1
|
Yu H, Davoudi M, Sadegh-Nejadi S, Miao X, Bagherieh M, Afrisham R. Impact of monotherapy and combination therapy with glucagon-like peptide-1 receptor agonists on exosomal and non-exosomal MicroRNA signatures in type 2 diabetes mellitus: a systematic review. J Transl Med 2025; 23:477. [PMID: 40281607 PMCID: PMC12032824 DOI: 10.1186/s12967-025-06461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonist (GLP-1RAs) is a potent therapy for type 2 diabetes mellitus (T2DM) and obesity, especially in patients who are resistant to long-term insulin therapy. Although microRNAs have been linked to GLP-1 signaling, their role in GLP-1RA monotherapy and combination therapy remains unclear. This review synthesizes current evidence of GLP-1RA-induced exosomal and non-exosomal miRNA changes in human and animal models of T2DM. METHODS Scopus, PubMed/Medline, Web of Science, and Google Scholar searches returned 83 studies, of which 11 met the study eligibility criteria (PROSPERO No: CRD42024586000). RESULTS Human studies showed GLP-1RA combined with metformin modulated non-exosomal miR-27b, miR-130a, and miR-210a, which were linked to cardiovascular health. In T2DM patients on metformin, higher baseline miR-378-3p or miR-126-3p correlated with greater HbA1c improvement after one year of GLP-1RA therapy. Notably, > 5% weight loss correlated with higher baseline levels of miR-15a-5p. Preclinical findings suggested GLP-1RA monotherapy increased cardiovascular action via non-exosomal miR-29b-3p, miR-34a-5p, miR-26a-5p, miR-181a-5p, and miR-93-5p. Silencing non-exosomal miR-204, miR-375, or miR-139-5p augmented exendin-4/liraglutide monotherapy-induced glucose-stimulated insulin secretion. Interestingly, GLP-1RA monotherapy reduced hepatic lipid accumulation in T2DM models with comorbid NAFLD via ABHD6 mRNA modulation by non-exosomal miR-5120. No clinical studies reported exosomal miRNAs, but a preclinical study linked GLP-1RA-induced exosomal let-7c-2-3p/miR-322-3p to bone protection in estrogen-deficient T2DM models. CONCLUSION GLP-1RAs, both as first-line and second-line therapies, are beneficial for T2DM complicated by obesity, NAFLD, cardio-metabolic disease, and postmenopausal osteoporosis. Longitudinal trials that incorporate innovative multi-omics approaches are essential for distinguishing their miRNA expression pattern from other anti-diabetics.
Collapse
Affiliation(s)
- Haifeng Yu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, China
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Sadegh-Nejadi
- Department of Clinical Laboratory, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Xiaolei Miao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, China.
| | - Molood Bagherieh
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran.
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Miao X, Davoudi M, Alitotonchi Z, Ahmadi ES, Amraee F, Alemi A, Afrisham R. Managing cardiovascular events, hyperglycemia, and obesity in type 2 diabetes through microRNA regulation linked to glucagon-like peptide-1 receptor agonists. Diabetol Metab Syndr 2025; 17:13. [PMID: 39794819 PMCID: PMC11724456 DOI: 10.1186/s13098-025-01581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND AND AIMS Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM. RESULTS GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210. Baseline miR-15a-5p predict weight loss, while higher miR-378-3p and miR-126-3p levels are related to better glycemic control and lower HbA1c and FPG at one year post-treatment. miR-375-5p was also reported as a predictor of HbA1c levels. Liraglutide has a protecting effect against pancreatic β-cell apoptosis by downregulating miR-139-5p. The highly-expressed miR-375 in pancreatic islets can be considered as a biomarker for assessing the cytoprotective action of GLP-1RAs on β-cells. GLP-1RAs also enhance β-cell responsiveness by promoting GLP-1 receptor expression through the suppression of miR-204. While semaglutide, semaglutide, and dulaglutide reduce both systolic and diastolic blood pressures, lixisenatide and exenatide QW did not reveal such an effect. The long-acting exenatide-induced miR-29b-3p is required for the protection against diabetic cardiomyopathy. Liraglutide modulates critical regulators of endothelial cell function and atherosclerosis, including miR-93-5p, miR-26a-5p, and miR-181a-5p. Eventually, GLP-1RAs regulation of exosomal miRNAs, such as miR-192, implicated in the development of fibrosis and inflammation in T2DM micro-cardiovascular outcomes like DKD and DR. CONCLUSION Additional studies will be needed in the elucidation of the relations between GLP-1RA-induced miRNAs and clinical-laboratory findings concerning the diverse populations, gender, and presence of other comorbid states in treated patients with T2DM.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alitotonchi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Sadat Ahmadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Alemi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Xu F, Dou L, Yu D, Wu X, Liu L, Man Y, Huang X. A Novel "Endocrine Hormone": The Diverse Role of Extracellular Vesicles in Multiorgan Insulin Resistance. Int J Med Sci 2024; 21:2081-2093. [PMID: 39239539 PMCID: PMC11373541 DOI: 10.7150/ijms.97217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Insulin resistance is the primary contributor to the disruption in glucose homeostasis in the body, playing a significant causative role in many metabolic diseases. Insulin resistance is characterized by compensatory insulin secretion and reduced insulin responsiveness in target organs. Dysregulation of the interaction between insulin-secreting cells and insulin-responsive target organs is an important factor driving the progression of insulin resistance. Circulating endocrine hormones are important mediators mediating the interaction between insulin-secreting cells and insulin-responsive target organs. In addition to the classical hormones secreted by endocrine glands and organ-specific hormones secreted by metabolism-related organs (adipose tissue, muscle, liver, etc.), extracellular vesicles have been recognized as a novel class of endocrine hormones with a complex composition. Extracellular vesicles can transport signaling molecules, such as miRNAs and LncRNAs, to vital organs related to insulin resistance, in a manner akin to conventional hormones. The significant role in regulating the development of insulin resistance underscores the increasing interest in extracellular vesicles as essential contributors to this process. In this review, we summarize the three types of hormones (classical hormones, organokines and extracellular vesicles) that play a regulatory role in insulin resistance, and focus on the novel endocrine hormones, extracellular vesicles, to elaborate the mechanism of extracellular vesicles' regulation of insulin resistance progress from two aspects: the impact on insulin-secreting cells and the influence on insulin-responsive target organs. In addition, this paper outlines the clinical applications of extracellular vesicles in insulin resistance. A comprehensive understanding of the regulatory mechanisms and diagnostic status of the inter-organ network in insulin resistance has great potential to advance targeted therapeutic interventions and diagnostic markers, thereby benefiting both the prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Dongni Yu
- Department of Dermatology, Beijing hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, P.R. China
| | - Xi Wu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Longteng Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| |
Collapse
|
4
|
Liu Y, Nie D, Lou X. The Cardiovascular Benefits of Glucagon-Like Peptide-1 Receptor Agonists as Novel Diabetes Drugs Are Mediated via the Suppression of miR-203a-3p and miR-429 Expression. DNA Cell Biol 2024; 43:387-394. [PMID: 38923881 DOI: 10.1089/dna.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Coronary artery disease (CAD) is associated with a high fatality rate and a heavy global health care burden. Glucagon-like peptide-1 (GLP-1) exerts positive cardiovascular effects, although the molecular mechanisms are unclear. Therefore, this study aimed to verify whether the cardioprotective effects of GLP-1 are mediated through the regulation of micro-RNA (miRNA) expression. Follow-up assessments were conducted for 116 patients with type 2 diabetes mellitus (T2DM) alone (controls) and 123 patients with both T2DM and CAD. After matching, each group comprised 63 patients, and age, body mass index, and serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglycerides (TG), and hemoglobin A1C (HbA1c) were compared. Subsequently, the expression profiles of four circulating miRNAs (miR-203a-3p, miR-429, miR-205-5p, and miR-203b-5p) were assessed via quantitative reverse transcription real-time polymerase chain reaction in the 63 patients with diabetes and CAD between 6 months (baseline) and 12 months after the initiation of GLP-1 receptor (GLP-1R) therapy. As expected, the metabolic factors were significantly improved after 6 months of treatment with GLP-1R compared with pre-treatment values, and the expression levels of two of the miRNAs (miR-203a-3p and miR-429) decreased from baseline levels in those with diabetes and CAD. The results suggest that the cardiovascular benefits induced by GLP-1R are mediated via suppressed expression of two miRNAs: miR-203a-3p and miR-429.
Collapse
Affiliation(s)
| | | | - Xueyong Lou
- Department of Endocrinology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
5
|
Mabilleau G, Bouvard B. Gut hormone analogues and skeletal health in diabetes and obesity: Evidence from preclinical models. Peptides 2024; 177:171228. [PMID: 38657908 DOI: 10.1016/j.peptides.2024.171228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Diabetes mellitus and obesity are rapidly growing worldwide. Aside from metabolic disturbances, these two disorders also affect bone with a higher prevalence of bone fractures. In the last decade, a growing body of evidence suggested that several gut hormones, including ghrelin, gastrin, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-1 and 2 (GLP-1 and GLP-2, respectively) may affect bone physiology. Several gut hormone analogues have been developed for the treatment of type 2 diabetes and obesity, and could represent a new alternative in the therapeutic arsenal against bone fragility. In the present review, a summary of the physiological roles of these gut hormones and their analogues is presented at the cellular level but also in several preclinical models of bone fragility disorders including type 2 diabetes mellitus, especially on bone mineral density, microarchitecture and bone material properties. The present review also summarizes the impact of GLP-1 receptor agonists approved for the treatment of type 2 diabetes mellitus and the more recent dual or triple analogue on bone physiology and strength.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Département de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers F-49933, France.
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Service de Rhumatologie, Angers F-49933, France
| |
Collapse
|
6
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
7
|
Herrou J, Mabilleau G, Lecerf JM, Thomas T, Biver E, Paccou J. Narrative Review of Effects of Glucagon-Like Peptide-1 Receptor Agonists on Bone Health in People Living with Obesity. Calcif Tissue Int 2024; 114:86-97. [PMID: 37999750 DOI: 10.1007/s00223-023-01150-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 11/25/2023]
Abstract
Glucagon-like peptide-1 Receptor agonists (GLP-1Ras) such as liraglutide and semaglutide have been recently approved as medications for chronic weight management in people living with obesity (PwO); GLP-1 may enhance bone metabolism and improve bone quality. However, the effects of GLP-1Ras on skeletal health remain to be determined and that's the purpose of this narrative review. Nevertheless, bone consequences of intentional weight loss interventions in PwO are well known: (i) significant weight loss induced by caloric restriction and bariatric surgery results in accelerated bone turnover and bone loss, and (ii) unlike caloric restriction interventions, PwO experience a substantial deterioration in bone microarchitecture and strength associated with an increased risk of fracture after bariatric surgery especially malabsorptive procedures. Liraglutide seems to have a positive effect on bone material properties despite significant weight loss in several rodent models. However, most of positive effects on bone mineral density and microarchitecture were observed at concentration much higher than approved for obesity care in humans. No data have been reported in preclinical models with semaglutide. The current evidence of the effects of GLP-1Ra on bone health in PwO is limited. Indeed, studies on the use of GLP-1Ra mostly included patients with diabetes who were administered a dose used in this condition, did not have adequate bone parameters as primary endpoints, and had short follow-up periods. Further studies are needed to investigate the bone impact of GLP-1Ra, dual- and triple-receptor agonists for GLP-1, glucose-dependent insulin releasing polypeptide (GIP), and glucagon in PwO.
Collapse
Affiliation(s)
- Julia Herrou
- Service de Rhumatologie, Inserm U 1153, AP-HP Centre, Hôpital Cochin, Université de Paris, Paris, France
| | - Guillaume Mabilleau
- ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Univ Angers, Nantes Université, Angers, France
| | - Jean-Michel Lecerf
- Department of Nutrition and Physical Activity, Institut Pasteur de Lille, Lille, France
| | - Thierry Thomas
- Department of Rheumatology, Hôpital Nord, Centre Hospitalier Universitaire (CHU) Saint-Etienne, Inserm U1059, Lyon University, Saint-Etienne, France
| | - Emmanuel Biver
- Service of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Julien Paccou
- Department of Rheumatology, CHU Lille, MABlab ULR 4490, Univ. Lille, 59000, Lille, France.
| |
Collapse
|
8
|
Zhang H, Li X, Li Y, Yang X, Liao R, Wang H, Yang J. CREB Ameliorates Osteoarthritis Progression Through Regulating Chondrocytes Autophagy via the miR-373/METTL3/TFEB Axis. Front Cell Dev Biol 2022; 9:778941. [PMID: 35756079 PMCID: PMC9218638 DOI: 10.3389/fcell.2021.778941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. Dysregulated autophagy is a major cause of OA. However, the underlying mechanism is unclear. Here, we found that the expression of element-binding protein (CREB) was downregulated in both cartilage tissues of OA patients and mouse OA model. In tert-butyl hydroperoxide solution-treated chondrocytes, increased apoptosis and autophagic blockage were attenuated by CREB overexpression. Mechanically, MiR-373 directly targeted the 3′UTR of methyltransferase-like 3 (METTL3) and led to its downregulation. METTL3 epigenetically suppressed TFEB. The upregulation of miR-373 by CREB overexpression induced the release of TFEB from METTL3 and restored the autophagy activity of chondrocytes. Taken together, our study showed that CREB alleviates OA injury through regulating the expression of miR-373, which directly targeted METTL3, and finally relieved TFEB from METTL3-mediated epigenetic suppression. The CREB/miR-373/METTL3/TFEB axis may be used as a potential target for the treatment of OA.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xilei Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xucheng Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Runzhi Liao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 804] [Impact Index Per Article: 268.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
10
|
Gao C, Liu X, Fan F, Yang JN, Zhou XY, Mei HJ, Lin XL, Luo Y. Exosomal miR-29b found in aqueous humour mediates calcium signaling in diabetic patients with cataract. Int J Ophthalmol 2021; 14:1484-1491. [PMID: 34667723 DOI: 10.18240/ijo.2021.10.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/27/2022] Open
Abstract
AIM To investigate the role of exosomal miR-29b and Ca2+ in regulating the function of human lens epithelial cells (HLECs). METHODS Exosomes were isolated from human aqueous humour (AH) by ultracentrifugation, and visualized by nanoparticle tracking and transmission electron microscopy. Exosomal miRNA sequencing was performed to identify differentially expressed miRNAs between diabetes with cataracts (DMC) group and age-related cataracts (ARC) group. TargetScan was used to predict potential target of certain miRNA. The expression of CACNA1C mRNA was determined by quantitative real-time polymerase chain reaction and CACNA1C protein was determined by Western blotting. Concentration of Ca2+ in human AH and the culture supernatant of cells were detected by the calcium assay kit. Cell counting kit-8 was used to determine cell viability. RESULTS Exosomes were isolated from human AH, which had a typical cup-shaped phenotype and a particle size distribution in accordance with micro extracellular vesicles. Exosomal miRNA sequencing revealed that miR-29b was significantly downregulated in DMC group compared with ARC. Ca2+ concentration of human AH in DMC was higher than that in ARC. The culture supernatant of cells transfected with miR-29b inhibitors had a higher concentration of Ca2+ than that transfected with miR-29b mimics. miR-29b reduced the viability of HLECs by upregulating CACNA1C expression. CONCLUSION Exosomes isolated from human AH contains abundant miRNAs. A significantly expressed miRNA, miR-29b, can affect the concentration of Ca2+ and regulate HLEC processes by upregulating CACNA1C.
Collapse
Affiliation(s)
- Chao Gao
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, China.,Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai 200031, China
| | - Xin Liu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai 200031, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai 200031, China
| | - Fan Fan
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai 200031, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai 200031, China
| | - Jia-Ning Yang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai 200031, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai 200031, China
| | - Xi-Yue Zhou
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai 200031, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai 200031, China
| | - Heng-Jun Mei
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai 200031, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai 200031, China
| | - Xiao-Lei Lin
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai 200031, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai 200031, China
| | - Yi Luo
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai 200031, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai 200031, China
| |
Collapse
|
11
|
Bei HP, Hung PM, Yeung HL, Wang S, Zhao X. Bone-a-Petite: Engineering Exosomes towards Bone, Osteochondral, and Cartilage Repair. SMALL 2021; 17:e2101741. [PMID: 34288410 DOI: 10.1002/smll.202101741] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Recovery from bone, osteochondral, and cartilage injuries/diseases has been burdensome owing to the damaged vasculature of large defects and/or avascular nature of cartilage leading to a lack of nutrients and supplying cells. However, traditional means of treatment such as microfractures and cell-based therapy only display limited efficacy due to the inability to ensure cell survival and potential aggravation of surrounding tissues. Exosomes have recently emerged as a powerful tool for this tissue repair with its complex content of transcription factors, proteins, and targeting ligands, as well as its unique ability to home in on target cells thanks to its phospholipidic nature. They are engineered to serve specialized applications including enhancing repair, anti-inflammation, regulating homeostasis, etc. via means of physical, chemical, and biological modulations in its deriving cell culture environments. This review focuses on the engineering means to functionalize exosomes for bone, osteochondral, and cartilage regeneration, with an emphasis on conditions such as osteoarthritis, osteoporosis, and osteonecrosis. Finally, future implications for exosome development will be given alongside its potential combination with other strategies to improve its therapeutic efficacy in the osteochondral niche.
Collapse
Affiliation(s)
- Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Pak Ming Hung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Hau Lam Yeung
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Rd, Pokfulam, Hong Kong SAR, 999077, China
| | - Shuqi Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.,Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China.,Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
12
|
Yang Q, Zhou Y, Wang T, Cai P, Fu W, Wang J, Li X. MiRNA-1271-5p regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting forkhead box O1 (FOXO1). Cell Biol Int 2021; 45:1468-1476. [PMID: 33675274 DOI: 10.1002/cbin.11585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 12/13/2022]
Abstract
Forkhead box O1 (FOXO1) is a key regulator of osteogenesis. The aim of this study was to identify the mechanisms of microRNAs (miRNAs) targeting FOXO1 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). Three miRNA target prediction programs were used to search for potential miRNAs that target FOXO1. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-1271-5p and FOXO1 during osteogenic differentiation. Target gene prediction and screening, luciferase reporter assay was used to verify the downstream target gene of miR-1271-5p. The expression levels of FOXO1 and Runx2 were detected by RT-qPCR and Western blot analysis. Alkaline phosphatase (ALP) activity and matrix mineralization were detected by biochemical methods. The expression levels of Runx2, ALP, and osteocalcin were detected by RT-qPCR. Our results showed that miR-1271-5p was downregulated during osteogenic induction. And the expression levels of miR-1271-5p were higher in osteoporotic tissues than that in adjacent nonosteoporotic tissues. The expression levels of FOXO1 were lower in osteoporotic tissues than that in adjacent nonosteoporotic tissues. And a negative correlation was found between miR-1271-5p and FOXO1 in osteoporotic tissues. Overexpression of miR-1271-5p downregulated FOXO1 and inhibited osteogenic differentiation in hMSCs. Overexpression of miR-1271-5p downregulated the expression of osteogenic markers and reduced ALP activity. In addition, ectopic expression of FOXO1 reversed the effect of miR-1271-5p on osteogenic differentiation. In conclusion, miR-1271-5p functioned as a therapeutic target of osteogenic differentiation in hMSCs by inhibiting FOXO1, which provides valuable insights into the use of miR-1271-5p as a target in the treatment of osteoporosis and other bone metabolic diseases.
Collapse
Affiliation(s)
- Qining Yang
- Department of Joint surgery, The affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, China
| | - Yongwei Zhou
- Department of Joint surgery, The affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, China
| | - Tianbao Wang
- Department of Joint surgery, The affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, China
| | - Pengfei Cai
- Department of Joint surgery, The affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, China
| | - Weicong Fu
- Department of Joint surgery, The affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, China
| | - Jinhua Wang
- Department of Joint surgery, The affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, China
| | - Xiaofei Li
- Department of Joint surgery, The affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, China
| |
Collapse
|
13
|
Abstract
INTRODUCTION Preclinical, clinical, and population-based studies have provided evidence that anti-diabetic drugs affect bone metabolism and may affect the risk of fracture in diabetic patients. AREAS COVERED An overview of the skeletal effects of anti-diabetic drugs used in type 2 diabetes is provided. Searches on AdisInsight, PubMed, and Medline databases were conducted up to 1st July 2020. The latest evidence from randomized clinical trials and population-based studies on the skeletal safety of the most recent drugs (DPP-4i, GLP-1RA, and SGLT-2i) is provided. EXPERT OPINION Diabetic patients present with a higher risk of fracture for a given bone mineral density suggesting a role of bone quality in the etiology of diabetic fracture. Bone quality is difficult to assess in human clinical practice and the use of preclinical models provides valuable information on diabetic bone alterations. As several links have been established between bone and energy homeostasis, it is interesting to study the safety of anti-diabetic drugs on the skeleton. So far, evidence for the newest molecules suggests a neutral fracture risk, but further studies, especially in different types of patient populations (patients at risk or with history of cardiovascular disease, renal impairment, neuropathy) are required to fully appreciate this matter.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Service Commun d'Imagerie et Analyses Microscopiques, SCIAM, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Bone pathology unit, Angers University hospital , Angers Cedex, France
| | - Béatrice Bouvard
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Rheumatology department, Angers University Hospital , Angers Cedex, France
| |
Collapse
|
14
|
Giglio RV, Nikolic D, Volti GL, Stoian AP, Banerjee Y, Magan-Fernandez A, Castellino G, Patti AM, Chianetta R, Castracani CC, Montalto G, Rizvi AA, Sesti G, Rizzo M. Liraglutide Increases Serum Levels of MicroRNA-27b, -130a and -210 in Patients with Type 2 Diabetes Mellitus: A Novel Epigenetic Effect. Metabolites 2020; 10:metabo10100391. [PMID: 33008044 PMCID: PMC7599907 DOI: 10.3390/metabo10100391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide’s benefits and may represent useful targets for cardiometabolic management.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (D.N.); (A.M.-F.); (G.C.); (A.M.P.); (R.C.); (G.M.); (M.R.)
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (D.N.); (A.M.-F.); (G.C.); (A.M.P.); (R.C.); (G.M.); (M.R.)
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.L.V.); (C.C.C.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Yajnavalka Banerjee
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE;
| | - Antonio Magan-Fernandez
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (D.N.); (A.M.-F.); (G.C.); (A.M.P.); (R.C.); (G.M.); (M.R.)
| | - Giuseppa Castellino
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (D.N.); (A.M.-F.); (G.C.); (A.M.P.); (R.C.); (G.M.); (M.R.)
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (D.N.); (A.M.-F.); (G.C.); (A.M.P.); (R.C.); (G.M.); (M.R.)
| | - Roberta Chianetta
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (D.N.); (A.M.-F.); (G.C.); (A.M.P.); (R.C.); (G.M.); (M.R.)
| | - Carlo Castruccio Castracani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.L.V.); (C.C.C.)
| | - Giuseppe Montalto
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (D.N.); (A.M.-F.); (G.C.); (A.M.P.); (R.C.); (G.M.); (M.R.)
| | - Ali A. Rizvi
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA
- Division of Endocrinology, Metabolism, and Lipids Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-(404)-778-2064
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00182 Rome, Italy;
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (D.N.); (A.M.-F.); (G.C.); (A.M.P.); (R.C.); (G.M.); (M.R.)
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA
| |
Collapse
|
15
|
Gao C, Fan F, Liu X, Yang J, Zhou X, Mei H, Lin X, Luo Y. Exosomal miRNA Analysis of Aqueous Humour of Diabetes and Cataract Patients. Curr Eye Res 2020; 46:324-332. [PMID: 32835529 DOI: 10.1080/02713683.2020.1797107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The mechanism of diabetes and cataracts is complicated. Considering our increasing acknowledge of exosomes, exosomal miRNAs isolated from aqueous humour (AH) may play an important role in the mechanism of diabetes and cataracts. Our study aimed to isolate exosomes from human aqueous humour and study the functions of exosomal miRNAs on human lens epithelial cells (HLECs). RESULTS MiRNA sequencing revealed that 295 miRNAs were upregulated and 138 miRNAs were downregulated in exosomes of the diabetes and cataracts group (DMC) compared with the age-related cataracts group (ARC), among which miR-551b was highly expressed with a log2 fold change of 5.99. GO and KEGG analyses indicated that the predicted genes were mainly involved in cadherin binding, proteoglycans in cancer and AGE-RAGE signalling pathway in diabetic complications. We then examined the function of miR-551b and found that miR-551b reduced the viability and increased the apoptosis of HLECs by downregulating CRYAA expression. CONCLUSIONS Exosomes isolated from human aqueous humour contained abundant miRNAs. A highly expressed miRNA, miR-551b, could regulate the functions of HLEC by targeting CRYAA. METHODS We pooled all the aqueous humour of each group into one sample and isolated exosomes from human aqueous humour by ultracentrifugation, measured the size and concentration of exosomes by nanoparticle tracking analysis (NTA), observed the morphology of exosomes by transmission electron microscopy (TEM), and sequenced exosomal miRNAs. We performed bioinformatic analysis of the sequencing results, including GO analysis and KEGG pathway enrichment. We then examined CRYAA mRNA expression levels and protein levels by quantitative real-time PCR and Western blot. Cell Counting Kit-8 and flow cytometry were applied to examine cell viability, proliferation and apoptosis.
Collapse
Affiliation(s)
- Chao Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality , Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission , Shanghai, China
| | - Fan Fan
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality , Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission , Shanghai, China
| | - Xin Liu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality , Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission , Shanghai, China
| | - Jianing Yang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality , Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission , Shanghai, China
| | - Xiyue Zhou
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality , Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission , Shanghai, China
| | - Hengjun Mei
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality , Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission , Shanghai, China
| | - Xiaolei Lin
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality , Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission , Shanghai, China
| | - Yi Luo
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University , Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University , Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality , Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission , Shanghai, China
| |
Collapse
|
16
|
Chidester S, Livinski AA, Fish AF, Joseph PV. The Role of Extracellular Vesicles in β-Cell Function and Viability: A Scoping Review. Front Endocrinol (Lausanne) 2020; 11:375. [PMID: 32595604 PMCID: PMC7300279 DOI: 10.3389/fendo.2020.00375] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) released by cells throughout the body have been implicated in diabetes pathogenesis. Understanding the role of EVs in regulation of β-cell function and viability may provide insights into diabetes etiology and may lead to the development of more effective screening and diagnostic tools to detect diabetes earlier and prevent disease progression. This review was conducted to determine what is known from the literature about the effect of EV crosstalk on pancreatic β-cell function and viability in the pathogenesis of diabetes mellitus, to perform a gap analysis for future research directions, and to discuss implications of available evidence for diabetes care. The literature search yielded 380 studies from which 31 studies were determined to meet eligibility criteria. The majority of studies had the disease context of autoimmunity in T1DM. The most commonly studied EV crosstalk dynamics involved localized EV-mediated communication between β-cells and other islet cells, or between β-cells and immune cells. Other organs and tissues secreting EVs that affect β-cells include skeletal muscle, hepatocytes, adipocytes, immune cells, bone marrow, vascular endothelium, and mesenchymal stem cells. Characterization of EV cargo molecules with regulatory effects in β-cells was conducted in 24 studies, with primary focus on microRNA cargo. Gaps identified included scarcity of evidence for the effect on β-cell function and viability of EVs from major metabolic organs/tissues such as muscle, liver, and adipose depots. Future research should address these gaps as well as characterize a broader range of EV cargo molecules and their activity in β-cells.
Collapse
Affiliation(s)
- Stephanie Chidester
- Sensory Science & Metabolism Unit, Biobehavioral Branch, National Institute of Nursing Research, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
- College of Nursing, University of Missouri-St. Louis, St. Louis, MO, United States
| | - Alicia A. Livinski
- National Institutes of Health Library, Office of Research Services, OD, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, United States
| | - Anne F. Fish
- College of Nursing, University of Missouri-St. Louis, St. Louis, MO, United States
| | - Paule V. Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, National Institute of Nursing Research, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| |
Collapse
|
17
|
Radbakhsh S, Sathyapalan T, Banach M, Sahebkar A. Incretins and microRNAs: Interactions and physiological relevance. Pharmacol Res 2020; 153:104662. [PMID: 31982487 DOI: 10.1016/j.phrs.2020.104662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNA) are one class of the small regulatory RNAs that can impact the expression of numerous genes including incretin hormones and their G protein-coupled receptors. Incretin peptides, including GLP-1, GLP-2, and GIP, are released from the gastrointestinal tract and have an crucial role in the glucose hemostasis and pancreatic beta-cell function. These hormones and their analogs with a longer half-life, glucagon like peptide-1 receptor agonists (GLP1RA), modify the expression of miRNAs. Dipeptidyl peptidase IV (DPP-4) is an enzyme that degrades the incretin hormones and is inactivated by DPP-4 inhibitors, which are a class of compounds used in the management of type 2 diabetes. DPP-4 inhibitors may also increase or reduce the expression of miRNAs. In this review, we describe the possible interactions between miRNAs and incretin hormones and the relevance of such interactions to physiological processes and diseases.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Wu L, Gao L, Cao Y, Chen F, Sun T, Liu Y. Analysis of the protective mechanism of liraglutide on retinopathy based on diabetic mouse model. Saudi J Biol Sci 2019; 26:2096-2101. [PMID: 31889801 PMCID: PMC6923456 DOI: 10.1016/j.sjbs.2019.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 11/23/2022] Open
Abstract
In order to study the protection mechanism of liraglutide on the infectious lesion of the retina of type I diabetes, in this experiment, a mouse model of type I diabetes was established by induction with streptozotocin (STZ) and feeding with high-fat and high-sugar diet. After observing the living conditions of the modeled mice and detecting their fasting blood glucose (FBG), it was found that the modeled mice exhibited clinically similar symptoms in patients with type I diabetes, and their FBG was larger than 16.7 mmol/L, indicating that the experimental mouse model was obtained. The mice were divided into groups. The control group was divided into negative control group (A), light positive control group (B), diabetic control group (C), and diabetes care group (D) according to different treatment methods, and the experimental group was divided into treatment group 1 (LR1), treatment group 2 (LR2) and treatment group 3 (LR3) according to different injection doses. The eyes of mice in each group were extracted and retinal tissue sections were made, and the sections were stained with HE. The retinal morphology was observed and it was found that compared with group A, the outer nucleus layer was significantly thinner in group B and C, and the group D was the thinnest. After treatment with liraglutide, the outer nuclear layer of LR1 group and LR2 group LR3 group recovered significantly, indicating that liraglutide had protective effect on type I diabetes and light-induced damage of mouse retinal photoreceptor cells. Immunohistochemistry was used to detect p-Erk1/2 and ASK1 protein contents in retina. It was found that compared with the negative control group and the light control group, p-Erk1/2 protein contents in LR1, LR2 and LR3 groups were significantly increased, showing statistical significance. Compared with the negative control group and the light control group, ASK1 protein content in LR1, LR2 and LR3 groups significantly decreased. This suggested that the protective mechanism of liraglutide on retinopathy was related to up-regulation of antioxidant protein p-Erk1/2 and down-regulation of apoptosis-related protein ASK1, that is to say, the action site of liraglutide may be related to this. Through real-time quantitative detection of the Trx gene expression level in diabetic and photodamaged mice, it was found that compared with the diabetic light group, the Trx expression level in mice treated with liraglutide showed a significant up-regulated trend, suggesting that the protective mechanism of liraglutide on retinopathy was related to the up-regulated expression of antioxidant protein Trx. Therefore, liraglutide has a certain protective effect on diabetic retinal injury, and its mechanism is related to the up-regulation of p-Erk1/2 and Trx antioxidant protein, and the down-regulation of apoptosis-related protein ASK1.
Collapse
Affiliation(s)
- Lingling Wu
- Department of Gynaecology, Second Affiliated Hospital of Xingtai Medical College, Xingtai City 054000, China
| | - Lijuan Gao
- Department of Clinical Medicine, Xingtai Medical College, Xingtai City 054000, China
| | - Yaohui Cao
- Department of Gynaecology, Second Affiliated Hospital of Xingtai Medical College, Xingtai City 054000, China
| | - Fengju Chen
- Release Therapy Division, Second Affiliated Hospital of Xingtai Medical College, Xingtai City 054000, China
| | - Ting Sun
- Department of Gynaecology, Second Affiliated Hospital of Xingtai Medical College, Xingtai City 054000, China
| | - Yahong Liu
- Department of Endocrinology, Second Affiliated Hospital of Xingtai Medical College, Xingtai City 054000, China
| |
Collapse
|
19
|
Wang R, Zhang Y, Jin F, Li G, Sun Y, Wang X. High-glucose-induced miR-214-3p inhibits BMSCs osteogenic differentiation in type 1 diabetes mellitus. Cell Death Discov 2019; 5:143. [PMID: 31728209 PMCID: PMC6851127 DOI: 10.1038/s41420-019-0223-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune insulin-dependent disease associated with destructive bone homeostasis. Accumulating evidence has proven that miRNAs are widely involved in the regulation of bone homeostasis. However, whether miRNAs also regulate osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in T1DM mice is under exploration. In this study, miRNA microarray was utilized to screen the differentially expressed miRNAs, which uncovered that miR-214-3p potentially inhibited BMSCs osteogenic differentiation in T1DM mice. We found that high glucose suppressed BMSCs osteogenic differentiation with significant elevation of the miR-214-3p expression. Further study found that the osteogenic differentiation of BMSCs was inhibited by AgomiR-214-3p while enhanced by AntagomiR-214-3p in BMSCs supplemented with high glucose. Moreover, we found that miR-214-3p knockout T1DM mice were resistant to high-glucose-induced bone loss. These results provide a novel insight into an inhibitory role of high-glucose-induced miR-214-3p in BMSCs osteogenic differentiation both in vitro and in vivo. Molecular studies revealed that miR-214-3p inhibits BMSCs osteogenic differentiation by targeting the 3′-UTR of β-catenin, which was further corroborated in human bone specimens and BMSCs of T1DM patients. Taken together, our study discovered that miR-214-3p is a pivotal regulator of BMSCs osteogenic differentiation in T1DM mice. Our findings also suggest that miR-214-3p could be a potential target in the treatment of bone disorders in patients with T1DM.
Collapse
Affiliation(s)
- Rongze Wang
- 1Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuanxu Zhang
- 2Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fujun Jin
- 2Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,3Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Gongchen Li
- 4Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yao Sun
- 4Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- 1Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,5Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
The Role of Exosomes in Bone Remodeling: Implications for Bone Physiology and Disease. DISEASE MARKERS 2019; 2019:9417914. [PMID: 31485281 PMCID: PMC6710799 DOI: 10.1155/2019/9417914] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
Bone remodeling represents a physiological phenomenon of continuous bone tissue renewal that requires fine orchestration of multiple cell types, which is critical for the understanding of bone disease but not yet clarified in precise detail. Exosomes, which are cell-secreted nanovesicles drawing increasing attention for their broad biosignaling functions, can shed new light on how multiple heterogeneous cells communicate for the purpose of bone remodeling. In the healthy bone, exosomes transmit signals favoring both bone synthesis and resorption, regulating the differentiation, recruitment, and activity of most cell types involved in bone remodeling and even assuming an active role in extracellular matrix mineralization. Additionally, in the ailing bone, they actively participate in pathogenic processes constituting also potential therapeutic agents and drug vectors. The present review summarizes the current knowledge on bone exosomes and bone remodeling in health and disease.
Collapse
|
21
|
Li P, Zhu L, Yang X, Li W, Sun X, Yi B, Zhu S. Farnesoid X receptor interacts with cAMP response element binding protein to modulate glucagon-like peptide-1 (7-36) amide secretion by intestinal L cell. J Cell Physiol 2019; 234:12839-12846. [PMID: 30536761 DOI: 10.1002/jcp.27940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
Type II diabetes is a complex, chronic, and progressive disease. Glucagon-like peptide-1 (7-36) amide (GLP-1) is a gut hormone released from the L cells which stimulate insulin secretion and promotes insulin gene expression and β-cell growth and differentiation. Elevated levels of hormones secreted by L cells are an essential reason for diabetes improvement. GLP-1 secretion has been reported to be regulated by farnesoid X receptor (FXR), a transcriptional sensor for bile acids which also acts on glucose metabolism. Herein, we attempted to evaluate the effect of FXR on GLP-1 secretion in mouse enteroendocrine L cell line, namely STC-1, and to investigate the underlying mechanism. FXR inversely regulated GLP-1 secretion in STC-1. A total of 24 nonredundant human proteins were shown to be related to FXR by BioGRID; KEGG pathway analysis revealed that FXR was related to glucagon signaling pathway, particularly with the transcriptional activators CREB, PGC1α, Sirt1, and CBP. CREB could positively regulate GLP-1 secretion in STC-1 cells. FXR combined with CREB to inhibit its transcriptional activity, thus inhibiting proprotein convertase subtilisin/kexin type 1 protein level and GLP-1 secretion. In the present study, we demonstrated a negative regulation of GLP-1 secretion by FXR in L cell line, STC-1; FXR exerts its function in L cells through interacting with CREB, a crucial transcriptional regulator of cAMP-CREB signaling pathway, to inhibit its transcriptional activity. Targeting FXR to rescue GLP-1 secretion may be a promising strategy for type II diabetes.
Collapse
Affiliation(s)
- Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangwu Yang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Yi
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Picke AK, Campbell G, Napoli N, Hofbauer LC, Rauner M. Update on the impact of type 2 diabetes mellitus on bone metabolism and material properties. Endocr Connect 2019; 8:R55-R70. [PMID: 30772871 PMCID: PMC6391903 DOI: 10.1530/ec-18-0456] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/23/2022]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the well-known complications of T2DM on the cardiovascular system, the eyes, kidneys and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM have a 40-70% increased risk for fractures, despite having a normal to increased bone mineral density, suggesting that other factors besides bone quantity must account for increased bone fragility. This review summarizes the current knowledge on the complex effects of T2DM on bone including effects on bone cells, bone material properties and other endocrine systems that subsequently affect bone, discusses the effects of T2DM medications on bone and concludes with a model identifying factors that may contribute to poor bone quality and increased bone fragility in T2DM.
Collapse
Affiliation(s)
- Ann-Kristin Picke
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Graeme Campbell
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Nicola Napoli
- Diabetes and Bone Network, Department Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, Missouri, USA
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Correspondence should be addressed to M Rauner:
| |
Collapse
|
23
|
Saulite L, Jekabsons K, Klavins M, Muceniece R, Riekstina U. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:86-95. [PMID: 30668416 DOI: 10.1016/j.phymed.2018.09.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Anthocyanidins are plant phytochemicals found at high concentrations in berries, vegetables and flowers. Anthocyanidins have been extensively investigated due to their antioxidative, antidiabetic and anti-inflammatory effects. Few studies show that anthocyanidins decrease obesity and improve bone density. However, the effects of anthocyanidins on tissue regeneration have not been sufficiently clarified. Human mesenchymal stem cells (MSCs) are multipotent adult stem cells responsible for the regeneration of fat, bone and cartilage. Although MSCs are often used for screening of biologically active compounds, so far, the effect of anthocyanidins on MSC differentiation has not been addressed. PURPOSE The aim of this study was to analyse the effect of anthocyanidins malvidin, cyanidin and delphinidin on adipose tissue-derived MSC differentiation into adipocytes, osteocytes and chondrocytes. STUDY DESIGN AND METHODS Differentiation into adipocytes, osteocytes and chondrocytes was carried out in the defined cell culture conditions in the presence or absence of malvidin, cyanidin and delphinidin. The differentiation was confirmed by cytochemical staining and tissue-specific gene and protein expression. Antiobesity and anti-diabetes drug liraglutide was used as a reference drug in this study. RESULTS Delphinidin inhibited MSC adipogenesis and downregulated FABP4 and adiponectin genes. Malvidin induced a significantly higher accumulation of calcium deposits in MSCs comparing to untreated MSCs, as well as upregulated the osteocyte-specific gene BMP-2 and Runx-2 expression and induced BMP-2 secretion. Cyanidin and delphinidin demonstrated a chondrogenesis stimulating effect by upregulation of Col2a1 and aggrecan. CONCLUSION Altogether, our data show that anthocyanidins malvidin, cyanidin and delphinidin exert favourable effects on MSC osteogenesis and chondrogenesis whereas delphinidin inhibits adipogenesis. These results suggest that anthocyanidin effects on tissue regeneration could be further analysed in depth in vivo.
Collapse
Affiliation(s)
- Liga Saulite
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, Riga 1586, Latvia.
| | - Kaspars Jekabsons
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, Riga 1586, Latvia
| | - Maris Klavins
- Department of Environmental Science, University of Latvia, Jelgavas iela 1, Riga 1004, Latvia
| | - Ruta Muceniece
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, Riga 1586, Latvia
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, Riga 1586, Latvia
| |
Collapse
|
24
|
Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, Xu L, Zhang HX, Qiu XT, Li CC, Wang KK, Shen H, Zhang GG, Bai YP. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Am J Cancer Res 2018; 8:6163-6177. [PMID: 30613290 PMCID: PMC6299684 DOI: 10.7150/thno.28021] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomes (Exo) secreted from hypoxia-conditioned bone marrow mesenchymal stem cells (BM-MSCs) were found to be protective for ischemic disease. However, the role of exosomal miRNA in the protective effect of hypoxia-conditioned BM-MSCs-derived Exo (Hypo-Exo) remains largely uncharacterized and the poor specificity of tissue targeting of Exo limits their clinical applications. Therefore, the objective of this study was to examine the effect of miRNA in Hypo-Exo on the repair of ischemic myocardium and its underlying mechanisms. We further developed modified Hypo-Exo with high specificity to the myocardium and evaluate its therapeutic effects. Methods: Murine BM-MSCs were subjected to hypoxia or normoxia culture and Exo were subsequently collected. Hypo-Exo or normoxia-conditioned BM-MSC-derived Exo (Nor-Exo) were administered to mice with permanent condition of myocardial infarction (MI). After 28 days, to evaluate the therapeutic effects of Hypo-Exo, infarction area and cardio output in Hypo-Exo and Nor-Exo treated MI mice were compared through Masson's trichrome staining and echocardiography respectively. We utilized the miRNA array to identify the significantly differentially expressed miRNAs between Nor-Exo and Hypo-Exo. One of the most enriched miRNA in Hypo-Exo was knockdown by applying antimiR in Hypoxia-conditioned BM-MSCs. Then we performed intramyocardial injection of candidate miRNA-knockdown-Hypo-Exo in a murine MI model, changes in the candidate miRNA's targets expression of cardiomyocytes and the cardiac function were characterized. We conjugated Hypo-Exo with an ischemic myocardium-targeted (IMT) peptide by bio-orthogonal chemistry, and tested its targeting specificity and therapeutic efficiency via systemic administration in the MI mice. Results: The miRNA array revealed significant enrichment of miR-125b-5p in Hypo-Exo compared with Nor-Exo. Administration of miR-125b knockdown Hypo-Exo significantly increased the infarction area and suppressed cardiomyocyte survival post-MI. Mechanistically, miR-125b knockdown Hypo-Exo lost the capability to suppress the expression of the proapoptotic genes p53 and BAK1 in cardiomyocytes. Intravenous administration of IMT-conjugated Hypo-Exo (IMT-Exo) showed specific targeting to the ischemic lesions in the injured heart and exerted a marked cardioprotective function post-MI. Conclusion: Our results illustrate a new mechanism by which Hypo-Exo-derived miR125b-5p facilitates ischemic cardiac repair by ameliorating cardiomyocyte apoptosis. Furthermore, our IMT- Exo may serve as a novel drug carrier that enhances the specificity of drug delivery for ischemic disease.
Collapse
|
25
|
Tumor-derived exosomes in cancer metastasis risk diagnosis and metastasis therapy. Clin Transl Oncol 2018; 21:152-159. [PMID: 30051211 DOI: 10.1007/s12094-018-1918-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
Exosomes are endosomes secreted from the membrane by exocytosis as multivesicular bodies and are generally defined by their spherical, unilamellar morphology, size and the expression of specific biomarkers used for diagnosis or therapy targets. Recent research has reported a higher relationship between exosome enrichment and tumor disease development. In this review, we discuss exosome intercellular communication and functions in the pathology of disease, especially on the cancer metastasis related with exosome. We introduce how exosomes from cancer and stem cancer cells target different organs through transporting molecular proteins of exosome inclusions to improve or inhibit cancer metastasis as well as highlight exosome therapy strategies for tumor pathology involving microRNAs.
Collapse
|