFR, SRC, IGF1R, PTK2, and KDR. The high expression of these targets was related to poor OS in GC patients. Molecular docking analysis confirmed that quercetin can bind to these hub targets. In conclusion, this study provided a novel approach to reveal the therapeutic mechanisms of quercetin on GC, which will ease the future clinical application of quercetin in the treatment of GC.
Collapse
|
44
|
Huang S, Zhang Z, Li W, Kong F, Yi P, Huang J, Mao D, Peng W, Zhang S. Network Pharmacology-Based Prediction and Verification of the Active Ingredients and Potential Targets of Zuojinwan for Treating Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2725-2740. [PMID: 32764874 PMCID: PMC7369379 DOI: 10.2147/dddt.s250991] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
Background Zuojinwan (ZJW), a famous Chinese medicine formula, has been widely used to treat colorectal cancer (CRC). However, its bioactive compounds, potential targets, and molecular mechanism remain largely elusive. Aim A network pharmacology-based strategy combined with molecular docking studies and in vitro validation were employed to investigate bioactive compounds, potential targets, and molecular mechanism of ZJW against CRC. Materials and Methods Bioactive compounds and potential targets of ZJW, as well as related genes of CRC, were acquired from public databases. Important ingredients, potential targets, and signaling pathways were determined through bioinformatics analysis, including protein-protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking and cell experiments were performed to further verify the findings. Results A total of 36 bioactive ingredients of ZJW and 163 gene targets of ZJW were identified. The network analysis revealed that quercetin, baicalein, wogonin, beta-sitosterol, and isorhamnetin may be candidate agents. The AKT1, JUN, CDKN1A, BCL2L1, and NCOA1 could become potential drug targets. The KEGG indicated that PI3K-AKT signaling pathway may play an important role in the effect of ZJW against CRC. Molecular docking suggested that quercetin, baicalein, and wogonin combined well with AKT1 and JUN. The in vitro experiment showed that quercetin, the most important ingredient of ZJW, could induce apoptosis of HCT116 cells through PI3K-Akt signaling pathway. This finding was congruent with the prediction obtained through the network pharmacology approach. Conclusion This study comprehensively illuminated the active ingredients, potential targets, and molecular mechanism of ZJW against CRC. It also provided a promising approach to uncover the scientific basis and therapeutic mechanism of traditional Chinese medicine (TCM) formula treating for disease.
Collapse
Affiliation(s)
- Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Fanhua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Pengji Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Dan Mao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
45
|
Beken B, Serttas R, Yazicioglu M, Turkekul K, Erdogan S. Quercetin Improves Inflammation, Oxidative Stress, and Impaired Wound Healing in Atopic Dermatitis Model of Human Keratinocytes. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2020; 33:69-79. [PMID: 34678092 DOI: 10.1089/ped.2019.1137] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Atopic dermatitis (AD) is a common inflammatory skin disease with complex pathogenesis. Natural flavonoids exhibit strong anti-inflammatory and antioxidant properties in many human diseases. In this study, the potential bioactive effect of quercetin, a polyphenolic plant-derived flavonoid, on the AD model of human keratinocytes was evaluated. Methods: Immortalized human HaCaT keratinocytes were treated with interleukin (IL) -4, -13, and tumor necrosis factor-α to mimic AD features in vitro. Then effects of quercetin on inflammation, oxidative stress, and wound healing were assessed. Results: Pretreatment of the cells with 1.5 μM of quercetin significantly reduced the expression of AD-induced IL-1β, IL-6, IL-8, and thymic stromal lymphopoietin, while it strongly enhanced the expression of superoxide dismutase-1 (SOD1), SOD2, catalase, glutathione peroxidase, and IL-10. Quercetin promoted wound healing by inducing epithelial-mesenchymal transition, which was supported by the upregulation of Twist and Snail mRNA expression. Unexpectedly, quercetin pretreatment of AD-induced cells upregulated the mRNA expression of occludin and E-cadherin, while downregulating matrix metalloproteinase 1 (MMP1), MMP2, and MMP9 expression. The pretreatment inhibited AD-induced phosphorylation of extracellular signal-regulated kinase 1/2/mitogen-activated protein kinase (ERK1/2 MAPK) and the expression of nuclear factor-kappa B (NF-κB), but it did not alter signal transducer and activator of transcription 6 (STAT6) phosphorylation. Conclusion: Quercetin may serve as a potential bioactive substance for atopic dermatitis-related symptoms through anti-inflammatory and antioxidant activities along with its acceleration of wound healing via ERK1/2 MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Burcin Beken
- Department of Pediatric Allergy and Immunology, School of Medicine, Trakya University, Edirne, Turkey
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| | - Mehtap Yazicioglu
- Department of Pediatric Allergy and Immunology, School of Medicine, Trakya University, Edirne, Turkey
| | - Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
46
|
A review on anti-cancer properties of Quercetin in breast cancer. Life Sci 2020; 248:117463. [DOI: 10.1016/j.lfs.2020.117463] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
|
47
|
Chemical Characterization and Wound Healing Property of Jacaranda decurrens Cham. (Bignoniaceae): An Experimental Study Based on Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4749712. [PMID: 32382292 PMCID: PMC7191437 DOI: 10.1155/2020/4749712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/14/2020] [Indexed: 01/05/2023]
Abstract
Background Jacaranda decurrens Cham., known as carobinha, is prevalent in the Cerrado biome and presents popular use in treatment of dermatological diseases. The present study aimed to investigate the healing action of topical formulation of Jacaranda decurrens Cham. (FtEHJ) in mice cutaneous lesions. Methods Phytochemical analysis of J. decurrens hydroalcoholic extract was carried out by using HPLC-PDA-ESI-MS and FIA-ESI-IT-MSn. Swiss mice were treated topically with formulation base (FtB) or Fibrinase® or ointment FtEHJ (15 mg/g; 50 mg/Kg). At the end of treatment periods, the inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the lesions were measured by using ELISA and gene expression of TGF-β, Collagen I, and Collagen III was demonstrated by RTqPCR method and histological evaluation. Results Ten compounds were identified in the extract, distributed among the classes of flavonoids and triterpenes. Treatment with FtEHJ increased the wound contraction in 24 hours, such as reduction of TNF-α, IL-1β, and IL-6 (pg/mL) cytokines in the lesion. The TGF-β and collagen gene expression was increased and the wound closure accelerated to nine days, with discrete inflammation, collagenization, and accented reepithelialization. Conclusions. The results obtained suggest chemical compounds present in the FtEHJ accelerates wound healing by being a gene expression modulator, and protein content of different molecules are involved in tissue repair.
Collapse
|
48
|
Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y, Akbari M, Shafiee A, Hajighadimi S, Moradizarmehri S, Razi E, Savardashtaki A, Mirzaei H. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci 2020; 10:32. [PMID: 32175075 PMCID: PMC7063794 DOI: 10.1186/s13578-020-00397-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/29/2020] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is known as a serious malignancy that affects women's reproductive tract and can considerably threat their health. A wide range of molecular mechanisms and genetic modifications have been involved in ovarian cancer pathogenesis making it difficult to develop effective therapeutic platforms. Hence, discovery and developing new therapeutic approaches are required. Medicinal plants, as a new source of drugs, could potentially be used alone or in combination with other medicines in the treatment of various cancers such as ovarian cancer. Among various natural compounds, quercetin has shown great anti-cancer and anti-inflammatory properties. In vitro and in vivo experiments have revealed that quercetin possesses a cytotoxic impact on ovarian cancer cells. Despite obtaining good results both in vitro and in vivo, few clinical studies have assessed the anti-cancer effects of quercetin particularly in the ovarian cancer. Therefore, it seems that further clinical studies may introduce quercetin as therapeutic agent alone or in combination with other chemotherapy drugs to the clinical setting. Here, we not only summarize the anti-cancer effects of quercetin but also highlight the therapeutic effects of quercetin in the ovarian cancer.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Mona Taghavipour
- Department of Gynecology and Obstetrics, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON Canada
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| |
Collapse
|
49
|
Yang B, Wang N, Wang S, Li X, Zheng Y, Li M, Song J, Zhang F, Mei W, Lin Y, Wang Z. Network-pharmacology-based identification of caveolin-1 as a key target of Oldenlandia diffusa to suppress breast cancer metastasis. Biomed Pharmacother 2019; 112:108607. [PMID: 30784915 DOI: 10.1016/j.biopha.2019.108607] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Breast cancer remains the most common female malignancy and metastasis is the leading cause of death in breast cancer patients. Oldenlandia diffusa has been empirically and extensively used as an adjuvant therapy for metastatic breast cancer patients in Traditional Chinese Medicine (TCM) with proven efficacy. However, its anti-metastasis mechanism has been poorly revealed. METHODS Multiple molecular biology experiments as well as network pharmacology, bioinformatics analysis were conducted to investigate the anti-metastasis mechanism of Oldenlandia diffusa in breast cancer. RESULTS We demonstrated that ethanol extract of Oldenlandia diffusa (EEOD) significantly inhibited proliferation and induced apoptosis of high-metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-453, while having no obvious cytotoxic effect on multiple nonmalignant cells. Furthermore, EEOD remarkably suppressed the migration and invasion capacities of the above breast cancer cells by modulating the matrix metalloproteinases (MMPs) and the epithelial-mesenchymal transition (EMT) pathway. More importantly, EEOD also significantly inhibited breast cancer metastasis in zebrafish xenotransplantation model in vivo. Network pharmacology and bioinformatics analysis further demonstrated that EEOD yielded 12 candidate compounds and 225 potential targets, and shared 85 putative targets associated with breast cancer metastasis. Mechanistically, RNA sequencing and experimental validation results suggested that EEOD might inhibit breast cancer metastasis by attenuating the expression of caveolin-1 (Cav-1) as overexpression of Cav-1 could weaken the anti-metastasis efficacy of EEOD. CONCLUSIONS Overall, our findings proved that EEOD could inhibit breast cancer metastasis by attenuating the expression of Cav-1, highlighting the use of EEOD as an adjunctive therapy for metastatic breast cancer patients. This study also provides novel insights into network pharmacology and bioinformatics analysis as effective tools to illuminate the scientific basis of TCM.
Collapse
Affiliation(s)
- Bowen Yang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Research Center of Integrative Medicine, School of Basic Medical Sciences & the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Research Center of Integrative Medicine, School of Basic Medical Sciences & the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Research Center of Integrative Medicine, School of Basic Medical Sciences & the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Post-doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Li
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Research Center of Integrative Medicine, School of Basic Medical Sciences & the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Research Center of Integrative Medicine, School of Basic Medical Sciences & the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Post-doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Juxian Song
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Fengxue Zhang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Research Center of Integrative Medicine, School of Basic Medical Sciences & the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Yi Lin
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Research Center of Integrative Medicine, School of Basic Medical Sciences & the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Research Center of Integrative Medicine, School of Basic Medical Sciences & the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Post-doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|