1
|
Liu Q, Bai R, Zhang X, Wang S, Lin Z, Bi Y, Ding Q, Zhang W, Wu X, Zhang S, Ma Z, Wang H, Wu X, Liu Y. BPS causes abnormal blastocyst development by inhibiting cell proliferation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118115. [PMID: 40179801 DOI: 10.1016/j.ecoenv.2025.118115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
In recent years, the escalating global utilization of bisphenol S (BPS) has raised growing concerns regarding its potential adverse effects on human health. However, the effects of BPS exposure on mammalian embryonic development and the associated molecular mechanisms remain inadequately characterized. In this study, we systematically investigated BPS toxicity in mouse embryogenesis by exposing embryos to graded concentrations (0-25 μg/mL). Our results demonstrated a dose-dependent impairment in early embryonic quality following BPS exposure. Specifically, treatment with 10 μg/mL and 15 μg/mL BPS significantly reduced blastocyst formation rates, diminished implantation potential, decreased total cell number of blastocysts, and caused cell fate determination imbalance. Mechanistic studies revealed that under BPS exposure, the massive accumulation of reactive oxygen species (ROS) in embryos induced cell cycle arrest and enhanced autophagy. It is worth noting that the reduction in the total cell number within blastocysts under BPS exposure manifested independently of the apoptotic pathway, as evidenced by the absence of upregulation in caspase 3/7 activity levels and TUNEL-positive signals. Our data collectively reveal that BPS disrupts early embryogenesis through ROS-driven cell cycle dysregulation and erroneous cell fate determination, culminating in compromised blastocyst developmental competence. This research unveils previously unrecognized mechanisms underlying BPS embryotoxicity, emphasizing essential parameters for evaluating chemical reproductive hazards in safety assessments.
Collapse
Affiliation(s)
- Qing Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Ruisong Bai
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Xiaoyu Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Siyu Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Zhipeng Lin
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Yuheng Bi
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Qing Ding
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Wenya Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Xiaoyun Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Shangrong Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Zijian Ma
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China.
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China.
| |
Collapse
|
2
|
Zhou L, Zhang J, Zhao K, Chen B, Sun Z. Natural products modulating MAPK for CRC treatment: a promising strategy. Front Pharmacol 2025; 16:1514486. [PMID: 40110122 PMCID: PMC11919913 DOI: 10.3389/fphar.2025.1514486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and the pathogenic mechanism is still unclear, mostly related to genetics, immunity, inflammation, and abnormal activation of tumor-related signaling pathways. MAPK belongs to the Ser/Thr kinase family, which plays an important role in complex cellular programs such as the regulation of cell proliferation, differentiation, apoptosis, angiogenesis, and tumor metastasis. Increasing evidence supports that MAPK activation is highly correlated with the risk of CRC. Targeting MAPK may be a therapeutic strategy, and natural products show great therapeutic potential in regulating MAPK-related proteins. In this paper, we searched PubMed, Web of Science and CNKI databases with keywords "colorectal cancer, natural products, MAPK pathway, ERK, P38, JNK" for relevant studies in the last 14 years from 2010 to 2024. This work retrieved 47 studies, aiming to provide new therapeutic strategies for CRC patients and lay the foundation for new drug development.
Collapse
Affiliation(s)
- Lin Zhou
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Kangning Zhao
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Bo Chen
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Amarakoon D, Lee WJ, Peng J, Lee SH. Identification of Translocon-associated Protein Delta as An Oncogene in Human Colorectal Cancer Cells. J Cancer Prev 2024; 29:175-184. [PMID: 39790222 PMCID: PMC11706732 DOI: 10.15430/jcp.24.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 01/12/2025] Open
Abstract
Identifying the roles of genes in cancer is critical in discovering potential genetic therapies for cancer care. Translocon-associated protein delta (TRAPδ), also known as signal sequence receptor 4 (SSR4), is a constituent unit in the TRAP/SSR complex that resides in the endoplasmic reticulum and plays a key role in transporting newly synthesized proteins into the endoplasmic reticulumn. However, its biological role in disease development remains unknown to date. This is the first study to identify the role of TRAPδ/SSR4 in colorectal cancer cells in vitro. Upon successful transient knockdown of TRAPδ/SSR4, we observed significant reduction of cell viability in all colorectal cancer cell lines tested. Both HCT 116 and SW480 cell lines were significantly arrested at S and G1 phases, while DLD-1 cells were significantly apoptotic. Moreover, TRAPδ/SSR4 stable knockdown HCT 116 and SW480 cells showed significantly lower viability, anchorage-independent growth, and increased S and G1 phase arrests. Overall, we conclude TRAPδ/SSR4 is a potential oncogene in human colorectal cancer cells.
Collapse
Affiliation(s)
- Darshika Amarakoon
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Wu-Joo Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Jing Peng
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Selyutina OY, Ul’yanova MA, Chinak OA, Timoshnikov VA, Fedenok LG, Stepanov AA, Yanshole VV, Kulik LV, Vasilevsky SF, Polyakov NE, Kontoghiorghes GJ. Novel Anthraquinone Derivatives and Their Complexes with Metal Ions with Anticancer Activity: Structure/Redox and Chelation Activity Correlations. Pharmaceuticals (Basel) 2024; 17:1717. [PMID: 39770559 PMCID: PMC11678833 DOI: 10.3390/ph17121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Some specific anthraquinone derivatives (AQs) are known to be used widely as effective chemotherapeutic agents in the treatment of cancer. However, their fundamental shortcoming is the high rate of cardiotoxicity observed in treated patients, which is thought to be caused by the increase in production of reactive oxygen species (ROS) catalyzed by iron and copper. The development of improved AQs and other anticancer drugs with enhanced efficacy but reduced toxicity remains a high priority. The aim of this study was to evaluate the cytotoxic and ROS production effects of chelate iron and copper complexes of two novel AQs, namely 4-hydroxynaphto[2,3-h]cinnoline-7,12-dione (Q2) and 3-(hydroxymethyl)naphto[2,3-h]cinnoline-4,7,12(1H)-trione (Q3). Methods: The chelation ability of Q2 and Q3 was studied using NMR and UV-Vis spectroscopy. Cytotoxicity studies were carried out using the MTT assay. The influence of chelation on ROS production was studied using NMR spectroscopy in linoleic acid micelles. Results: It was found that only Q3 forms complexes with Fe(III) and Cu(II) ions, whereas Q2 does not demonstrate chelating properties. A cytotoxicity study revealed that Fe[Q3]3 significantly decreased the viability of lung cancer A549 cells, while Q3 and Cu[Q3]2 did not demonstrate cytotoxic properties in this cell line. Furthermore, the presence of Q3 lowered the rate of iron-induced lipid peroxidation in linoleic acid micelles. By contrast, Q2 did not influence the rate of lipid peroxidation, probably due to the absence of effective metal chelating ability. Conclusions: The high cytotoxic effects observed with the iron complex of Q3 against cancer cells in combination with a reduced rate of iron induced lipid peroxidation in the presence of Q3, make Q3 and its iron complex promising for further evaluation and use as chemotherapeutic agents in cancer.
Collapse
Affiliation(s)
- Olga Yu. Selyutina
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
| | - Maya A. Ul’yanova
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
| | - Olga A. Chinak
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentyev Ave. 8, Novosibirsk 630090, Russia
| | - Viktor A. Timoshnikov
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
| | - Lidiya G. Fedenok
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
| | - Alexander A. Stepanov
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
| | - Vadim V. Yanshole
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia;
| | - Leonid V. Kulik
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
| | - Sergey F. Vasilevsky
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
| | - Nikolay E. Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia; (O.Y.S.); (M.A.U.); (O.A.C.); (V.A.T.); (L.G.F.); (A.A.S.); (L.V.K.); (N.E.P.)
| | - George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol CY-3021, Cyprus
| |
Collapse
|
5
|
Janeczko M, Kochanowicz E, Górka K, Skrzypek T. Quinalizarin as a potential antifungal drug for the treatment of Candida albicans fungal infection in cancer patients. Microbiol Spectr 2024; 12:e0365223. [PMID: 38289929 PMCID: PMC10913734 DOI: 10.1128/spectrum.03652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
This study aims to analyze the antifungal properties of quinalizarin, a plant-derived compound with proven anticancer effects. Quinalizarin exhibited antifungal activity against opportunistic pathogenic Candida species and Geotrichum capitatum. The treatment with this anthraquinone reduced hyphal growth, inhibited biofilm formation, and damaged mature Candida albicans biofilms. Real-time RT-PCR revealed that quinalizarin downregulated the expression of hyphae-related and biofilm-specific genes. The flow cytometry method used in the study showed that both apoptosis and necrosis were the physiological mechanisms of quinalizarin-induced C. albicans cell death, depending on the dose of the antifungal agent. A further study revealed an increase in the levels of intracellular reactive oxygen species and alterations in mitochondrial membrane potential after treatment with quinalizarin. Finally, quinalizarin was found to have low toxicity in a hemolytic test using human erythrocytes. In conclusion, we have identified quinalizarin as a potential antifungal compound.IMPORTANCEThis article is a study to determine the antifungal activity of quinalizarin (1,2,5,8-tetrahydroxyanthraquinone). Quinalizarin has potential antitumor properties and is effective in different types of tumor cells. The aim of the present study was to prove that quinalizarin can be used simultaneously in the treatment of cancer and in the treatment of intercurrent fungal infections. Quinalizarin was identified as a novel antifungal compound with low toxicity. These results may contribute to the development of a new drug with dual activity in the treatment of cancer-associated candidiasis.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Kamila Górka
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Chen JS, Chiu SC, Huang SY, Chang SF, Liao KF. Isolinderalactone Induces Apoptosis, Autophagy, Cell Cycle Arrest and MAPK Activation through ROS-Mediated Signaling in Colorectal Cancer Cell Lines. Int J Mol Sci 2023; 24:14246. [PMID: 37762548 PMCID: PMC10532319 DOI: 10.3390/ijms241814246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Isolinderalactone (ILL), a sesquiterpene isolated from the root extract of Lindera aggregata, has been reported to exhibit anti-proliferative and anti-metastatic activities in various cancer cell lines. However, the mechanisms associated with its antitumor effects on CRC cells remain unclear. ILL treatment significantly suppressed proliferation and induced cell cycle G2/M arrest in CRC cells by inhibiting the expression of cyclin B, p-cdc2, and p-cdc25c and up-regulating the expression of p21. In addition, ILL induced mitochondria-associated apoptosis through the up-regulation of cleaved -caspase-9 and -3 expression. ILL induced autophagy by increasing the levels of LC3B in CRC cells, which was partially rescued by treatment with an autophagy inhibitor (chloroquine). Furthermore, ILL increases the accumulation of reactive oxygen species (ROS) and activates the MAPK pathway. Application of the ROS scavenger, N-acetyl cysteine (NAC), effectively inhibited ILL toxicity and reversed ILL-induced apoptosis, cell cycle arrest, autophagy, and ERK activation. Taken together, these results suggest that ILL induces G2/M phase arrest, apoptosis, and autophagy and activates the MAPK pathway via ROS-mediated signaling in human CRC cells.
Collapse
Affiliation(s)
- Jith-Shyan Chen
- Department of Obstetrics and Gynecology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan;
| | - Sheng-Chun Chiu
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan; (S.-C.C.); (S.-F.C.)
- Department of Laboratory Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
- General Education Center, Tzu Chi University of Science and Technology, Hualien 973302, Taiwan
| | - Sung-Ying Huang
- Department of Ophthalmology, Hsinchu Mackay Memorial Hospital, Hsinchu 300044, Taiwan;
| | - Shu-Fang Chang
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan; (S.-C.C.); (S.-F.C.)
| | - Kuan-Fu Liao
- Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| |
Collapse
|
7
|
Chanvijit S, Phuagkhaopong S, Mahalapbutr P, Klaewkla M, Chavasiri W, Wonganan P. Allyl ether of mansonone G as a potential anticancer agent for colorectal cancer. Sci Rep 2022; 12:19668. [PMID: 36385303 PMCID: PMC9668903 DOI: 10.1038/s41598-022-23997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Mansonone G (MG), a 1,2-naphthoquinone isolated from the heartwood of Mansonia gagei Drumm, exhibited several pharmacological activities such as anti-bacterial, anti-estrogenic and anti-adipogenic effect. This study evaluated the cytotoxicity of MG and its derivatives as well as determined the mechanism(s) underlying the cytotoxic activity of the most potent MG derivative on two CRC cell lines, HCT-116 cells carrying p53 wild-type and HT-29 cells carrying p53 mutant. We found that MG and its derivatives could inhibit viability of HCT-116 and HT-29 cells in a concentration-dependent manner. Of all semi-synthetic derivatives of MG, allyl ether mansonone G (MG7) was the most potent cytotoxic agent toward cancer cells and less toxic to normal cells. MG7 could induce ROS generation which was associated with cytotoxicity and apoptosis in both HCT-116 and HT-29 cells. Western blot analysis revealed that MG7 downregulated the expression of Bcl-2 and Bcl-xL proteins in both CRC cell lines and upregulated the expression of BAK protein in HT-29 cells. Moreover, MG7 inhibited AKT signaling pathway in both CRC cell lines and modulated ERK1/2 signaling pathway by inhibiting ERK1/2 phosphorylation in HCT-116 cells and activating ERK1/2 phosphorylation in HT-29 cells. Molecular docking revealed that MG7 could bind to the ATP-binding pocket of AKT and ERK1 via hydrophobic interactions.
Collapse
Affiliation(s)
- Savinee Chanvijit
- grid.7922.e0000 0001 0244 7875Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Suttinee Phuagkhaopong
- grid.7922.e0000 0001 0244 7875Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330 Thailand
| | - Panupong Mahalapbutr
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Methus Klaewkla
- Future Health Innovation Technology Co., Ltd., Bangkok, 10170 Thailand
| | - Warinthorn Chavasiri
- grid.7922.e0000 0001 0244 7875Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Piyanuch Wonganan
- grid.7922.e0000 0001 0244 7875Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330 Thailand
| |
Collapse
|
8
|
Shafiee G, Saidijam M, Tayebinia H, Khodadadi I. Beneficial effects of genistein in suppression of proliferation, inhibition of metastasis, and induction of apoptosis in PC3 prostate cancer cells. Arch Physiol Biochem 2022; 128:694-702. [PMID: 31985311 DOI: 10.1080/13813455.2020.1717541] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Beneficial effects of genistein have been studied in various cancer types but the underlying molecular mechanisms of its actions have not been well established. This study investigated the effects of genistein on caspase-3 and p38 mitogen-activated protein kinase (p38MAPK) as main cellular signalling targets in PC3 prostate cancer cells. METHODS Caspase-3 and p38MAPK gene expression and intracellular protein levels were determined. Matrix metalloproteinase-2 (MMP2) gelatinase activity and caspase-3 enzyme activity were measured and PC3 cell migration and proliferation potencies were assessed. RESULTS Genistein induced apoptosis by enhancing the gene expression, intracellular protein level, and enzyme activity of caspase-3. Genistein also inhibited cell proliferation by reducing p38MAPK gene expression and protein level and strongly suppressed metastatic potency of PC3 cells by reducing MMP2 activity. CONCLUSION Genistein exhibits its beneficial anticancer properties on PC3 cells by reducing metastatic potency and regulating caspase-3 and p38MAPK pathways at different transcriptional and protein levels.
Collapse
Affiliation(s)
- Gholamreza Shafiee
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Human Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tayebinia
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Kumar S, Verma R, Tyagi N, Gangenahalli G, Verma YK. Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages. Hum Cell 2022; 35:37-50. [PMID: 34800267 PMCID: PMC8605474 DOI: 10.1007/s13577-021-00646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Reactive Oxygen Species are chemically unstable molecules generated during aerobic respiration, especially in the electron transport chain. ROS are involved in various biological functions; any imbalance in their standard level results in severe damage, for instance, oxidative damage, inflammation in a cellular system, and cancer. Oxidative damage activates signaling pathways, which result in cell proliferation, oncogenesis, and metastasis. Since the last few decades, mesenchymal stromal cells have been explored as therapeutic agents against various pathologies, such as cardiovascular diseases, acute and chronic kidney disease, neurodegenerative diseases, macular degeneration, and biliary diseases. Recently, the research community has begun developing several anti-tumor drugs, but these therapeutic drugs are ineffective. In this present review, we would like to emphasize MSCs-based targeted therapy against pathologies induced by ROS as cells possess regenerative potential, immunomodulation, and migratory capacity. We have also focused on how MSCs can be used as next-generation drugs with no side effects.
Collapse
Affiliation(s)
- Subodh Kumar
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ranjan Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nishant Tyagi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yogesh Kumar Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
10
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. Aspirin eugenol ester ameliorates paraquat-induced oxidative damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway. Toxicology 2021; 453:152721. [PMID: 33592258 DOI: 10.1016/j.tox.2021.152721] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023]
Abstract
Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, PQ is highly toxic and can cause various complications and acute organ damage. Aspirin eugenol ester (AEE) is a potential new compound with anti-inflammatory and antioxidant stress pharmacological activity. The present study was to reveal the therapeutic effects and the protective effect of AEE against PQ-induced acute lung injury (ALI) with the help of PQ-induced oxidative damage in A549 cells and PQ-induced lung injury in rats. AEE might have no significant therapeutic effect on PQ-induced lung injury in rats. However, AEE had a significant protective effect on PQ-induced lung injury in rats. AEE pretreatment significantly reduced the stimulatory effect of PQ on malondialdehyde (MDA), the inhibitory effect of PQ on catalase (CAT) activity, superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, the ratio of GSH/GSSH, the activity of caspase-3 and the overexpression of p38 mitogen-activated protein kinase (MAPK) phosphorylation in vivo. In vitro, A549 cells were treated with 250 μM PQ for 24 h. Incubation of A549 cells with PQ led to apoptosis, and increased the level of superoxide anions, reactive oxygen species (ROS), malondialdehyde and the activity of caspase-3 and up-regulation of phosphorylated p38-MAPK, reduced mitochondrial membrane potential (ΔΨm) and the activity of SOD. However, after 24 h on AEE pretreatment of A549 cells, the above-mentioned adverse reactions caused by PQ were significantly alleviated. In addition, AEE pretreatment reduced p38-MAPK phosphorylation in PQ-treated A549 cells. SB203580, the specific p38-MAPK inhibitor, and p38-MAPK shRNA attenuated the activation of the p38-MAPK signaling pathway. N-acetylcysteine (NAC) reduced the level of phosphorylated p38-MAPK and the production of intracellular ROS and inhibited apoptosis. The results showed that AEE may inhibit PQ-induced cell damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
11
|
Zang YQ, Zhai YQ, Feng YY, Ju XY, Zuo F. Molecular mechanisms of quinalizarin induces apoptosis and G0/G1 cell cycle of human esophageal cancer HCE-4 cells depends on MAPK, STAT3, and NF-κB signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:276-286. [PMID: 33030807 DOI: 10.1002/tox.23033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Quinalizarin (Quina) is one of the main components of many herbal medicines and has good anti-tumor activity. However, the exact mode of cytotoxic action and signaling pathways on Quina in human esophageal cancer has not yet been confirmed. In this study, we explored the anticancer effect of Quina against human esophageal cancer HCE-4 cells and the underlying mechanisms. The results of the Cell Counting Kit-8 (CCK-8) assay showed that Quina inhibited the viability of human esophageal cancer HCE-4 cells in a dose-dependent and time-dependent manner. It also inhibited HCE-4 cells proliferation and induced apoptosis by increasing the levels of Bad, caspase-3, and PARP, decreasing the level of Bcl-2. The results of the cell cycle analysis suggested that Quina arrested HCE-4 cells in the G0/G1 cycle by downregulating cyclin-dependent (CDK) 2/4, cyclin D1/E and upregulating the levels of p21 and p27. We also found that Quina activated mitogen-activated protein kinase (MAPK) and inhibited the signal transducer and activator of transcription-3 (STAT3) and nuclear factor kappa B (NF-κB) signaling pathways. Furthermore, Quina significantly increased intracellular reactive oxygen species (ROS) level. The pretreatment of N-acetyl-L-cysteine (NAC) blocked the apoptosis induced by Quina and inhibited the activities of MAPK, STAT3, and NF-κB signaling pathways. These results indicate that Quina induces the apoptosis in HCE-4 cells, which is via accumulating ROS generation and regulating MAPK, STAT3, and NF-κB. In conclusion, this study demonstrated that Quina have good therapeutic effects on human esophageal cancer cells.
Collapse
Affiliation(s)
- Yan-Qing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu-Qing Zhai
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan-Yu Feng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xue-Ying Ju
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
12
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. The Protective Effect of Aspirin Eugenol Ester on Paraquat-Induced Acute Liver Injury Rats. Front Med (Lausanne) 2020; 7:589011. [PMID: 33392217 PMCID: PMC7773779 DOI: 10.3389/fmed.2020.589011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
Aspirin eugenol ester (AEE) possesses anti-inflammatory and anti-oxidative effects. The study was conducted to evaluate the protective effect of AEE on paraquat-induced acute liver injury (ALI) in rats. AEE was against ALI by decreasing alanine transaminase and aspartate transaminase levels in blood, increasing superoxide dismutase, catalase, and glutathione peroxidase levels, and decreasing malondialdehyde levels in blood and liver. A total of 32 metabolites were identified as biomarkers by using metabolite analysis of liver homogenate based on ultra-performance liquid chromatography-tandem mass spectrometry, which belonged to purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, histidine metabolism, pantothenate, and CoA biosynthesis, ether lipid metabolism, beta-Alanine metabolism, lysine degradation, cysteine, and methionine metabolism. Western blotting analyses showed that Bax, cytochrome C, caspase-3, caspase-9, and apoptosis-inducing factor expression levels were obviously decreased, whereas Bcl-2 expression levels obviously increased after AEE treatment. AEE exhibited protective effects on PQ-induced ALI, and the underlying mechanism is correlated with antioxidants that regulate amino acid, phospholipid and energy metabolism metabolic pathway disorders and alleviate liver mitochondria apoptosis.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
13
|
Huang MZ, Zhang ZD, Yang YJ, Liu XW, Qin Z, Li JY. Aspirin Eugenol Ester Protects Vascular Endothelium From Oxidative Injury by the Apoptosis Signal Regulating Kinase-1 Pathway. Front Pharmacol 2020; 11:588755. [PMID: 33658932 PMCID: PMC7919194 DOI: 10.3389/fphar.2020.588755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a new potential pharmaceutical compound possessing anti-inflammatory, anti-cardiovascular disease, and antioxidative stress activity. The pharmacological activities of AEE are partly dependent on its regulation of cell apoptosis. However, it is still unclear how AEE inhibits cell apoptosis on the basis of its antioxidative stress effect. This study aimed to reveal the vascular antioxidative mechanism of AEE in response to H2O2-induced oxidative stress in HUVECs and paraquat-induced oxidative stress in rats. In the different intervention groups of HUVECs and rats, the expression of ASK1, ERK1/2, SAPK/JNK, and p38 and the phosphorylation levels of ERK1/2, SAPK/JNK, and p38 were measured. The effects of ASK1 and ERK1/2 on the anti-apoptotic activity of AEE in the oxidative stress model were probed using the corresponding inhibitors ASK1 and ERK1/2. The results showed that in the HUVECs, 200 μM H2O2 treatment significantly increased the phosphorylation of SAPK/JNK and the level of ASK1 but decreased the phosphorylation of ERK1/2, while in the HUVECs pretreated with AEE, the H2O2-induced changes were significantly ameliorated. The findings were observed in vitro and in vivo. Moreover, inhibition of ASK1 and ERK1/2 showed that ASK1 plays a vital role in the protective effect of AEE on H2O2-induced apoptosis. All findings suggested that AEE protects the vascular endothelium from oxidative injury by mediating the ASK1 pathway.
Collapse
Affiliation(s)
- Mei-Zhou Huang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhen-Dong Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
14
|
Zhang ZD, Huang MZ, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. Aspirin Eugenol Ester Attenuates Paraquat-Induced Hepatotoxicity by Inhibiting Oxidative Stress. Front Physiol 2020; 11:582801. [PMID: 33192594 PMCID: PMC7642976 DOI: 10.3389/fphys.2020.582801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a new potential drug with anti-inflammatory and antioxidant stress pharmacological activity. Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, paraquat is highly toxic and can cause various complications and acute organ damage, such as liver, kidney and lung damage. The purpose of this study was to investigate whether AEE has a protective effect on hepatotoxicity induced by PQ in vivo and in vitro. Cell viability, apoptosis rate, mitochondrial function and intracellular oxidative stress were detected to evaluate the protective effect of AEE on PQ-induced BRL-3A (normal rat hepatocytes) cytotoxicity in vitro. In vivo, AEE pretreatment could attenuate oxidative stress and histopathological changes in rat liver induced by PQ. The results showed that AEE could reduce the hepatotoxicity induced by PQ in vivo and in vitro. AEE reduced PQ-induced hepatotoxicity by inhibitingoxidative stress and maintaining mitochondrial function. This study proved that AEE is an effective antioxidant and can reduce the hepatotoxicity of PQ.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
15
|
Xu WT, Shen GN, Li TZ, Zhang Y, Zhang T, Xue H, Zuo WB, Li YN, Zhang DJ, Jin CH. Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROS‑regulated MAPK, STAT3 and NF‑κB signaling pathways. Int J Oncol 2020; 57:550-561. [PMID: 32626938 DOI: 10.3892/ijo.2020.5079] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Isoorientin (ISO) is a naturally occurring C‑glycosyl flavone that has various pharmacological properties, such as anti‑bacterial and anti‑inflammatory effects. However, its underlying molecular mechanisms in human lung cancer cells remain unknown. In the present study, the effects of ISO on the induction of apoptosis and relative molecular mechanisms in A549 human lung cancer cells were investigated. The results of Cell Counting Kit‑8 assay (CCK‑8) indicated that ISO exerted significant cytotoxic effects on 3 lung cancer cell lines, but had no obvious side‑effects on normal cells. Moreover, flow cytometry and western blot analysis revealed that ISO induced mitochondrial‑dependent apoptosis by reducing mitochondrial membrane potential. ISO also increased the expression levels of Bax, cleaved‑caspase‑3 (cle‑cas‑3) and poly(ADP‑ribose) polymerase (PARP; cle‑PARP), and decreased the expression levels of Bcl‑2 in A549 cells. Furthermore, ISO induced G2/M cell cycle arrest by decreasing the expression levels of cyclin B1 and CDK1/2, and increasing the expression levels of p21 and p27 in A549 cells. As the duration of ISO treatment increased, intracellular reactive oxygen species (ROS) levels in A549 cells also increased. However, pre‑treatment of the cells with the ROS scavenger, N‑acetylcysteine (NAC), inhibited ISO‑induced apoptosis. In addition, ISO increased the expression levels of p‑p38, p‑JNK and IκB‑α; and decreased the expression levels of p‑extracellular signal‑regulated kinase (ERK), p‑signal transducer and activator of transcription (STAT)3, p‑nuclear factor (NF)‑κB, NF‑κB and p‑IκB; these effects were induced by mitogen‑activated protein kinase (MAPK) inhibitors and blocked by NAC. Taken together, the results of the present study indicate that ISO induces the apoptosis of A549 lung cancer cells via the ROS‑mediated MAPK/STAT3/NF‑κB signaling pathway, and thus may be a potential drug for use in the treatment of lung cancer.
Collapse
Affiliation(s)
- Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wen-Bo Zuo
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
16
|
Xu WT, Li TZ, Li SM, Wang C, Wang H, Luo YH, Piao XJ, Wang JR, Zhang Y, Zhang T, Xue H, Cao LK, Jin CH. Cytisine exerts anti-tumour effects on lung cancer cells by modulating reactive oxygen species-mediated signalling pathways. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:84-95. [PMID: 31852250 DOI: 10.1080/21691401.2019.1699813] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytisine is a natural product isolated from plants and is a member of the quinolizidine alkaloid family. This study aims to investigate the effect of cytisine in human lung cancer. Cell viability was determined using the CCK-8 assay, and the results showed that cytisine inhibited the growth of lung cancer cell lines. The apoptotic effects were evaluated using flow cytometry, and the results showed that cytisine induced mitochondrial-dependent apoptosis through loss of the mitochondrial membrane potential; increased expression of BAD, cleaved caspase-3, and cleaved-PARP; and decreased expression levels of Bcl-2, pro-caspase-3, and pro-PARP. In addition, cytisine caused G2/M phase cell cycle arrest that was associated with inhibiting the AKT signalling pathway. During apoptosis, cytisine increased the phosphorylation levels of JNK, p38, and I-κB, and decreased the phosphorylation levels of ERK, STAT3, and NF-κB. Furthermore, cytisine treatment led to the generation of ROS, and the NAC attenuated cytisine-induced apoptosis. In vivo, cytisine administration significantly inhibited the lung cancer cell xenograft tumorigenesis. In conclusion, cytisine plays a critical role in suppressing the carcinogenesis of lung cancer cells through cell cycle arrest and induction of mitochondria-mediated apoptosis, suggesting that it may be a promising candidate for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long-Kui Cao
- Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Daqing, China
| |
Collapse
|
17
|
Ilkar Erdagi S, Ngwabebhoh FA, Yildiz U. Pickering stabilized nanocellulose-alginate: A diosgenin-mediated delivery of quinalizarin as a potent cyto-inhibitor in human lung/breast cancer cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110621. [PMID: 32228903 DOI: 10.1016/j.msec.2019.110621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/29/2023]
Abstract
The current study explores the facile fabrication of multilayer self-assembled electrostatic oil-in-water Pickering emulsions (PEs) using quaternized nanocellulose (Q-NC) and diosgenin-conjugate alginate (DGN-ALG) particles as stabilizers to form hydrocolloid nanocarriers. The conditions of formulation such as storage time, pH, temperature and salt effect on the emulsion stability were evaluated. The results deduced showed good emulsion droplet stability over a period of 30 days. Morphological analysis revealed the hydrodynamic sizes of the PE droplets to be spherically shaped with an average diameter of 150 ± 3.51 nm. Creaming index, wettability and critical aggregation concentrations (CAC) as well as chemical characterization of the PEs were examined. In vitro release kinetics of encapsulated quinalizarin as a model drug was investigated with a determined cumulative drug release (CDR) of 89 ± 1.21% in simulated pH blood medium of pH 7.4. In addition, cellular internalization of the PEs was studied via confocal microscopy imaging and showed high cellular uptake. Also, evaluated in vitro cytotoxicity by MTT assay demonstrated excellent anticancer activity in human lung (A549) and breast (MCF-7) cancer cell lines.
Collapse
Affiliation(s)
| | | | - Ufuk Yildiz
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey
| |
Collapse
|
18
|
Wang J, Zhang Y, Liu X, Wang J, Li B, Liu Y, Wang J. Alantolactone enhances gemcitabine sensitivity of lung cancer cells through the reactive oxygen species-mediated endoplasmic reticulum stress and Akt/GSK3β pathway. Int J Mol Med 2019; 44:1026-1038. [PMID: 31524219 PMCID: PMC6657978 DOI: 10.3892/ijmm.2019.4268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer‑associated mortality in China and globally. Gemcitabine (GEM), as a first‑line therapeutic drug, has been used to treat lung cancer, but GEM resistance poses a major limitation on the efficacy of GEM chemotherapy. Alantolactone (ALT), a sesquiterpene lactone compound isolated from Inula helenium, has been identified to exert anticancer activity in various types of cancer, including breast, pancreatic, lung squamous and colorectal cancer. However, the underlying mechanisms of the anticancer activity of ALT in lung cancer remain to be fully elucidated. The present study aimed to determine whether ALT enhances the anticancer efficacy of GEM in lung cancer cells and investigated the underlying mechanisms. The cell viability was assessed with a Cell Counting Kit‑8 assay. The cell cycle, apoptosis and the level of reactive oxygen species (ROS) were assessed by flow cytometry, and the expression of cell cycle‑associated and apoptosis‑associated proteins were determined by western blot analysis. The results demonstrated that ALT inhibited cell growth and induced S‑phase arrest and cell apoptosis in A549 and NCI‑H520 cells. Furthermore, ALT increased the level of ROS, inhibited the Akt/glycogen synthase kinase (GSK)3β pathway and induced endoplasmic reticulum (ER) stress in A549 and NCI‑H520 cells. Additionally, ALT treatment sensitized lung cancer cells to GEM. Analysis of the molecular mechanisms further revealed that ALT enhanced the anticancer effects of GEM via ROS‑mediated activation of the Akt/GSK3β and ER stress pathways. In conclusion, combined treatment with ALT and GEM may have potential as a clinical strategy for lung cancer treatment.
Collapse
Affiliation(s)
| | | | - Xu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
| | - Jizhao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yongkang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jiansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
| |
Collapse
|
19
|
Luo YH, Li JQ, Zhang Y, Wang JR, Xu WT, Zhang Y, Feng YC, Li SZ, Jin CH. Quinalizarin induces cycle arrest and apoptosis via reactive oxygen species-mediated signaling pathways in human melanoma A375 cells. Drug Dev Res 2019; 80:1040-1050. [PMID: 31432559 DOI: 10.1002/ddr.21582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/13/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
Quinalizarin, a bioactive and highly selective compound, is known to promote apoptosis in colon and lung cancer cells. However, studies evaluating quinalizarin-induced apoptosis in melanoma cells have not been conducted. In the present study, we investigated the underlying mechanisms of antimelanoma activity of quinalizarin in human melanoma A375 cells. The MTT assay and Trypan blue staining were used to evaluate the cell viability. The flow cytometry was used to detect cell cycle, apoptosis and reactive oxygen species (ROS). Western blot was used to detect the expression of cell cycle and apoptosis-related proteins, MAPK, and STAT3. The results revealed a significant dose and time dependent effect of quinalizarin on inhibiting proliferation in three kinds of human melanoma cells, and had no significant toxic effects on normal cells. Moreover, quinalizarin triggered G2/M phase cell arrest by modulating the protein expression levels of CDK 1/2, cyclin A, cyclin B, p21 and p27, and induced apoptosis by down-regulating the antiapoptotic protein Bcl-2 and upregulating the proapoptotic protein BAD, leading to the activation of caspase-3 and PARP in the caspase cascade in A375 cells. Quinalizarin treatment led to apoptosis of A375 cells via activation of MAPK and inhibition of STAT3 signaling pathways. In addition, quinalizarin increased the level of ROS, but ROS scavenger NAC inhibited quinalizarin-induced apoptosis by regulating MAPK and STAT3 signaling pathways. In summary, quinalizarin induces cell cycle arrest and apoptosis via ROS-mediated MAPK and STAT3 signaling pathways in human melanoma A375 cells, and quinalizarin may be used as a novel and effective antimelanoma therapeutic.
Collapse
Affiliation(s)
- Ying-Hua Luo
- Department of Animal Veterinary Medicine, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yu-Chao Feng
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shi-Ze Li
- Department of Animal Veterinary Medicine, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.,Department of coarse cereals special medical food basic research, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| |
Collapse
|
20
|
Maduramicin induces apoptosis through ROS-PP5-JNK pathway in skeletal myoblast cells and muscle tissue. Toxicology 2019; 424:152239. [PMID: 31229567 DOI: 10.1016/j.tox.2019.152239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 01/30/2023]
Abstract
Our previous work has shown that maduramicin, an effective coccidiostat used in the poultry production, executed its toxicity by inducing apoptosis of skeletal myoblasts. However, the underlying mechanism is not well understood. Here we show that maduramicin induced apoptosis of skeletal muscle cells by activating c-Jun N-terminal kinase (JNK) pathway in murine C2C12 and L6 myoblasts as well as skeletal muscle tissue. This is supported by the findings that inhibition of JNK with SP600125 or ectopic expression of dominant negative c-Jun attenuated maduramicin-induced apoptosis in C2C12 cells. Furthermore, we found that treatment with maduramicin reduced the cellular protein level of protein phosphatase 5 (PP5). Overexpression of PP5 substantially mitigated maduramicin-activated JNK and apoptosis. Moreover, we noticed that treatment with maduramicin elevated intracellular reactive oxygen species (ROS) level. Pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger and antioxidant, suppressed maduramicin-induced inhibition of PP5 and activation of JNK as well as apoptosis. The results indicate that maduramicin induction of ROS inhibits PP5, which results in activation of JNK cascade, leading to apoptosis of skeletal muscle cells. Our finding suggests that manipulation of ROS-PP5-JNK pathway may be a potential approach to prevent maduramicin-induced apoptotic cell death in skeletal muscle.
Collapse
|
21
|
Li Y, Jiang JG. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct 2019; 9:6063-6080. [PMID: 30484455 DOI: 10.1039/c8fo01569d] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anthraquinone compounds with the anthraquinone ring structure are widely found in traditional Chinese medicines and they are attracting a lot of attention due to their good pharmacological activity. Diversities of anthraquinones depend on their chemical structures, such as the number of anthraquinone rings and the substituents; what's more, the difference in chemical structure determines the difference in physiological activity. Based on results of previous studies, this review summarizes several natural anthraquinones identified from Chinese herbal medicines and their physiological activities including anti-cancer, anti-pathogenic microorganisms, anti-inflammatory, anti-oxidation, anti-osteoporosis, anti-depression, and anti-constipation. The source, effect, model, and action mechanism of the active anthraquinones are described in detail, from which their structure-activity relationship is summarized. By analyzing the relationship between anthraquinone structure and function, we found that, on the whole structure, the anthraquinone ring and anthraquinone glycosides have significant anticancer activity and anti-constipation activity, while for their substituents, anthraquinones substituted by alizarin have significant antioxidant activity and the polarity of the substituents is closely related to their antibacterial activities.
Collapse
Affiliation(s)
- Yu Li
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | | |
Collapse
|
22
|
Wang Z, Luo H, Xia H. Theaflavins attenuate ethanol‑induced oxidative stress and cell apoptosis in gastric mucosa epithelial cells via downregulation of the mitogen‑activated protein kinase pathway. Mol Med Rep 2018; 18:3791-3799. [PMID: 30106096 PMCID: PMC6131224 DOI: 10.3892/mmr.2018.9352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Ethanol‑induced diseases of the gastric mucosa are the most common and refractory diseases of gastrointestinal system in clinic, and are mediated by oxidative stress and apoptosis pathways. Theaflavins (TFs) are considered to be antioxidants. The present study aimed to determine the molecular mechanism underlying the ability of TFs to attenuate ethanol‑induced oxidative stress and apoptosis in GES‑1 gastric mucosa epithelial cells. A Cell Counting Kit‑8 (CCK‑8) assay was performed to investigate the cell viability of GES‑1 cells following administration of ethanol (0.5 mol/l) and subsequent treatment with TFs (20, 40 and 80 µg/ml) for specific time intervals. A carboxyfluorescein diacetate succinimidyl ester assay was used to measure proliferation and further investigate the results of the CCK‑8 assay. Flow cytometry was performed to measure reactive oxygen species (ROS) levels and the apoptosis rates of GES‑1 cells. Furthermore, levels of oxidative stress‑associated factors, including malondialdehyde, superoxide dismutase and glutathione, were investigated using commercial kits. Reverse transcription‑quantitative polymerase chain reaction and western blot assays were performed to determine the expression levels of apoptosis‑associated factors, as well as the phosphorylation levels of extracellular signal‑regulated kinase (ERK), c‑Jun N‑terminal kinase (JNK) and p38 kinase (p38). The results of the present study demonstrated that treatment with ethanol inhibited GES‑1 cell proliferation, and enhanced ROS levels and apoptosis rates, potentially via downregulation of B‑cell lymphoma‑2 (Bcl‑2) expression and upregulation of Bcl‑2‑associated X and caspase‑3 expression levels, as well as enhancing the phosphorylation levels of ERK, JNK and p38. However, treatment with TFs was revealed to attenuate the effects of ethanol administration on GES‑1 cells in a dose‑dependent manner. In conclusion, TFs may attenuate ethanol‑induced oxidative stress and apoptosis in gastric mucosa epithelial cells via downregulation of various mitogen‑activated protein kinase pathways.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|