1
|
Gründling A, Brogan AP, James MJ, Ramirez-Guadiana FH, Roney IJ, Bernhardt TG, Rudner DZ. PgpP is a broadly conserved phosphatase required for phosphatidylglycerol lipid synthesis. Proc Natl Acad Sci U S A 2025; 122:e2418775122. [PMID: 39869797 PMCID: PMC11804483 DOI: 10.1073/pnas.2418775122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025] Open
Abstract
The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in Escherichia coli have been identified and characterized decades ago. However, it has remained poorly understood how gram-positive bacteria perform the terminal step in the pathway that produces this essential lipid. In E. coli, this reaction is mediated by three functionally redundant phosphatases that convert phosphatidylglycerophosphate (PGP) into PG. Here, we show that homologs of these enzymes in Bacillus subtilis are not required for PG synthesis. Instead, we identified a previously uncharacterized B. subtilis protein, YqeG (renamed PgpP), as an essential enzyme required for the conversion of PGP into PG. Expression of B. subtilis or Staphylococcus aureus PgpP in E. coli lacking all three Pgp enzymes supported the growth of the strain. Furthermore, depletion of PgpP in B. subtilis led to growth arrest, reduced membrane lipid staining, and accumulation of PGP. PgpP is broadly conserved among Firmicutes and Cyanobacteria. Homologs are also present in yeast mitochondria and plant chloroplasts, suggesting that this widely distributed enzyme has an ancient origin. Finally, evidence suggests that PgpP homologs are essential in many gram-positive pathogens and thus the enzyme represents an attractive target for antibiotic development.
Collapse
Affiliation(s)
- Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, United Kingdom
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Anna P. Brogan
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Michael J. James
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | | | - Ian J. Roney
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| | - David Z. Rudner
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
2
|
Zong H, Zhang L, Cheng Y, Sheng Z, Zhuge B, Lu X. Efficient Autoinducible Expression of Recombinant Proteins via the DegSU Quorum Sensing System in a Robust Bacillus subtilis. ACS Synth Biol 2025; 14:273-284. [PMID: 39757760 DOI: 10.1021/acssynbio.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
DegSU quorum sensing (QS) system enables autoinducible expression of recombinant proteins in Bacillus subtilis . However, insufficient promoter strength and a complex regulatory circuit limit its practical application. Here, the QS-responsive promoter PaprE was modified by core region mutation, upstream truncation, and addition of activating binding sites, yielding PE742 with a 118.3% increase in strength. A mathematical model was developed to accurately quantify the regulatory process from a comprehensive perspective. Guided by this model, the DegSU QS system was further optimized in a robust B. subtilis by knocking out competitive target genes sacB and amyE, operons pgs and srfA, introducing variants degUL113F and degQ36Hy, and increasing regulatory strength by 84.0%. A 52.5% increase in acetoin titer and a 65.9% increase in extracellular carboxypeptidase activity validated the industrial value of this study. Overall, this study addresses the limitations of the DegSU QS system in practical application and demonstrates its potential for high-level recombinant protein production.
Collapse
Affiliation(s)
- Hong Zong
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liya Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yiwen Cheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiying Sheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Omardien S, Drijfhout JW, Vaz FM, Wenzel M, Hamoen LW, Zaat SA, Brul S. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2404-2415. [DOI: 10.1016/j.bbamem.2018.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
|
6
|
Dugail I, Kayser BD, Lhomme M. Specific roles of phosphatidylglycerols in hosts and microbes. Biochimie 2017; 141:47-53. [DOI: 10.1016/j.biochi.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/04/2017] [Indexed: 11/25/2022]
|
7
|
Matsuoka S, Seki T, Matsumoto K, Hara H. Suppression of abnormal morphology and extracytoplasmic function sigma activity in Bacillus subtilis ugtP mutant cells by expression of heterologous glucolipid synthases from Acholeplasma laidlawii. Biosci Biotechnol Biochem 2016; 80:2325-2333. [PMID: 27684739 DOI: 10.1080/09168451.2016.1217147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glucolipids in Bacillus subtilis are synthesized by UgtP processively transferring glucose from UDP-glucose to diacylglycerol. Here we conclude that the abnormal morphology of a ugtP mutant is caused by lack of glucolipids, since the same morphology arises after abolition of glucolipid production by disruption of pgcA and gtaB, which are involved in UDP-glucose synthesis. Conversely, expression of a monoglucosyldiacylglycerol (MGlcDG) produced by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppressed the ugtP disruptant phenotype. Activation of extracytoplasmic function (ECF) sigmas (SigM, SigV, and SigX) in the ugtP mutant was decreased by alMGS expression, and was suppressed to low levels by MgSO4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) were simultaneously expressed, SigX activation was repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and DGlcDG regulates SigX activity.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- a Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Takahiro Seki
- a Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Kouji Matsumoto
- a Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Hiroshi Hara
- a Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| |
Collapse
|
8
|
Helmann JD. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr Opin Microbiol 2016; 30:122-132. [PMID: 26901131 DOI: 10.1016/j.mib.2016.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 01/20/2023]
Abstract
Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Kusaka J, Shuto S, Imai Y, Ishikawa K, Saito T, Natori K, Matsuoka S, Hara H, Matsumoto K. Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res Microbiol 2015; 167:202-14. [PMID: 26708983 DOI: 10.1016/j.resmic.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
Abstract
The acidic phospholipid cardiolipin (CL) is localized on polar and septal membranes and plays an important physiological role in Bacillus subtilis cells. ClsA, the enzyme responsible for CL synthesis, is also localized on septal membranes. We found that GFP fusion proteins of the enzyme with NH2-terminal and internal deletions retained septal localization. However, derivatives with deletions starting from the COOH-terminus (Leu482) ceased to localize to the septum once the deletion passed the Ile residue at 448, indicating that the sequence responsible for septal localization is confined within a short distance from the COOH-terminus. Two sequences, Ile436-Leu450 and Leu466-Leu478, are predicted to individually form an amphipathic α-helix. This configuration is known as a membrane targeting sequence (MTS) and we therefore refer to them as MTS2 and MTS1, respectively. Either one has the ability to affect septal localization, and each of these sequences by itself localizes to the septum. Membrane association of the constructs of this enzyme containing the MTSs was verified by subcellular fractionation of the cells. CL synthesis, in contrast, was abolished after deleting just the last residue, Leu482, in the COOH-terminal four amino acid residue sequence, Ser-Pro-Ile-Leu, which is highly conserved among bacterial CL synthases.
Collapse
Affiliation(s)
- Jin Kusaka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Satoshi Shuto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Yukiko Imai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Kazuki Ishikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Tomo Saito
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Kohei Natori
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan.
| |
Collapse
|
10
|
Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015; 6:572. [PMID: 26124753 PMCID: PMC4464175 DOI: 10.3389/fmicb.2015.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid-lipid, protein-protein, and lipid-protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-ShevaIsrael
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at HoustonHouston, TX, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Department of Science, University of Rouen, Mont-Saint-AignanFrance
| |
Collapse
|
11
|
Heterologous Expression of theOceanobacillus iheyensisSigW and Its Anti-Protein RsiW inBacillus subtilis. Biosci Biotechnol Biochem 2014; 75:966-75. [DOI: 10.1271/bbb.110035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Strahl H, Bürmann F, Hamoen LW. The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 2014; 5:3442. [PMID: 24603761 PMCID: PMC3955808 DOI: 10.1038/ncomms4442] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes. The formation of lipid domains in eukaryotic cells is controlled by the cortical actin cytoskeleton. Here, the authors show that the bacterial actin homologue MreB has a comparable activity, influencing the formation of regions of increased fluidity that determine the distribution of membrane proteins.
Collapse
Affiliation(s)
- Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle NE2 4AX, UK
| | - Frank Bürmann
- Max Planck Institute of Biochemistry, Chromosome Organization and Dynamics, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Leendert W Hamoen
- 1] Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle NE2 4AX, UK [2] Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
13
|
Repeated triggering of sporulation in Bacillus subtilis selects against a protein that affects the timing of cell division. ISME JOURNAL 2013; 8:77-87. [PMID: 23924781 DOI: 10.1038/ismej.2013.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/10/2013] [Accepted: 07/03/2013] [Indexed: 11/08/2022]
Abstract
Bacillus subtilis sporulation is a last-resort phenotypical adaptation in response to starvation. The regulatory network underlying this developmental pathway has been studied extensively. However, how sporulation initiation is concerted in relation to the environmental nutrient availability is poorly understood. In a fed-batch fermentation set-up, in which sporulation of ultraviolet (UV)-mutagenized B. subtilis is repeatedly triggered by periods of starvation, fitter strains with mutated tagE evolved. These mutants display altered timing of phenotypical differentiation. The substrate for the wall teichoic acid (WTA)-modifying enzyme TagE, UDP-glucose, has recently been shown to be an intracellular proxy for nutrient availability, and influences the timing of cell division. Here we suggest that UDP-glucose also influences timing of cellular differentiation.
Collapse
|
14
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
15
|
Hashimoto M, Seki T, Matsuoka S, Hara H, Asai K, Sadaie Y, Matsumoto K. Induction of extracytoplasmic function sigma factors in Bacillus subtilis cells with defects in lipoteichoic acid synthesis. MICROBIOLOGY-SGM 2012; 159:23-35. [PMID: 23103977 DOI: 10.1099/mic.0.063420-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lipoteichoic acid (LTA) is an important cell envelope component of Gram-positive bacteria. Bacillus subtilis has four homologous genes for LTA synthesis: ltaS (yflE), yfnI, yqgS and yvgJ. The products LtaS (YflE), YfnI and YqgS are bona fide LTA synthetases, whereas YvgJ functions only as an LTA primase. To clarify whether defects in LTA on the cell envelope trigger extracytoplasmic function (ECF) sigma factors, mRNA levels of the autoregulated ECF sigma factors in cells with singly and multiply deleted alleles of the ltaS homologues were examined by real-time RT-PCR. This revealed that sigM and sigX were induced in cells with a null allele of ΔltaS and ΔyfnI, respectively, and that no ECF sigma factor was induced in cells with a single null allele of ΔyqgS or ΔyvgJ. In cells with double null alleles (ΔltaS and ΔyfnI), sigW and ylaC were induced in addition to sigM and sigX. Cells with triple null alleles (ΔltaS ΔyfnI and ΔyqgS) showed a pattern of induction similar to that of the double null. In cells with quadruple null alleles, sigV and sigY were newly induced. Cells with ΔltaS had approximately 1/4 the diglucosyldiacylglycerol and over 10 times the CDP-diacylglycerol of wild-type cells. Compensatory elevation of the mRNA level of other homologues was observed (in ΔltaS cells the level of yfnI was elevated; in ΔyfnI cells that of yqgS and yvgJ was elevated; both were even higher in ΔltaS ΔyfnI cells). In ΔltaS cells, the mRNA level of yfnI was corroborated to be regulated by σ(M), which is activated in the null mutant cells. In ΔyfnI cells, the mRNA levels of yqgS and yvgJ reverted to less than those of wild-type when a defective sigX allele was introduced. Since sigX was activated in cells with ΔyfnI, this suggests that the induction of yqgS and yvgJ is dependent on σ(X). The LTAs produced by the four ltaS homologues seem to play distinct physiological roles to maintain the full function of LTA on the B. subtilis cell envelope.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Takahiro Seki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Kei Asai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Yoshito Sadaie
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| |
Collapse
|
16
|
Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob Agents Chemother 2011; 55:4326-37. [PMID: 21709092 DOI: 10.1128/aac.01819-10] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Daptomycin (DAP) is a cyclic lipopeptide that disrupts the functional integrity of the cell membranes of Gram-positive bacteria in a Ca(2+)-dependent manner. Here we present genetic, genomic, and phenotypic analyses of an evolved DAP-resistant isolate, Dap(R)1, from the model bacterium Bacillus subtilis 168. Dap(R)1 was obtained by serial passages with increasing DAP concentrations, is 30-fold more resistant than the parent strain, and displays cross-resistance to vancomycin, moenomycin, and bacitracin. Dap(R)1 is characterized by aberrant septum placement, notably thickened peptidoglycan at the cell poles, and pleiotropic alterations at both the transcriptome and proteome levels. Genome sequencing of Dap(R)1 revealed 44 point mutations, 31 of which change protein sequences. An intermediate isolate that was 20-fold more resistant to DAP than the wild type had only three of these point mutations: mutations affecting the cell shape modulator gene mreB, the stringent response gene relA, and the phosphatidylglycerol synthase gene pgsA. Genetic reconstruction studies indicated that the pgsA(A64V) allele is primarily responsible for DAP resistance. Allelic replacement with wild-type pgsA restored DAP sensitivity to wild-type levels. The additional point mutations in the evolved strain may contribute further to DAP resistance, serve to compensate for the deleterious effects of altered membrane composition, or represent neutral changes. These results suggest a resistance mechanism by which reduced levels of phosphatidylglycerol decrease the net negative charge of the membrane, thereby weakening interaction with the positively charged Ca(2+)-DAP complex.
Collapse
|
17
|
Kingston AW, Subramanian C, Rock CO, Helmann JD. A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity. Mol Microbiol 2011; 81:69-79. [PMID: 21542858 DOI: 10.1111/j.1365-2958.2011.07679.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bacteria respond to physical and chemical stresses that affect the integrity of the cell wall and membrane by activating an intricate cell envelope stress response. The ability of cells to regulate the biophysical properties of the membrane by adjusting fatty acid composition is known as homeoviscous adaptation. Here, we identify a homeoviscous adaptation mechanism in Bacillus subtilis regulated by the extracytoplasmic function σ factor σ(W). Cell envelope active compounds, including detergents, activate a sense-oriented, σ(W)-dependent promoter within the first gene of the fabHa fabF operon. Activation leads to a decrease in the amount of FabHa coupled with an increase in FabF, the initiation and elongation condensing enzymes of fatty acid biosynthesis respectively. Downregulation of FabHa results in an increased reliance on the FabHb paralogue leading to a greater proportion of straight chain fatty acids in the membrane, and the upregulation of FabF increases the average fatty acid chain length. The net effect is to reduce membrane fluidity. The inactivation of the σ(W)-dependent promoter within fabHa increased sensitivity to detergents and to antimicrobial compounds produced by other Bacillus spp. Thus, the σ(W) stress response provides a mechanism to conditionally decrease membrane fluidity through the opposed regulation of FabHa and FabF.
Collapse
Affiliation(s)
- Anthony W Kingston
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | |
Collapse
|
18
|
Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011; 144:590-600. [PMID: 21335240 DOI: 10.1016/j.cell.2011.01.015] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 12/18/2022]
Abstract
Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.
Collapse
Affiliation(s)
- Gyanendra P Dubey
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
19
|
Matsuoka S, Hashimoto M, Kamiya Y, Miyazawa T, Ishikawa K, Hara H, Matsumoto K. The Bacillus subtilis essential gene dgkB is dispensable in mutants with defective lipoteichoic acid synthesis. Genes Genet Syst 2011; 86:365-76. [DOI: 10.1266/ggs.86.365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Yusuke Kamiya
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Takeshi Miyazawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Kazuki Ishikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
20
|
Matsuoka S, Chiba M, Tanimura Y, Hashimoto M, Hara H, Matsumoto K. Abnormal morphology of Bacillus subtilis ugtP mutant cells lacking glucolipids. Genes Genet Syst 2011; 86:295-304. [DOI: 10.1266/ggs.86.295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Minako Chiba
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Yu Tanimura
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
21
|
Sutcliffe IC. Priming and elongation: dissection of the lipoteichoic acid biosynthetic pathway in Gram-positive bacteria. Mol Microbiol 2010; 79:553-6. [PMID: 21255102 DOI: 10.1111/j.1365-2958.2010.07480.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The biosynthesis of lipoteichoic acids is a potential target for the development of novel antimicrobials against significant Firmicute pathogens. Excellent progress has been made in recent years towards understanding the biochemistry and genetics of polyglycerophosphate lipoteichoic acid biosynthesis but it has remained unclear whether this pathway requires an initial 'priming' reaction to initiate synthesis on the glycolipid anchor. Recent work from the laboratory of Angelika Gründling, including a new study by Wörmann et al. in this issue of Molecular Microbiology, provides confirmation of the priming step and further insights into the functional redundancy of lipoteichoic acid biosynthesis enzymes in Bacillus subtilis.
Collapse
Affiliation(s)
- Iain C Sutcliffe
- Biomolecular and Biomedical Research Centre, School of Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|