1
|
Zimmermann D, Kress M, Nagy I. Established and emerging roles of protein kinases in regulating primary sensory neurons in injury-and inflammation-associated pain. Expert Opin Ther Targets 2025:1-14. [PMID: 40200157 DOI: 10.1080/14728222.2025.2489540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/06/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Recent seminal neuroscience research has significantly increased our knowledge on cellular and molecular responses of various cells in the pain pathway to peripheral nerve injuries and inflammatory processes. Transcriptomic and epigenetic analysis of primary sensory neurons (PSNs) in animal models of peripheral injuries revealed new insights into altered gene expression profiles and epigenetic modifications, which, via increasing spinal nociceptive input, lead to the development of pain. Among the various classes of molecules involved in driving differential gene expression, protein kinases, the enzymes that catalyze the phosphorylation of molecules, are emerging to control histone modification and chromatin remodeling needed for the alteration in transcriptional activity. AREAS COVERED Here, we focused on how protein kinases contribute to transcriptomic changes and pathways of induced reprogramming within PSNs upon peripheral nerve injury and inflammation. We conducted systematic literature search across multiple databases, including PubMed, NIH ClinicalTrials.gov portal and GEOData from 1980 to 2024 and compared protein kinase expression frequencies between publicly available RNA sequencing datasets of PSNs and investigated differences in protein kinase expression levels after peripheral nerve injury. EXPERT OPINION Novel findings support a new concept that protein kinases constitute regulatory hubs of reprogramming of PSNs, which offers novel analgesic approaches.
Collapse
Affiliation(s)
- David Zimmermann
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Istvan Nagy
- Department of Surgery and Cancer, Nociception group, Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London, UK
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Yin Z, Xu W, Ling J, Ma L, Zhang H, Wang P. Hydrogen-rich solution alleviates acute radiation pneumonitis by regulating oxidative stress and macrophages polarization. JOURNAL OF RADIATION RESEARCH 2024; 65:291-302. [PMID: 38588586 PMCID: PMC11115465 DOI: 10.1093/jrr/rrae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Indexed: 04/10/2024]
Abstract
This study was aimed to investigate the effect of hydrogen-rich solution (HRS) on acute radiation pneumonitis (ARP) in rats. The ARP model was induced by X-ray irradiation. Histopathological changes were assessed using HE and Masson stains. Inflammatory cytokines were detected by ELISA. Immunohistochemistry and flow cytometry were performed to quantify macrophage (CD68) levels and the M2/M1 ratio. Western blot analysis, RT-qPCR, ELISA and flow cytometry were used to evaluate mitochondrial oxidative stress injury indicators. Immunofluorescence double staining was performed to colocalize CD68/LC3B and p-AMPK-α/CD68. The relative expression of proteins associated with autophagy activation and the adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin/Unc-51-like kinase 1 (AMPK/mTOR/ULK1) signaling pathway were detected by western blotting. ARP decreased body weight, increased the lung coefficient, collagen deposition and macrophage infiltration and promoted M1 polarization in rats. After HRS treatment, pathological damage was alleviated, and M1 polarization was inhibited. Furthermore, HRS treatment reversed the ARP-induced high levels of mitochondrial oxidative stress injury and autophagy inhibition. Importantly, the phosphorylation of AMPK-α was inhibited, the phosphorylation of mTOR and ULK1 was activated in ARP rats and this effect was reversed by HRS treatment. HRS inhibited M1 polarization and alleviated oxidative stress to activate autophagy in ARP rats by regulating the AMPK/mTOR/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Zhen Yin
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Wenjing Xu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Junjun Ling
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Lihai Ma
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Hao Zhang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Pei Wang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| |
Collapse
|
3
|
Wang RL, Liu SH, Shen SH, Jian LY, Yuan Q, Guo HH, Huang JS, Chen PH, Huang RF. Protective Mechanism of Cordyceps sinensis Treatment on Acute Kidney Injury-Induced Acute Lung Injury through AMPK/mTOR Signaling Pathway. Chin J Integr Med 2023; 29:875-884. [PMID: 36843056 DOI: 10.1007/s11655-023-3593-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 02/28/2023]
Abstract
OBJECTIVE To investigate protective effect of Cordyceps sinensis (CS) through autophagy-associated adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in acute kidney injury (AKI)-induced acute lung injury (ALI). METHODS Forty-eight male Sprague-Dawley rats were divided into 4 groups according to a random number table, including the normal saline (NS)-treated sham group (sham group), NS-treated ischemia reperfusion injury (IRI) group (IRI group), and low- (5 g/kg·d) and high-dose (10 g/kg·d) CS-treated IRI groups (CS1 and CS2 groups), 12 rats in each group. Nephrectomy of the right kidney was performed on the IRI rat model that was subjected to 60 min of left renal pedicle occlusion followed by 12, 24, 48, and 72 h of reperfusion. The wet-to-dry (W/D) ratio of lung, levels of serum creatinine (Scr), blood urea nitrogen (BUN), inflammatory cytokines such as interleukin- β and tumor necrosis factor- α, and biomarkers of oxidative stress such as superoxide dismutase, malonaldehyde (MDA) and myeloperoxidase (MPO), were assayed. Histological examinations were conducted to determine damage of tissues in the kidney and lung. The protein expressions of light chain 3 II/light chain 3 I (LC3-II/LC3-I), uncoordinated-51-like kinase 1 (ULK1), P62, AMPK and mTOR were measured by Western blot and immunohistochemistry, respectively. RESULTS The renal IRI induced pulmonary injury following AKI, resulting in significant increases in W/D ratio of lung, and the levels of Scr, BUN, inflammatory cytokines, MDA and MPO (P<0.01); all of these were reduced in the CS groups (P<0.05 or P<0.01). Compared with the IRI groups, the expression levels of P62 and mTOR were significantly lower (P<0.05 or P<0.01), while those of LC3-II/LC3-I, ULK1, and AMPK were significantly higher in the CS2 group (P<0.05 or P<0.01). CONCLUSION CS had a potential in treating lung injury following renal IRI through activation of the autophagy-related AMPK/mTOR signaling pathway in AKI-induced ALI.
Collapse
Affiliation(s)
- Ruo-Lin Wang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shu-Hua Liu
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si-Heng Shen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lu-Yong Jian
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi Yuan
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua-Hui Guo
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Jia-Sheng Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Peng-Hui Chen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Ren-Fa Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China.
| |
Collapse
|
4
|
Shen SH, Wang RL, Yuan Q, Jian LY, Guo HH, Li HS, Liu XP, Huang RF. The roles of AMPK/mTOR autophagy pathway in the acute kidney injury-induced acute lung injury. CHINESE J PHYSIOL 2023; 66:73-84. [PMID: 37082995 DOI: 10.4103/cjop.cjop-d-22-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Acute kidney injury (AKI) is one of the most challenging clinical problems in kidney disease due to serious complications and high mortality rate, which can lead to acute lung injury (ALI) through inflammatory reactions and oxidative stress. Adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has been reported to be involved in the development of renal ischemia-reperfusion through autophagy and it remains unclear whether AMPK/mTOR pathway has an effect on the AKI-induced ALI. In this study, we aimed to investigate the effects of autophagy-related AMPK/mTOR signaling pathway on inflammatory factors and oxidative stress in an AKI-induced ALI model. The 48 male Sprague-Dawley rats were divided into four groups randomly: (i) sham, (ii) ischemia/reperfusion injury (IRI), (iii) IRI + rapamycin (RA), and (iv) IRI + 3-methyladenine (3-MA). Unilateral flank incisions were made and right kidneys were excised. The left kidney was subjected to 60 min of ischemia followed by 12, 24, 48, and 72 h of reperfusion. The levels of Scr, blood urea nitrogen (BUN), Wet/Dry ratio, indexes of inflammation, and oxidative stress were assayed. Histological examinations were performed. The protein expression of AMPK, mTOR, LC3-II/LC3-I ratio, and Beclin-1, ULK1 was evaluated by western blotting and immunohistochemistry. Compared to the rats from the sham group, IRI rats showed significantly pulmonary damage after AKI with increased Scr, BUN, Wet/Dry ratio, indexes of inflammation, and oxidative stress. The expression of AMPK, LC3-II/LC3-I ratio, Beclin-1, and ULK1 and were increased, while p62 and mTOR were decreased. In addition, RA treatment significantly attenuated lung injury by promoting autophagy through the activation of the AMPK/mTOR pathway, and 3-MA treatment exhibited adverse effects inversely. Therefore, the activation of the AMPK/mTOR pathway after renal IRI induction could significantly attenuate kidney injury and following AKI-induced ALI by inducing autophagy, which alienates inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Si-Heng Shen
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ruo-Lin Wang
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qi Yuan
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lu-Yong Jian
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hua-Hui Guo
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - He-Sheng Li
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xue-Pin Liu
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ren-Fa Huang
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Gong J, Zhao S, Luo S, Yin S, Li X, Feng Y. Downregulation of circ-ZNF644 alleviates LPS-induced HK2 cell injury via miR-335-5p/HIPK1 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2855-2864. [PMID: 36052886 DOI: 10.1002/tox.23642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Circular RNA (circRNA) has been confirmed to be involved in regulating sepsis-induced acute kidney injury (AKI). Our research aims to explore circ-ZNF644 role in the development of sepsis-induced AKI. Lipopolysaccharide (LPS) was used to induce kidney tubular epithelial cell (HK2) injury. ELISA assay was performed to measure the concentrations of inflammation factors. Cell functions were determined by cell counting kit 8 assay, EdU assay and flow cytometry. Protein expression was evaluated by Western blot analysis. Quantitative real-time PCR was used to detect relative expression of circ-ZNF644, miR-335-5p and homeodomain-interacting protein kinase 1 (HIPK1). RNA interaction was confirmed by dual-luciferase reporter assay and RIP assay. LPS enhanced HK2 cell inflammation, oxidative stress, apoptosis, and reduced proliferation. Circ-ZNF644 was overexpressed in sepsis-induced AKI patients. Circ-ZNF644 knockdown suppressed LPS-induced HK2 cell injury, and this effect could be revoked by miR-335-5p inhibitor. MiR-335-5p was sponged by circ-ZNF644, and its expression was downregulated in sepsis-induced AKI patients. HIPK1 was targeted by miR-335-5p, and its expression could be suppressed by circ-ZNF644 knockdown. MiR-335-5p had an inhibition effect on HK2 cell injury induced by LPS, and HIPK1 overexpression could reverse this effect. Circ-ZNF644 knockdown relieved LPS-induced HK2 cell injury through the miR-335-5p/HIPK1 axis, confirming that circ-ZNF644 contributed to sepsis-induced AKI.
Collapse
Affiliation(s)
- Junzuo Gong
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiqiao Zhao
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shu Luo
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Songlin Yin
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaofeng Li
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao Feng
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Tang L, Zhang S, Zhang M, Wang P, Liang G, Gao X. Analysis of protective effects of Rosa Roxburghii Tratt fruit polyphenols on lipopolysaccharide-induced acute lung injury through network pharmacology and metabolomics. Food Sci Nutr 2022; 10:4258-4269. [PMID: 36514748 PMCID: PMC9731534 DOI: 10.1002/fsn3.3019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates and is the primary cause of death in children and the elderly around the world. The use of Chinese foods in the complementary and alternative treatment of ALI has attracted more and more attention. This study aimed to explore the anti-ALI activity of Chinese functional foods Rosa roxburghii Tratt fruit polyphenols (RRTP). RRTP was administered to lipopolysaccharide-induced ALI mice, and its protective effects were comprehensively evaluated by lung histopathological examination, wet/dry (W/D) ratio, and cytokine production. Metabolomics analysis was used to identify the differential metabolites and metabolic pathways in plasma, and molecular docking and systemic biology-based network pharmacology assay were performed to explore the active components and potential therapeutic targets. The results indicated that RRTP significantly attenuated the severity of pathological changes and pulmonary capillary permeability. Furthermore, RRTP limited the increase in tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) levels and the decrease in interleukin 10 (IL-10) levels in ALI mice. Metabolomics studies revealed that RRTP markedly affected 19 different metabolites, three amino acid metabolism pathways, and sphingolipid metabolism. Moreover, network pharmacology identified AKT1 (AKT serine/threonine kinase 1), TP53, IL-6, VEGFA (vascular endothelial growth factor A), and TNF (tumor necrosis factor) as the most promising target proteins, while quercetin, luteolin, and kaempferol were the core active components of RRTP. This study investigated the complex mechanisms of RRTP against ALI for the first time, and provided a foundation for the application of RRTP as a functional food, facilitating the research of nutritional food additives for the adjuvant treatment of ALI.
Collapse
Affiliation(s)
- Li Tang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
- School of Ethnic MedicineGuizhou Minzu UniversityGuiyangChina
| | - Shuo Zhang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Min Zhang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Peng‐Jiao Wang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Gui‐You Liang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Translational Medicine Research CenterGuizhou Medical UniversityGuiyangChina
| | - Xiu‐Li Gao
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
- Translational Medicine Research CenterGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
7
|
Wang R, Shen S, Jian L, Liu S, Yuan Q, Guo H, Huang J, Chen P, Huang R. Regulation of the autophagy plays an important role in acute kidney injury induced acute lung injury. Ren Fail 2022; 44:1754-1768. [PMID: 36259464 PMCID: PMC9586646 DOI: 10.1080/0886022x.2022.2135446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
AIM This study aimed to investigate the regulatory role of autophagy in acute kidney injury (AKI) induced acute lung injury (ALI). METHODS The male Sprague-Dawley rats were divided into four groups: normal saline-treated sham rats (sham group), normal saline-treated ischemia-reperfusion injury rats (IRI group), 3-methyladenine-treated IRI rats (3-MA group), and rapamycin-treated IRI rats (RA group). The rats in the IRI rat model received the nephrectomy of the right kidney and was subjected to 60 mins of left renal pedicle occlusion, followed by 12, 24, 48, and 72 h of reperfusion. The levels of Scr, BUN, wet-to-dry ratio of lung, inflammatory cytokines, and oxidative stress were determined. The damage to tissues was detected by histological examinations. The western blot and immunohistochemistry methods were conducted to determine the expression of indicated proteins. RESULTS Renal IRI could induce the pulmonary injury after AKI, which caused significant increases in the function index of pulmonary and renal, the levels of inflammatory cytokines, and biomarkers of oxidative stress. In comparison to the IRI group, the RA group showed significantly decreased P62 and Caspase-3 expression and increased LC-II/LC3-I, Beclin-1, Bcl-2, and unc-51-like autophagy activating kinase 1 expression. Meanwhile, by suppressing the inflammation and oxidative stress, as well as inhibiting the pathological lesions in kidney and lung tissues, the autophagy could effectively ameliorate IRI-induced AKI and ALI. CONCLUSIONS Autophagy plays an important role in AKI-induced ALI, which could be used as a new target for AKI therapy and reduce the mortality caused by the complication.
Collapse
Affiliation(s)
- Ruolin Wang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siheng Shen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Luyong Jian
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuhua Liu
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Yuan
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huahui Guo
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiasheng Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Penghui Chen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Renfa Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
8
|
Abou Baker DH. Can natural products modulate cytokine storm in SARS-CoV2 patients? BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00749. [PMID: 35702395 PMCID: PMC9181898 DOI: 10.1016/j.btre.2022.e00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
Abstract
Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases exhibit higher levels of cytokines, leading to a "cytokine storm" that further increases disease severity and causes acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production could be a potential therapeutic option for patients severely infected with SARS-CoV2. Given the current scenario, great scientific progress has been made in understanding the disease and its forms of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the development of new therapies and vaccines. Finally, the aim and approach of this review article is to highlight current research on the possible use of natural products with promising potential as immune response activators. Moreover, consider the expected use of natural products when developing potential therapies and vaccines.
Collapse
Affiliation(s)
- Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Pharmaceutical and Drug Industries Institute, Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
9
|
McNulty MT, Fermin D, Eichinger F, Jang D, Kretzler M, Burtt NP, Pollak MR, Flannick J, Weins A, Friedman DJ, Sampson MG. A glomerular transcriptomic landscape of apolipoprotein L1 in Black patients with focal segmental glomerulosclerosis. Kidney Int 2022; 102:136-148. [PMID: 34929253 PMCID: PMC9206042 DOI: 10.1016/j.kint.2021.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Apolipoprotein L1 (APOL1)-associated focal segmental glomerulosclerosis (FSGS) is the dominant form of FSGS in Black individuals. There are no targeted therapies for this condition, in part because the molecular mechanisms underlying APOL1's pathogenic contribution to FSGS are incompletely understood. Studying the transcriptomic landscape of APOL1 FSGS in patient kidneys is an important way to discover genes and molecular behaviors that are unique or most relevant to the human disease. With the hypothesis that the pathology driven by the high-risk APOL1 genotype is reflected in alteration of gene expression across the glomerular transcriptome, we compared expression and co-expression profiles of 15,703 genes in 16 Black patients with FSGS at high-risk vs 14 Black patients with a low-risk APOL1 genotype. Expression data from APOL1-inducible HEK293 cells and normal human glomeruli were used to pursue genes and molecular pathways uncovered in these studies. We discovered increased expression of APOL1 and nine other significant differentially expressed genes in high-risk patients. This included stanniocalcin, which has a role in mitochondrial and calcium-related processes along with differential correlations between high- and low-risk APOL1 and metabolism pathway genes. There were similar correlations with extracellular matrix- and immune-related genes, but significant loss of co-expression of mitochondrial genes in high-risk FSGS, and an NF-κB-down regulating gene, NKIRAS1, as the most significant hub gene with strong differential correlations with NDUF family (mitochondrial respiratory genes) and immune-related (JAK-STAT) genes. Thus, differences in mitochondrial gene regulation appear to underlie many differences observed between high- and low-risk Black patients with FSGS.
Collapse
Affiliation(s)
- Michelle T McNulty
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Kidney Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
| | - Damian Fermin
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Dongkeun Jang
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA; Metabolism Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Martin R Pollak
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA; Metabolism Program, Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Astrid Weins
- Harvard Medical School, Boston, Massachusetts, USA
| | - David J Friedman
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Kidney Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Xie J, Cheng N, Huang Z, Shu X, Xiang T. miR‑146b‑5p activation of hepatic stellate cells contributes to the progression of fibrosis by directly targeting HIPK1. Exp Ther Med 2022; 24:537. [PMID: 35837064 PMCID: PMC9257962 DOI: 10.3892/etm.2022.11474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/07/2022] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to explore the biological functions of microRNA (miR)-146b-5p and homeodomain interacting protein kinase 1 (HIPK1) in the progression of hepatic fibrosis (HF) and to identify the underlying mechanism. A rat HF model was established by administering a subcutaneous injection of carbon tetrachloride (CCl4). Relative levels of miR-146b-5p and HIPK1 in fibrotic rat liver tissues and the rat hepatic stellate cell (HSC) line HSC-T6 were measured by quantitative reverse transcription PCR, western blotting and immunohistochemistry. Following activation of HSC-T6 cells by lipopolysaccharide (LPS) induction, cell viability was examined by MTT assay. Transfection of miR-146b-5p mimic or inhibitor into HSC-T6 cells was performed, with the aim to identify the influence of miR-146b-5p on HSC-T6 cell behavior. The targeting relationship between miR-146b-5p and HIPK1 was predicted by TargetScan 7.2 and StarBase 3.0 and it was later verified by a dual-luciferase reporter assay. Through lentivirus transfection, the biological function of HIPK1 in regulating the progression of HF and the underlying mechanism were investigated. The results showed that miR-146b-5p was upregulated in liver tissues of rats with HF and activated HSC-T6 cells, while HIPK1 was downregulated in liver tissues of rats with HF and activated HSC-T6 cells. miR-146b-5p was able to upregulate the activation markers of LPS-induced HSC-T6 cells, upregulate COL1A1 and TGF-β, increase cell viability and contribute to fibrosis progression. HIPK1 was validated as the direct target of miR-146b-5p and its overexpression could effectively reduce the effect of miR-146b-5p in contribution to the progression of HF. In conclusion, miR-146b-5p was significantly upregulated during the progression of HF. By targeting and downregulating HIPK1, miR-146b-5p could significantly activate HSCs, upregulate COL1A1 and TGF-β and contribute to fibrosis progression. miR-146b-5p is a potential biomarker and therapeutic target for HF.
Collapse
Affiliation(s)
- Junfeng Xie
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 33000, P.R. China
| | - Zhanchao Huang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xu Shu
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
11
|
Su G, Qu Y, Li G, Deng M. Sevoflurane protects against cerebral ischemia/reperfusion injury via microrna-30c-5p modulating homeodomain-interacting protein kinase 1. Bioengineered 2021; 12:11858-11871. [PMID: 34709114 PMCID: PMC8810137 DOI: 10.1080/21655979.2021.1999551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022] Open
Abstract
Sevoflurane (SEV) has been reported to be an effective neuroprotective agent for cerebral ischemia/reperfusion injury (CIRI). However, the precise molecular mechanisms of Sev preconditioning in CIRI remain largely unknown. Therefore, CIRI model was established via middle cerebral artery occlusion method. SEV was applied before modeling. after successful modeling, lentivirus was injected into the lateral ventricle of the brain. Neurological impairment score was performed in each group, and histopathologic condition, infarct volume, apoptosis, inflammation, oxidative stress, microRNA (miR)-30 c-5p and homeodomain-interacting protein kinase 1 (HIPK1) were detected. Mouse hippocampal neuronal cell line HT22 cells were pretreated with SEV, and the in vitro model was stimulated via oxygen-glucose deprivation and reoxygenation. The corresponding plasmids were transfected, and the cell growth was detected, including inflammation and oxidative stress, etc. The targeting of miR-30 c-5p with HIPK1 was examined. The results clarified that reduced miR-30 c-5p and elevated HIPK1 were manifested in CIRI. SEV could improve CIRI and modulate the miR-30 c-5p-HIPK1 axis in vitro and in vivo, and miR-30 c-5p could target HIPK1. Depressed miR-30 c-5p could eliminate the protection of SEV in vitro and in vivo. Repression of HIPK1 reversed the effect of reduced miR-30 c-5p on CIRI. Therefore, it is concluded that SEV is available to depress CIRI via targeting HIPK1 through upregulated miR-30 c-5p.
Collapse
Affiliation(s)
- Guoning Su
- Department of Anesthesia, Affiliated Hospital of Yunnan University, KunMing City, China
| | - Yan Qu
- Department of Anesthesia, Affiliated Hospital of Yunnan University, KunMing City, China
| | - Gang Li
- Department of Anesthesia, Affiliated Hospital of Yunnan University, KunMing City, China
| | - Min Deng
- Department of Anesthesia, Affiliated Hospital of Yunnan University, KunMing City, China
| |
Collapse
|
12
|
Yang N, Wang H, Zhang L, Lv J, Niu Z, Liu J, Zhang Z. Long non-coding RNA SNHG14 aggravates LPS-induced acute kidney injury through regulating miR-495-3p/HIPK1. Acta Biochim Biophys Sin (Shanghai) 2021; 53:719-728. [PMID: 33856026 DOI: 10.1093/abbs/gmab034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a complex syndrome with an abrupt decrease of kidney function, which is associated with high morbidity and mortality. Sepsis is the common cause of AKI. Mounting evidence has demonstrated that long non-coding RNAs (lncRNAs) play critical roles in the development and progression of sepsis-induced AKI. In this study, we aimed to illustrate the function and mechanism of lncRNA SNHG14 in lipopolysaccharide (LPS)-induced AKI. We found that SNHG14 was highly expressed in the plasma of sepsis patients with AKI. SNHG14 inhibited cell proliferation and autophagy and promoted cell apoptosis and inflammatory cytokine production in LPS-stimulated HK-2 cells. Functionally, SNHG14 acted as a competing endogenous RNA (ceRNA) to negatively regulate miR-495-3p expression in HK-2 cells. Furthermore, we identified that HIPK1 is a direct target of miR-495-3p in HK-2 cells. We also revealed that the SNHG14/miR-495-3p/HIPK1 interaction network regulated HK-2 cell proliferation, apoptosis, autophagy, and inflammatory cytokine production upon LPS stimulation. In addition, we demonstrated that the SNHG14/miR-495-3p/HIPK1 interaction network regulated the production of inflammatory cytokines (TNF-α, IL-6, and IL-1β) via modulating NF-κB/p65 signaling in LPS-challenged HK-2 cells. In conclusion, our findings suggested a novel therapeutic axis of SNHG14/miR-495-3p/HIPK1 to treat sepsis-induced AKI.
Collapse
Affiliation(s)
- Ni Yang
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Hai Wang
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Li Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Junhua Lv
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zequn Niu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jie Liu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhengliang Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
13
|
Zhao X, Zhao B, Zhao Y, Zhang Y, Qian M. Protective effect of anisodamine on bleomycin-induced acute lung injury in immature rats via modulating oxidative stress, inflammation, and cell apoptosis by inhibiting the JAK2/STAT3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:859. [PMID: 34164493 PMCID: PMC8184412 DOI: 10.21037/atm-21-1750] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Pediatric acute lung injury (ALI) is one of the most common causes of infant mortality. Although lung-protective strategies have developed in recent years, no ALI treatment is currently available. Anisodamine (Ani) is a common drug used to treat gastrointestinal smooth muscle spasm. The protective effects of Ani against acute kidney injury and myocardial injury have been reported. However, the efficacy of Ani on bleomycin (BLM)-induced ALI has not been examined previously. In the present study, we aimed to examine the effects of Ani on bleomycin (BLM)-induced ALI on immature rats. Methods The ALI rat model was established by intratracheally administration of BLM. Ani treatment was performed by an intravenous injection at different concentrations. The lung function of each rat was measured, and then lung tissue structures, apoptosis, and collagen deposition were observed by hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling assay, and Masson’s staining, respectively. Enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. The expression of apoptosis-related proteins and fibrosis-related markers was determined by reverse transcription-polymerase chain reaction and/or Western blot analysis. Finally, the expression levels of Janus tyrosine kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were determined. Results Our findings indicated that lung function was remarkably decreased in BLM-induced rats, which could be reversed by Ani. Ani treatment increased the levels of antioxidant enzymes, decreased the apoptotic rate and apoptosis-related proteins, and downregulated the expression of fibrosis-related markers. Additionally, Ani treatment also attenuated inflammatory response and suppressed the activation of the JAK2/STAT3 pathway. Conclusions Our results demonstrated that Ani had potent activity against BLM-induced ALI in immature rats through inhibiting the JAK2/STAT3 signaling pathway. Our findings provide supporting evidence to further investigate the therapeutic effect of Ani against ALI in children.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Neonatology, the Second Hospital of Jilin University, Changchun, China
| | - Bin Zhao
- Department of Neurosurgery, the Second Hospital of Jilin University, Changchun, China
| | - Yinghao Zhao
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Yunfeng Zhang
- Department of Neonatology, the Second Hospital of Jilin University, Changchun, China
| | - Min Qian
- Department of Neonatology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Potential Antioxidative, Anti-inflammatory and Immunomodulatory Effects of Ghrelin, an Endogenous Peptide from the Stomach in SARS-CoV2 Infection. Int J Pept Res Ther 2021; 27:1875-1883. [PMID: 33880115 PMCID: PMC8050636 DOI: 10.1007/s10989-021-10217-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
The current COVID-19 pandemic is one of the most devastating events in recent history. The respiratory effects of this disease include acute respiratory distress syndrome, systemic inflammation, cytokine storm, and pulmonary fibrosis. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is a peptide hormone secreted mainly by the stomach. Interestingly, ghrelin possesses promising antioxidant, anti-and inflammatory effects, making it an attractive agent to reduce the complications of the SARS-CoV-2. In addition, ghrelin exerts a wide range of immunomodulatory and anti-inflammatory effects and can mitigate the uncontrolled cytokine production responsible for acute lung injury by upregulating PPARγ and down-regulating NF-κB expression. Ghrelin has also been reported to enhance Nrf2 expression in inflammatory conditions which led to the suppression of oxidative stress. The current opinion summarizes the evidence for the possible pharmacological benefits of ghrelin in the therapeutic management of SARS-CoV-2 infection.
Collapse
|
15
|
Zhu Y, Su Y, Zhang J, Zhang Y, Li Y, Han Y, Dong X, Li W, Li W. Astragaloside IV alleviates liver injury in type 2 diabetes due to promotion of AMPK/mTOR‑mediated autophagy. Mol Med Rep 2021; 23:437. [PMID: 33846768 PMCID: PMC8060804 DOI: 10.3892/mmr.2021.12076] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic liver injury is a serious complication of type 2 diabetes mellitus (T2DM), which is often irreversible in the later stage, and affects the quality of life. Autophagy serves an important role in the occurrence and development of diabetic liver injury. For example, it can improve insulin resistance (IR), dyslipidaemia, oxidative stress and inflammation. Astragaloside IV (AS-IV) is a natural saponin isolated from the plant Astragalus membranaceus, which has comprehensive pharmacological effects, such as anti-oxidation, anti-inflammation and anti-apoptosis properties, as well as can enhance immunity. However, whether AS-IV can alleviate diabetic liver injury in T2DM and its underlying mechanisms remain unknown. The present study used high-fat diets combined with low-dose streptozotocin to induce a diabetic liver injury model in T2DM rats to investigate whether AS-IV could alleviate diabetic liver injury and to identify its underlying mechanisms. The results demonstrated that AS-IV treatment could restore changes in food intake, water intake, urine volume and body weight, as well as improve liver function and glucose homeostasis in T2DM rats. Moreover, AS-IV treatment promoted suppressed autophagy in the liver of T2DM rats and improved IR, dyslipidaemia, oxidative stress and inflammation. In addition, AS-IV activated adenosine monophosphate-activated protein kinase (AMPK), which inhibited mTOR. Taken together, the present study suggested that AS-IV alleviated diabetic liver injury in T2DM rats, and its mechanism may be associated with the promotion of AMPK/mTOR-mediated autophagy, which further improved IR, dyslipidaemia, oxidative stress and inflammation. Thus, the regulation of autophagy may be an effective strategy to treat diabetic liver injury in T2DM.
Collapse
Affiliation(s)
- Yunfeng Zhu
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Zhang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanhua Zhang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weiping Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
16
|
Lee SI, Lim CM, Koh Y, Huh JW, Lee JS, Hong SB. The effectiveness of vitamin C for patients with severe viral pneumonia in respiratory failure. J Thorac Dis 2021; 13:632-641. [PMID: 33717536 PMCID: PMC7947518 DOI: 10.21037/jtd-20-1306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Vitamin C is a well-known antioxidant and essential cofactor for numerous biological reactions. Several studies reported that vitamin C can improve the symptoms and prognosis of patients with sepsis and respiratory infection. We aimed to examine the effect of vitamin C when used in viral pneumonia patients with severe respiratory failure. Methods Total 201 patients with viral pneumonia were included, of them 35 patients used vitamin C. We performed a statistical analysis through a propensity score matching of the age and baseline characteristics of these patients. Results There were differences between the vitamin C group and non-vitamin C group in terms of age (60±15 vs. 66±14, P=0.03), extracorporeal membrane oxygenation (28.6% vs. 5.4%, P<0.001), and procalcitonin (3±8 vs. 9±23, P=0.02). The 28-day mortality was not different between the two groups (20.0% vs. 24.7%, P=0.33). In the propensity-matched group, the 28-day mortality was not significantly different between the two groups (20.0% vs. 37.1%, P=0.07). Moreover, no difference was observed in shock reversal within 14 days (45.7% vs. 25.7%, P=0.08) and recovery after acute kidney injury (52.9% vs. 66.7%, P=0.41) between the two groups. Vitamin C was not a prognostic factor for 28-day mortality (P=0.33). Conclusions In this study adjunctive intravenous vitamin C therapy alone was not associated with improvement of the 28-day mortality and prognosis in patients with severe viral pneumonia with respiratory failure.
Collapse
Affiliation(s)
- Song-I Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Pulmonary and Critical Care Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Hossain KS, Hossain MG, Moni A, Rahman MM, Rahman UH, Alam M, Kundu S, Rahman MM, Hannan MA, Uddin MJ. Prospects of honey in fighting against COVID-19: pharmacological insights and therapeutic promises. Heliyon 2020; 6:e05798. [PMID: 33363261 PMCID: PMC7750705 DOI: 10.1016/j.heliyon.2020.e05798] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Honey and its compounds are drawing attention as an effective natural therapy because of its ability to attenuate acute inflammation through enhancing immune response. Several studies have proved its potential healing capability against numerous chronic diseases/conditions, including pulmonary disorders, cardiac disorders, diabetes, hypertension, autophagy dysfunction, bacterial, and fungal infections. More importantly, honey has proved its virucidal effect on several enveloped viruses such as HIV, influenza virus, herpes simplex, and varicella-zoster virus. Honey may be beneficial for patients with COVID-19 which is caused by an enveloped virus SARS-CoV-2 by boosting the host immune system, improving comorbid conditions, and antiviral activities. Moreover, a clinical trial of honey on COVID-19 patients is currently undergoing. In this review, we have tried to summarize the potential benefits of honey and its ingredients in the context of antimicrobial activities, some chronic diseases, and the host immune system. Thus, we have attempted to establish a relationship with honey for the treatment of COVID-19. This review will be helpful to reconsider the insights into the possible potential therapeutic effects of honey in the context of the COVID-19 pandemic. However, the effects of honey on SARS-CoV-2 replication and/or host immune system need to be further investigated by in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | | | | | - Mohaimanul Alam
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md. Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| |
Collapse
|
18
|
de Sá Coutinho D, Pires J, Gomes H, Raffin Pohlmann A, Stanisçuaski Guterres S, Rodrigues e Silva PM, Martins MA, Ferrarini SR, Bernardi A. Pequi ( Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics 2020; 12:pharmaceutics12111075. [PMID: 33187057 PMCID: PMC7696187 DOI: 10.3390/pharmaceutics12111075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Pequi is a Brazilian fruit used in folk medicine for pulmonary diseases treatment, but its oil presents bioavailability limitations. The use of nanocarriers can overcome this limitation. We developed nanoemulsions containing pequi oil (pequi-NE) and evaluated their effects in a lipopolysaccharide (LPS)-induced lung injury model. Free pequi oil or pequi-NE (20 mg/kg) was orally administered to A/J mice 16 and 4 h prior to intranasal LPS exposure, and the analyses were performed 24 h after LPS provocation. The physicochemical results revealed that pequi-NE comprised particles with mean diameter of 174–223 nm, low polydispersity index (0.11 ± 0.01), zeta potential of −7.13 ± 0.08 mV, and pH of 5.83 ± 0.12. In vivo evaluation showed that free pequi oil pretreatment reduced the influx of inflammatory cells into bronchoalveolar fluid (BALF), while pequi-NE completely abolished leukocyte accumulation. Moreover, pequi-NE, but not free pequi oil, reduced myeloperoxidase (MPO), TNF-α, IL-1β, IL-6, MCP-1, and KC levels. Similar anti-inflammatory effects were observed when LPS-exposed animals were pre-treated with the nanoemulsion containing pequi or oleic acid. These results suggest that the use of nanoemulsions as carriers enhances the anti-inflammatory properties of oleic acid-containing pequi oil. Moreover, pequi’s beneficial effect is likely due its high levels of oleic acid.
Collapse
Affiliation(s)
- Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Jader Pires
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
| | - Hyago Gomes
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | | | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Marco Aurelio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Stela Regina Ferrarini
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
- Correspondence: (S.R.F.); (A.B.)
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
- Correspondence: (S.R.F.); (A.B.)
| |
Collapse
|
19
|
Islam MN, Hossain KS, Sarker PP, Ferdous J, Hannan MA, Rahman MM, Chu DT, Uddin MJ. Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother Res 2020; 35:1329-1344. [PMID: 33047412 PMCID: PMC7675410 DOI: 10.1002/ptr.6895] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/08/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Abstract
Nigella sativa seed and its active compounds have been historically recognized as an effective herbal panacea that can establish a balanced inflammatory response by suppressing chronic inflammation and promoting healthy immune response. The essential oil and other preparations of N. sativa seed have substantial therapeutic outcomes against immune disturbance, autophagy dysfunction, oxidative stress, ischemia, inflammation, in several COVID‐19 comorbidities such as diabetes, cardiovascular disorders, Kawasaki‐like diseases, and many bacterial and viral infections. Compelling evidence in the therapeutic efficiency of N. sativa along with the recent computational findings is strongly suggestive of combating emerged COVID‐19 pandemic. Also, being an available candidate in nutraceuticals, N. sativa seed oil could be immensely potential and feasible to prevent and cure COVID‐19. This review was aimed at revisiting the pharmacological benefits of N. sativa seed and its active metabolites that may constitute a potential basis for developing a novel preventive and therapeutic strategy against COVID‐19. Bioactive compounds of N. sativa seed, especially thymiquinone, α‐hederin, and nigellidine, could be alternative and promising herbal drugs to combat COVID‐19. Preclinical and clinical trials are required to delineate detailed mechanism of N. sativa's active components and to investigate their efficacy and potency under specific pathophysiological conditions of COVID‐19.
Collapse
Affiliation(s)
- Mohammad Nazrul Islam
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.,ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Khandkar Shaharina Hossain
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Partha Protim Sarker
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Mawlana Bhashani Science and Technology University Santosh, Tangail, Bangladesh
| | - Jannatul Ferdous
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Department of Physiology, Biochemistry and Pharmacology, Chottogram Veterinary and Animal Science University, Chottogram, Bangladesh
| | - Md Abdul Hannan
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Dinh-Toi Chu
- Hanoi National University of Education, Hanoi, Vietnam
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Guo L, Wu X, Zhao S, Zhang X, Qian G, Li S. Autophagy inhibition protects from alveolar barrier dysfunction in LPS-induced ALI mice by targeting alveolar epithelial cells. Respir Physiol Neurobiol 2020; 283:103532. [PMID: 32950660 DOI: 10.1016/j.resp.2020.103532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/18/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether autophagy is enhanced in alveolar epithelial cells as well as its role in alveolar barrier function of in lipopolysaccharide (LPS)-induced ALI mice. MATERIALS AND METHODS Autophagy inhibitors, including 3-methyladenine (3-MA) and chloroquine (CLQ), and LPS were intraperitoneally administered to mice. Histological evaluation and confocal microscopy, Western blot, transmission electron microscopy, and ELISA were performed for analysis. First, the mouse model of ALI was established. Then, autophagy level changes in the mouse lung as well as the effects of autophagy inhibition on indirect ALI and alveolar epithelial barrier function induced by LPS were assessed. Finally, pro-inflammatory factors in BALF from ALI mice after autophagy inhibition by 3-MA or CLQ administration were detected. RESULTS The experimental animal model of LPS-induced ALI had the expected features. In addition, autophagy in alveolar epithelial cells in ALI mice was enhanced. Furthermore, autophagy in alveolar epithelial cells promoted alveolar epithelial barrier dysfunction in LPS-induced ALI. Finally, autophagy inhibition resulted in reduced LPS-induced lung tissue inflammation. CONCLUSION These findings suggest that autophagy inhibition protects from alveolar barrier dysfunction in LPS-induced ALI mice by targeting alveolar epithelial cells.
Collapse
Affiliation(s)
- Liang Guo
- Institute of Respiratory Disease, (Xinqiao Hospital) The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xueling Wu
- Department of Respiratory Medicine, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Shengtao Zhao
- Department of Respiratory Medicine, 920th Hospital of Joint Logistics Support Force of of PLA, Kunming, 652230, Yunnan Province, China
| | - Xin Zhang
- Department of Respiratory Medicine, 920th Hospital of Joint Logistics Support Force of of PLA, Kunming, 652230, Yunnan Province, China
| | - Guisheng Qian
- Institute of Respiratory Disease, (Xinqiao Hospital) The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Shaoying Li
- Department of Respiratory Medicine, 920th Hospital of Joint Logistics Support Force of of PLA, Kunming, 652230, Yunnan Province, China.
| |
Collapse
|
21
|
Cheng RZ, Kogan M, Davis D. Ascorbate as Prophylaxis and Therapy for COVID-19-Update From Shanghai and U.S. Medical Institutions. Glob Adv Health Med 2020; 9:2164956120934768. [PMID: 32733775 PMCID: PMC7372609 DOI: 10.1177/2164956120934768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 01/28/2023] Open
Abstract
Background No validated treatments have been identified for the COVID-19 pandemic virus; several
are currently in randomized clinical trials. Diagnostic instruments are rapidly
evolving. Symptoms range from those of a common cold to acute respiratory distress
syndrome (ARDS), to sepsis arising from the flood of inflammatory bacterial and viral
pathogens in the blood. Mortality generally arises from cytokine storms of uncontrolled
inflammation, oxidative injury, and damage to the alveolar-capillary barrier, with
secondary bacterial infection. To address the indisputably urgent need for therapeutics
for COVID-19, a specialized interdisciplinary medical panel convened in Shanghai in
March 2020 to consider all relevant clinical and experimental evidence on the possible
utility of intravenous (IV) ascorbate in the treatment of COVID-19-related ARDS. Methods The panel convened multidisciplinary medical experts and reviewed all relevant in
vitro, in vivo, clinical studies and randomized controlled trials on IV ascorbate and
issued a consensus report on 23 March 2020 noting that substantial differences in serum
concentrations of ascorbate are achieved through IV administration in contrast with the
oral route. Findings The Shanghai panel, and a parallel medical group in Guangzhou, are advising the use of
high-dose IV ascorbate for the treatment of ARDS, along with other supportive therapies,
including Vitamin D and zinc. We report preliminary progress in using this treatment for
50 consecutive cases treated in Shanghai hospitals, consistent with earlier reports from
a meta-analysis of the use of IV ascorbate to treat sepsis. We provide an instructive
clinical anecdote regarding a single family where one elderly member with cardiac and
other major comorbidities developed and survived ARDS-related sepsis following daily
treatments that included 15 g of IV ascorbate. None of her adult caregivers who had
ingested between 2 and 10 g of ascorbate daily developed COVID-19.
Collapse
Affiliation(s)
| | - Mikhail Kogan
- GW Center for Integrative Medicine, Washington, District of Columbia.,Department of Medicine, George Washington University, Washington, District of Columbia.,AIM Health Institute, Washington, District of Columbia
| | - Devra Davis
- Division of Research and Development, Environmental Health Trust, Teton Village, Wyoming
| |
Collapse
|
22
|
Lv X, Lu X, Zhu J, Wang Q. Lipopolysaccharide-Induced Acute Lung Injury Is Associated with Increased Ran-Binding Protein in Microtubule-Organizing Center (RanBPM) Molecule Expression and Mitochondria-Mediated Apoptosis Signaling Pathway in a Mouse Model. Med Sci Monit 2020; 26:e923172. [PMID: 32680981 PMCID: PMC7386048 DOI: 10.12659/msm.923172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Acute lung injury (ALI) is a severe and life-threatening disorder treated in intensive care units. This study aimed to determine molecules or associated signaling pathways that are involved in lipopolysaccharide (LPS)-induced inflammation in an ALI model. Material/Methods An ALI mouse model was established by administering LPS (25 mg/kg via intratracheal instillation). Thirty-two ALI mice were divided into Model-4 h, Model-8 h, Model-12 h, and Model-24 h groups, while another 8 mice without LPS treatment were assigned as the Control group. Hematoxylin-eosin (HE) staining was used to evaluate inflammation of lung tissues. Wet weight/dry weight (W/D) ratio and myeloperoxidase (MPO) activity of lung tissue in ALI mice were evaluated. Expressions of Bcl-2, Bcl-XL, Bak, Bax, cleaved caspase-3 (C-caspase-3), and Ran-binding protein in microtubule-organizing center (RanBPM) were determined using Western blot analysis. Results LPS administration caused obvious inflammatory cell infiltration of lung tissues in ALI mice. The W/D ratio of ALI mouse lung tissues was significantly higher in Model groups than in the Control group (p<0.05). MPO activity of ALI mice was remarkably higher in Model groups compared to the Control group (p<0.05). LPS-induced ALI model mice exhibited significantly higher levels of C-caspase 3 lung tissues compared to the Control group (p<0.05). LPS-induced ALI model mice had significantly lower Bcl-XL/Bcl-2 and remarkably higher Bak/Bax expression compared with the Control group (p<0.05). LPS-induced ALI model mice displayed obviously higher RanBPM expression than in the Control group (p<0.05). Conclusions Lipopolysaccharide-induced acute lung injury is associated with increased RanBPM molecule expression and with mitochondria-mediated apoptosis signaling pathway in a mouse model.
Collapse
Affiliation(s)
- Xiaojing Lv
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xiaomin Lu
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Jiping Zhu
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Qian Wang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
23
|
Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PHARMANUTRITION 2020; 12:100190. [PMID: 32322486 PMCID: PMC7172861 DOI: 10.1016/j.phanu.2020.100190] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
The recent outbreak of Covid19 has required urgent treatments for numerous patients. No suitable vaccines or antivirals are available for Covid19. The efficiency against Covid19 of WHO therapies of choice, that are two antivirals developed for other pathologies, is controversial. Therefore, alternative approaches are required. Intravenous (IV) Vitamin C (Vit-C) has emerged as one of the other alternatives for this purpose. Here we review the effects of IV Vit-C on the immune system response, the antiviral properties of IV Vit-C, and finally the antioxidant properties of IV Vit-C to specifically address the cytokines' storm characteristic of the Acute Respiratory Distress Syndrome (ARDS) that occur in the later cycle of the Covid19 infectious disease.
Collapse
Affiliation(s)
- Alberto Boretti
- Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952, Saudi Arabia
| | - Bimal Krishna Banik
- Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952, Saudi Arabia
| |
Collapse
|
24
|
Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? MEDICINE IN DRUG DISCOVERY 2020; 5:100028. [PMID: 32328576 PMCID: PMC7167497 DOI: 10.1016/j.medidd.2020.100028] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/17/2023] Open
|
25
|
Dapk1 improves inflammation, oxidative stress and autophagy in LPS-induced acute lung injury via p38MAPK/NF-κB signaling pathway. Mol Immunol 2020; 120:13-22. [PMID: 32045770 DOI: 10.1016/j.molimm.2020.01.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/25/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the impact of death-associated protein kinase 1 (Dapk1) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) via p38MAPK/NF-κB pathway. METHODS Dapk1+/+ and Dapk1-/- mice were randomized into Control, LPS, SB203580 (a p38MAPK pathway inhibitor) + LPS, and PDTC (a NF-κB pathway inhibitor) + LPS groups. Cell counts, lung wet to dry weight ratio (W/D weight ratio), as well as indicators of oxidative stress were determined followed by the detection with HE staining, ELISA, qRT-PCR, Western blotting and Immunofluorescence. Besides, to explore whether the effect of Dapk1 on ALI directly mediated via p38MAPK/NF-κB pathway, mice were injected with TC-DAPK 6 (a Dapk1 inhibitor) with or without SB203580/PDTC before LPS administration. RESULTS LPS induced lung injury with increased lung W/D weight ratio, which could be partly reversed by SB203580 and PDTC in LPS-induced mice with activated p38MAPK/NF-κB pathway in lung tissues, especially in Dapk1-/- mice. SB203580 and PDTC reduced total cells and neutrophils in BALF in LPS-induced mice, accompanying with decreased levels of TNF-α, IL-6, MPO, LPO and MDA and the expressions of beclin-1, Atg5 and LC3II, but with the up-regulated activities of SOD and GSH-Px, as well as p62 protein expression. Besides, TC-DAPK 6 aggravated the pathologic injury in LPS-induced ALI with more serious inflammatory response, oxidative stress and autophagy as well as the activated p38MAPK/NF-κB pathway, which were reversed by SB203580 or PDTC. CONCLUSION Dapk1 improved oxidative stress, inhibited autophagy, and reduce inflammatory response of LPS-induced ALI mice by inhibiting p38MAPK/NF-κB pathway.
Collapse
|