1
|
Zhu W, Zhao Z, Yuwen W, Qu L, Duan Z, Zhu C, Fan D. Chondrocalcin: Insights into its regulation and multi-function in cartilage and bone. Differentiation 2025; 143:100861. [PMID: 40157027 DOI: 10.1016/j.diff.2025.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Type Ⅱ collagen (COLⅡ) is the primary constituent of the cartilage matrix, specifically present in vitreous bodies, cartilage, bone, and other skeletal elements. Therefore, the normal expression of COLⅡ is crucial for the normal development, linear growth, mechanical properties, and self-repairing ability of cartilage. Chondrocalcin, the C-propeptide of type Ⅱ procollagen, is not only a marker of COLⅡ synthesis but also one of the most abundant polypeptides in cartilage. This work examines the pivotal role of chondrocalcin in the synthesis of COLⅡ, comprehensively examining its regulation and multi-functions in cartilage and bone related diseases. Our findings suggest that mutations in the chondrocalcin-encoding domain of COL2A1 affect cartilage and bone development in clinical conditions.
Collapse
Affiliation(s)
- Wensha Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Zilong Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Weigang Yuwen
- Xi 'an Giant Biotechnology Co., Ltd., Xi'an, 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Moheimani H, Sun X, Ozel M, Darby JL, Ong EP, Oyebamiji T, Kar UK, Yazer MH, Neal MD, Guyette FX, Wisniewski SR, Cotton BA, Cannon JW, Schreiber MA, Moore EE, Namias N, Minei JP, Barrett CD, Das J, Sperry JL, Billiar TR. High-dimensional analysis of injured patients reveals distinct circulating proteomic profiles in plasma vs. whole blood resuscitation. Cell Rep Med 2025; 6:102022. [PMID: 40107243 PMCID: PMC11970397 DOI: 10.1016/j.xcrm.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/30/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Early blood product resuscitation is often essential for optimal trauma care. However, the effects of different products on the underlying trauma-induced coagulopathy and immune dysfunction are not well described. Here, we use high-dimensional analysis and causal modeling in a longitudinal study to explore the circulating proteomic response to plasma as a distinct component versus low-titer O whole blood (LTOWB), which contains plasma. We highlight the differential impacts of plasma and LTOWB on immune mediator levels and the distinct capacity of plasma to modulate coagulation by elevating fibrinogen and factor XIII and reducing platelet factor 4. A higher proportion of plasma in prehospital resuscitation is associated with improved admission time coagulation parameters in patients with severe shock and elevated brain injury markers and reduced post-admission transfusion volumes in those suffering from traumatic brain injury (TBI) and blunt injury. While LTOWB offers broad hemostatic benefits, our findings demonstrate specific advantages of plasma and support individualized transfusion strategies.
Collapse
Affiliation(s)
- Hamed Moheimani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuejing Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mehves Ozel
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Darby
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erika P Ong
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tunde Oyebamiji
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Upendra K Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark H Yazer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francis X Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Bryan A Cotton
- Department of Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Jeremy W Cannon
- Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Martin A Schreiber
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado Health Sciences Center, Denver, CO, USA
| | - Nicholas Namias
- Department of Surgery, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Joseph P Minei
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher D Barrett
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jishnu Das
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason L Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Mohammed OA, Abdel-Reheim MA, Alamri MMS, Alfaifi J, Adam MIE, Saleh LA, Farrag AA, Yahia AIO, Abdel-Ghany S, AlQahtani AAJ, Bahashwan E, Eltahir HB, Mohammed NA, El-wakeel HS, Hazem SH, Saber S. STA9090 as a Potential Therapeutic Agent for Liver Fibrosis by Modulating the HSP90/TβRII/Proteasome Interplay: Novel Insights from In Vitro and In Vivo Investigations. Pharmaceuticals (Basel) 2023; 16:1080. [PMID: 37630994 PMCID: PMC10459039 DOI: 10.3390/ph16081080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Liver fibrosis is a progressive condition characterized by the build-up of fibrous tissue resulting from long-term liver injury. Although there have been advancements in research and treatment, there is still a need for effective antifibrotic medication. HSP90 plays a crucial role in the development of fibrosis. It acts as a molecular chaperone that assists in the proper folding and stability of TβRII, potentially regulating the signaling of TGF-β1. It has been established that TβRII can be degraded through the proteasome degradation system, either via ubiquitination-dependent or -independent pathways. In the present study, STA9090 demonstrated promising effects in both in vitro and in vivo models. It reduced LDH leakage, prolonged the survival rate of hepatocytes in rats with liver fibrosis, and improved liver function. Importantly, STA9090 exerted pleiotropic effects by targeting proteins involved in limiting collagen production, which resulted in improved microscopic features of the rat livers. Our findings suggest that STA9090-induced inhibition of HSP90 leads to the degradation of TβRII, a fibrogenic client protein of HSP90, through the activation of the 20S proteasomal degradation system. We also revealed that this degradation mechanism is not dependent on the autophagy-lysosomal pathway. Additionally, STA9090 was found to destabilize HIF-1α and facilitate its degradation, leading to the reduced transcription of VEGF. Moreover, STA9090's ability to deactivate the NFκB signaling pathway highlights its potential as an anti-inflammatory and antifibrotic agent. However, further research is necessary to fully elucidate the underlying mechanisms and fully capitalize on the therapeutic benefits of targeting HSP90 and associated pathways.
Collapse
Affiliation(s)
- Osama A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Aldawadmi 11961, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt
| | | | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Masoud I. E. Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Pharmacology and Toxicology, Collage of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Alshaimaa A. Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Unit of Anatomy, Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Amar Ibrahim Omer Yahia
- Unit of Pathology, Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
- Department of Pathology, Faculty of Medicine and Health Sciences, University of Kordofan, Elobeid 11115, Sudan
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia; (A.A.J.A.); (E.B.)
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia; (A.A.J.A.); (E.B.)
| | - Hanan B. Eltahir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (H.B.E.); (N.A.M.)
- Department of Biochemistry, Faculty of Medicine, University of El Imam, El Mahdi 11588, Sudan
| | - Nahid A. Mohammed
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (H.B.E.); (N.A.M.)
- Department of Physiology, Faculty of Medicine, University of Gezira, Wad Madani 12217, Sudan
| | - Hend S. El-wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Qalubyia 13511, Egypt;
- Physiology Department, Albaha Faculty of Medicine, Albaha University, Al-Baha 65779, Saudi Arabia
| | - Sara H. Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
4
|
Becker L, Lu CE, Montes-Mojarro IA, Layland SL, Khalil S, Nsair A, Duffy GP, Fend F, Marzi J, Schenke-Layland K. Raman microspectroscopy identifies fibrotic tissues in collagen-related disorders via deconvoluted collagen type I spectra. Acta Biomater 2023; 162:278-291. [PMID: 36931422 DOI: 10.1016/j.actbio.2023.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Fibrosis is a consequence of the pathological remodeling of extracellular matrix (ECM) structures in the connective tissue of an organ. It is often caused by chronic inflammation, which over time, progressively leads to an excess deposition of collagen type I (COL I) that replaces healthy tissue structures, in many cases leaving a stiff scar. Increasing fibrosis can lead to organ failure and death; therefore, developing methods that potentially allow real-time monitoring of early onset or progression of fibrosis are highly valuable. In this study, the ECM structures of diseased and healthy human tissue from multiple organs were investigated for the presence of fibrosis using routine histology and marker-independent Raman microspectroscopy and Raman imaging. Spectral deconvolution of COL I Raman spectra allowed the discrimination of fibrotic and non-fibrotic COL I fibers. Statistically significant differences were identified in the amide I region of the spectral subpeak at 1608 cm-1, which was deemed to be representative for structural changes in COL I fibers in all examined fibrotic tissues. Raman spectroscopy-based methods in combination with this newly discovered spectroscopic biomarker potentially offer a diagnostic approach to non-invasively track and monitor the progression of fibrosis. STATEMENT OF SIGNIFICANCE: Current diagnosis of fibrosis still relies on histopathological examination with invasive biopsy procedures. Although, several non-invasive imaging techniques such as positron emission tomography, single-photon emission computed tomography and second harmonic generation are gradually employed in preclinical or clinical studies, these techniques are limited in spatial resolution and the morphological interpretation highly relies on individual experience and knowledge. In this study, we propose a non-destructive technique, Raman microspectroscopy, to discriminate fibrotic changes of collagen type I based on a molecular biomarker. The changes of the secondary structure of collagen type I can be identified by spectral deconvolution, which potentially can provide an automatic diagnosis for fibrotic tissues in the clinical applicaion.
Collapse
Affiliation(s)
- Lucas Becker
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany
| | | | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany
| | - Suzan Khalil
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645 Los Angeles, CA, USA
| | - Ali Nsair
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645 Los Angeles, CA, USA
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany.
| |
Collapse
|
5
|
Zhang X, Zhang X, Huang W, Ge X. The role of heat shock proteins in the regulation of fibrotic diseases. Biomed Pharmacother 2020; 135:111067. [PMID: 33383375 DOI: 10.1016/j.biopha.2020.111067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
Heat shock proteins (HSPs) are key players to restore cell homeostasis and act as chaperones by assisting the folding and assembly of newly synthesized proteins and preventing protein aggregation. Recently, evidence has been accumulating that HSPs have been proven to have other functions except for the classical molecular chaperoning in that they play an important role in a wider range of fibrotic diseases via modulating cytokine induction and inflammation response, including lung fibrosis, liver fibrosis, and idiopathic pulmonary fibrosis. The recruitment of inflammatory cells, a large number of secretion of pro-fibrotic cytokines such as transforming growth factor-β1 (TGF-β1) and increased apoptosis, oxidative stress, and proteasomal system degradation are all events occurring during fibrogenesis, which might be associated with HSPs. However, their role on fibrotic process is not yet fully understood. In this review, we discuss new discoveries regarding the involvement of HSPs in the regulation of organ and tissue fibrosis, and note recent findings suggesting that HSPs may be a promising therapeutic target for improving the current frustrating outcome of fibrotic disorders.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226019, PR China.
| | - Xiaoyan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Wenmin Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xiaoqun Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
6
|
Hasan Siddiqui S, Kang D, Park J, Choi HW, Shim K. Acute Heat Stress Induces the Differential Expression of Heat Shock Proteins in Different Sections of the Small Intestine of Chickens Based on Exposure Duration. Animals (Basel) 2020; 10:ani10071234. [PMID: 32708054 PMCID: PMC7401550 DOI: 10.3390/ani10071234] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we examined the protein and gene expression of heat shock proteins (HSPs) in different sections of the small intestine of chickens. In total, 300 one-day-old Ross 308 broiler chicks were randomly allocated to the control and treatment groups. The treatment group was divided into four subgroups, according to the duration of acute heat exposure (3, 6, 12, and 24 h). The influence of heat stress on the protein and gene expression of HSP70, HSP60, and HSP47 in different sections of the small intestine of chickens was determined. The protein expression of HSP70 and HSP60 was significantly higher at 6 h in the duodenum and jejunum and 12 h in the ileum. The HSP47 protein expression was significantly higher at 3 h in the duodenum and ileum and at 6 h in the jejunum. The gene expression levels of HSP70, HSP60, and HSP47 were significantly higher at the 3 h treatment group than the control group in the duodenum, jejunum, and ileum. The glutamate pyruvate transaminase and glutamate oxaloacetate transaminase levels were significantly higher at 12 and 24 h in the serum of the blood. Acute heat stress affected the expression of intestinal proteins and genes in chickens, until the induction of heat tolerance.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (S.H.S.); (D.K.); (J.P.)
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (S.H.S.); (D.K.); (J.P.)
| | - Jinryong Park
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (S.H.S.); (D.K.); (J.P.)
| | - Hyun Woo Choi
- Department of Animal Science, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.W.C.); (K.S.); Tel.: +82-10-3169-9417 (H.W.C.); +82-10-3889-1003 (K.S.)
| | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (S.H.S.); (D.K.); (J.P.)
- Correspondence: (H.W.C.); (K.S.); Tel.: +82-10-3169-9417 (H.W.C.); +82-10-3889-1003 (K.S.)
| |
Collapse
|
7
|
Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am J Respir Cell Mol Biol 2020; 62:413-422. [PMID: 31967851 DOI: 10.1165/rcmb.2019-0328tr] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pirfenidone (PFD) is a pharmacological compound with therapeutic efficacy in idiopathic pulmonary fibrosis. It has been chiefly characterized as an antifibrotic agent, although it was initially developed as an antiinflammatory compound because of its ability to diminish the accumulation of inflammatory cells and cytokines. Despite recent studies that have elucidated key mechanisms, the precise molecular activities of PFD remain incompletely understood. PFD modulates fibrogenic growth factors, thereby attenuating fibroblast proliferation, myofibroblast differentiation, collagen and fibronectin synthesis, and deposition of extracellular matrix. This effect is mediated by suppression of TGF-β1 (transforming growth factor-β1) and other growth factors. Here, we appraise the impact of PFD on TGF-β1 production and its downstream pathways. Accumulating evidence indicates that PFD also downregulates inflammatory pathways and therefore has considerable potential as a viable and innovative antiinflammatory compound. We examine the effects of PFD on inflammatory cells and the production of pro- and antiinflammatory cytokines in the lung. In this context, recent evidence that PFD can target inflammasome pathways and ensuing lung inflammation is highlighted. Finally, the antioxidant properties of PFD, such as its ability to inhibit redox reactions and regulate oxidative stress-related genes and enzymes, are detailed. In summary, this narrative review examines molecular mechanisms underpinning PFD and its recognized benefits in lung fibrosis. We highlight preclinical data that demonstrate the potential of PFD as a nonsteroidal antiinflammatory agent and outline areas for future research.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Belinda J Thomas
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Pereira JMS, Barreira AL, Gomes CR, Ornellas FM, Ornellas DS, Miranda LC, Cardoso LR, Coutinho-Silva R, Schanaider A, Morales MM, Leite M, Takiya CM. Brilliant blue G, a P2X7 receptor antagonist, attenuates early phase of renal inflammation, interstitial fibrosis and is associated with renal cell proliferation in ureteral obstruction in rats. BMC Nephrol 2020; 21:206. [PMID: 32471386 PMCID: PMC7260756 DOI: 10.1186/s12882-020-01861-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Previous study showed that purinergic P2X7 receptors (P2X7R) reach the highest expression in the first week after unilateral ureteral obstruction (UUO) in mice, and are involved in the process of inflammation, apoptosis and fibrosis of renal tissue. We, herein, document the role of purinergic P2X7 receptors activation on the third day of UUO, as assessed by means of BBG as its selective inhibitor. Methods We investigated the effects of brilliant blue G (BBG), a P2X7R antagonist, in the third day of kidney tissue response to UUO in rats. For this purpose, male Wistar rats submitted to UUO or sham operated, received BBG or vehicle (V), comprising four groups: UUO-BBG, UUO-V, sham-BBG and sham-V. The kidneys were harvested on day 3 UUO and prepared for histology, immunohistochemistry (P2X7R, PCNA, CD-68, α-sma, TGF-β1, Heat-shock protein-47, TUNEL assay), quantitative real-time PCR (IL-1β, procollagens type I, III, and IV) for mRNA quantification. Results The group UUO-V presented an enhancement in tubular cell P2X7-R expression, increase influx of macrophages and myofibroblasts, HSP-47 and TGF- β1 expression. Also, upregulation of procollagen types I, III, and IV, and IL-1β mRNAs were seen. On the other hand, group UUO-BBG showed lower expression of procollagens and IL-1β mRNAs, as well as less immunoreactivity of HSP-47, TGF-β, macrophages, myofibroblasts, and tubular apoptosis. This group also presented increased epithelial cell proliferation. Conclusion BBG, a known highly selective inhibitor of P2X7R, attenuated renal inflammation, collagen synthesis, renal cell apoptosis, and enhanced renal cell proliferation in the early phase of rat model of UUO.
Collapse
Affiliation(s)
- José Monteiro Sad Pereira
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Barreira
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Conrado Rodrigues Gomes
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Mateus Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Carlos Miranda
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Ronaldo Cardoso
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Schanaider
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Cirurgia Experimental, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurilo Leite
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Christina Maeda Takiya
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Welc SS, Flores I, Wehling-Henricks M, Ramos J, Wang Y, Bertoni C, Tidball JG. Targeting a therapeutic LIF transgene to muscle via the immune system ameliorates muscular dystrophy. Nat Commun 2019; 10:2788. [PMID: 31243277 PMCID: PMC6594976 DOI: 10.1038/s41467-019-10614-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Many potentially therapeutic molecules have been identified for treating Duchenne muscular dystrophy. However, targeting those molecules only to sites of active pathology is an obstacle to their clinical use. Because dystrophic muscles become extensively inflamed, we tested whether expressing a therapeutic transgene in leukocyte progenitors that invade muscle would provide selective, timely delivery to diseased muscle. We designed a transgene in which leukemia inhibitory factor (LIF) is under control of a leukocyte-specific promoter and transplanted transgenic cells into dystrophic mice. Transplantation diminishes pathology, reduces Th2 cytokines in muscle and biases macrophages away from a CD163+/CD206+ phenotype that promotes fibrosis. Transgenic cells also abrogate TGFβ signaling, reduce fibro/adipogenic progenitor cells and reduce fibrogenesis of muscle cells. These findings indicate that leukocytes expressing a LIF transgene reduce fibrosis by suppressing type 2 immunity and highlight a novel application by which immune cells can be genetically modified as potential therapeutics to treat muscle disease.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095-1606, USA
| | - Ivan Flores
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, 90095-1606, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095-1606, USA
| | - Julian Ramos
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095-1606, USA
| | - Ying Wang
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, 90095-1606, USA
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, 90095, USA
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095-1606, USA.
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, 90095-1606, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Functional Role of Lacrimal Gland Fibroblasts in a Mouse Model of Chronic Graft-Versus-Host Disease. Cornea 2018; 37:102-108. [PMID: 29053559 DOI: 10.1097/ico.0000000000001411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE This study aimed to clarify the mechanisms and assess the characteristics of the chronic graft-versus-host disease (cGVHD) fibrosis in the lacrimal gland (LG) of mice. METHODS Histopathology of LG tissues was examined by immunohistochemistry and electron microscopy. Cultured fibroblasts derived from the LG were analyzed by phase-contrast microscopy, immunocytochemistry, flow cytometry, proliferation assay, and invasion and migration assays. RESULTS Cultured murine LG fibroblasts in cGVHD were spindle-shaped and relatively small, whereas those from syngeneic controls were polygon-shaped and relatively large. Flow cytometric analysis showed that the LG fibroblasts in cGVHD had elevated HSP47 levels. The LG fibroblasts in cGVHD also showed increased expression of major histocompatibility complex class II. Furthermore, the proportion of Sca-1PDGFR-α cells among the LG fibroblasts in cGVHD was considerably increased compared with controls. Cell counting kit-8 assays demonstrated that the LG fibroblasts in cGVHD were highly proliferative, and cell invasion assays indicated that they were highly invasive with high migration ability. CONCLUSIONS LG fibroblasts in cGVHD can be aberrantly activated, thereby eliciting fibrosis by producing excessive extracellular matrix, leading to LG dysfunction in mice.
Collapse
|
11
|
Tatar S, Sarybaeva A, Fındıkcıoğlu K, Seymen CM, Elmas Ç, Latifoğlu O. The Effect of Hyaluronic Acid Application on the Perisilicon Capsule Structure. Aesthetic Plast Surg 2016; 40:938-946. [PMID: 27766403 DOI: 10.1007/s00266-016-0718-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/08/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Silicon implants constitute a major part of plastic surgery practice. Although materials with high biocompatibility have been used around the implants, capsule formation still develops and progressive nature of this process results in capsule contraction. The aim of this study is to evaluate the effects of hyaluronic acid injected around the silicon block on the capsule structure. METHODS Twenty Wistar albino rats were used in the study. Rats were divided into two main groups (group 1 and group 2) and two subgroups. Rats in group 1 were sacrificed in week 4 and rats in group 2 were sacrificed in week 8. A subcutaneous pouch was created in the dorsum of the rats and a silicon block was placed into the pouch in groups 1A and 2A. 0.2 ml of hyaluronic acid was injected around the silicon block in group 1B and group 2B. Rats were sacrificed and capsule structure and thickness were analyzed following macroscopic evaluation. Concentrations of transforming growth factor-β1 (TGF-β1) and heat shock protein-47 (HSP-47) were evaluated immunohistochemically, and statistical comparisons were made. RESULT Capsule structure consisted of three layers in all the groups. A more intense collagen structure was observed in the middle layer. The capsule was thinnest in group 1A and thickest in group 2B; the difference between the groups was statistically significant. TGF-β1 was most intense in group 2B and it was correlated with the amount of collagen. Involvement of HSP-47 was observed mainly in collagen and also in fibroblasts and vascular structures, and its concentration was found to be lower in groups 2A and 2B. CONCLUSION Exogenously added cross-linked hyaluronic acid increased the capsular thickness and may increase the risk of developing capsular contracture around silicone implants. LEVEL OF EVIDENCE II Evidence was obtained from the well-designed controlled trials without randomization.
Collapse
Affiliation(s)
- Sedat Tatar
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kayseri Research and Training Hospital, Kayseri, Turkey.
| | - Ainura Sarybaeva
- Department of Plastic Reconstructive and Aesthetic Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Kemal Fındıkcıoğlu
- Department of Plastic Reconstructive and Aesthetic Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Cemile Merve Seymen
- Department of Histology and Embriology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Çiğdem Elmas
- Department of Histology and Embriology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Osman Latifoğlu
- Department of Plastic Reconstructive and Aesthetic Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Tissue Renin-Angiotensin System in Lacrimal Gland Fibrosis in a Murine Model of Chronic Graft-Versus-Host Disease. Cornea 2016; 34 Suppl 11:S142-52. [PMID: 26448172 DOI: 10.1097/ico.0000000000000586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a serious complication known to occur after allogeneic hematopoietic stem cell transplantation. Clinical manifestation includes inflammation and fibrosis. Many peripheral tissues are capable of generating the renin-angiotensin system (RAS) components, called the tissue RAS, and have various roles in tissue-specific physiological and pathological functions of inflammation and fibrosis. This article reviews evidence for the presence of the tissue RAS in the normal mouse lacrimal gland, the role of the tissue RAS in the fibrotic pathogenesis of the lacrimal gland in cGVHD model mice, and the effect of angiotensin II receptor blockers on preventing lacrimal gland fibrosis. B10.D2→BALB/c (H-2d) major histocompatibility complex-compatible, minor histocompatibility antigen-mismatched mice were used as a model of cGVHD, which reflects the clinical and pathological symptoms of human cGVHD. We also describe the localization of RAS components in the normal mouse lacrimal gland. In addition, we characterize the inflammatory and fibrotic changes of the lacrimal gland in cGVHD model mice, demonstrate that fibroblasts strongly express angiotensin II, angiotensin II type 1 receptor (AT1R), and angiotensin II type 2 receptor, and show that mRNA expression of angiotensinogen increased in the lacrimal gland of cGVHD model mice. Inhibitory experiments revealed that lacrimal gland fibrosis was suppressed in mice treated with an AT1R blocker, but not in mice treated with an angiotensin II type 2 receptor blocker. Hence, we conclude that the tissue RAS is involved in the fibrotic pathogenesis of the lacrimal gland and that AT1R blockers have a therapeutic effect on lacrimal gland fibrosis in cGVHD model mice.
Collapse
|
13
|
Biressi S, Miyabara EH, Gopinath SD, Carlig PMM, Rando TA. A Wnt-TGFβ2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice. Sci Transl Med 2015; 6:267ra176. [PMID: 25520397 DOI: 10.1126/scitranslmed.3008411] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously observed that Wnt signaling activates a fibrogenic program in adult muscle stem cells, called satellite cells, during aging. We genetically labeled satellite cells in a mouse model of Duchenne muscular dystrophy to follow their fate during the progression of the disease. We observed that a fraction of satellite cells had a reduced myogenic potential and showed enhanced expression of profibrotic genes compared to age-matched controls. By combining in vitro and in vivo results, we found that expression of transforming growth factor-β2 (TGFβ2) was induced in response to elevated canonical Wnt signaling in dystrophic muscles and that the resulting increase in TGFβ activity affected the behavior of satellite cells in an autocrine or paracrine fashion. Indeed, pharmacological inhibition of the TGFβ pathway in vivo reduced the fibrogenic characteristics of satellite cells. These studies shed new light on the cellular and molecular mechanisms responsible for stem cell dysfunction in dystrophic muscle and may contribute to the development of more effective and specific therapeutic approaches for the prevention of muscle fibrosis.
Collapse
Affiliation(s)
- Stefano Biressi
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elen H Miyabara
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA. Anatomy Department, Institute of Biomedical Sciences, University of São Paulo, 2415 Lineu Prestes Avenue, São Paulo, São Paulo 05508-000, Brazil
| | - Suchitra D Gopinath
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Poppy M M Carlig
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA. Neurology Service, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
14
|
Pham BT, van Haaften WT, Oosterhuis D, Nieken J, de Graaf IAM, Olinga P. Precision-cut rat, mouse, and human intestinal slices as novel models for the early-onset of intestinal fibrosis. Physiol Rep 2015; 3:3/4/e12323. [PMID: 25907784 PMCID: PMC4425951 DOI: 10.14814/phy2.12323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intestinal fibrosis (IF) is a major complication of inflammatory bowel disease. IF research is limited by the lack of relevant in vitro and in vivo models. We evaluated precision-cut intestinal slices (PCIS) prepared from human, rat, and mouse intestine as ex vivo models mimicking the early-onset of (human) IF. Precision-cut intestinal slices prepared from human (h), rat (r), and mouse (m) jejunum, were incubated up to 72 h, the viability of PCIS was assessed by ATP content and morphology, and the gene expression of several fibrosis markers was determined. The viability of rPCIS decreased after 24 h of incubation, whereas mPCIS and hPCIS were viable up to 72 h of culturing. Furthermore, during this period, gene expression of heat shock protein 47 and plasminogen activator inhibitor 1 increased in all PCIS in addition to augmented expression of synaptophysin in hPCIS, fibronectin (Fn2) and TGF-β1 in rPCIS, and Fn2 and connective tissue growth factor (Ctgf) in mPCIS. Addition of TGF-β1 to rPCIS or mPCIS induced the gene expression of the fibrosis markers Pro-collagen1a1, Fn2, and Ctgf in both species. However, none of the fibrosis markers was further elevated in hPCIS. We successfully developed a novel ex vivo model that can mimic the early-onset of fibrosis in the intestine using human, rat, and mouse PCIS. Furthermore, in rat and mouse PCIS, TGF-β1 was able to even further increase the gene expression of fibrosis markers. This indicates that PCIS can be used as a model for the early-onset of IF.
Collapse
Affiliation(s)
- Bao Tung Pham
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter Tobias van Haaften
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Judith Nieken
- Pathology Friesland Foundation, Leeuwarden, The Netherlands
| | - Inge Anne Maria de Graaf
- Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Sajjadi AY, Mitra K, Grace M. Expression of heat shock proteins 70 and 47 in tissues following short-pulse laser irradiation: Assessment of thermal damage and healing. Med Eng Phys 2013; 35:1406-14. [DOI: 10.1016/j.medengphy.2013.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 01/15/2013] [Accepted: 03/14/2013] [Indexed: 01/24/2023]
|
16
|
Akamatsu T, Arai Y, Kosugi I, Kawasaki H, Meguro S, Sakao M, Shibata K, Suda T, Chida K, Iwashita T. Direct isolation of myofibroblasts and fibroblasts from bleomycin-injured lungs reveals their functional similarities and differences. FIBROGENESIS & TISSUE REPAIR 2013; 6:15. [PMID: 23927729 PMCID: PMC3751789 DOI: 10.1186/1755-1536-6-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Background Myofibroblasts play a crucial role in tissue repair. The functional similarities and differences between myofibroblasts and fibroblasts are not fully understood because they have not been separately isolated from a living body. The purpose of this study was to establish a method for the direct isolation of myofibroblasts and fibroblasts from injured lungs by using fluorescence-activated cell sorting and to compare their functions. Results We demonstrated that lineage-specific cell surface markers (lin), such as CD31, CD45, CD146, EpCAM (CD326), TER119, and Lyve-1 were not expressed in myofibroblasts or fibroblasts. Fibroblasts of bleomycin-injured lungs and saline-treated lungs were shown to be enriched in linneg Sca-1high, and myofibroblasts of bleomycin-injured lungs were shown to be enriched in linneg Sca-1low CD49ehigh. Results from in-vitro proliferation assays indicated in-vitro proliferation of fibroblasts but not myofibroblasts of bleomycin-injured lungs and of fibroblasts of saline-treated lungs. However, fibroblasts and myofibroblasts might have a low proliferative capacity in vivo. Analysis of genes for collagen and collagen synthesis enzymes by qRT-PCR showed that the expression levels of about half of the genes were significantly higher in fibroblasts and myofibroblasts of bleomycin-injured lungs than in fibroblasts of saline-treated lungs. By contrast, the expression levels of 8 of 11 chemokine genes of myofibroblasts were significantly lower than those of fibroblasts. Conclusions This is the first study showing a direct isolation method of myofibroblasts and fibroblasts from injured lungs. We demonstrated functional similarities and differences between myofibroblasts and fibroblasts in terms of both their proliferative capacity and the expression levels of genes for collagen, collagen synthesis enzymes, and chemokines. Thus, this direct isolation method has great potential for obtaining useful information from myofibroblasts and fibroblasts.
Collapse
Affiliation(s)
- Taisuke Akamatsu
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yaguchi S, Ogawa Y, Shimmura S, Kawakita T, Hatou S, Satofuka S, Nakamura S, Imada T, Miyashita H, Yoshida S, Yaguchi T, Ozawa Y, Mori T, Okamoto S, Kawakami Y, Ishida S, Tsubota K. Angiotensin II type 1 receptor antagonist attenuates lacrimal gland, lung, and liver fibrosis in a murine model of chronic graft-versus-host disease. PLoS One 2013; 8:e64724. [PMID: 23762250 PMCID: PMC3675140 DOI: 10.1371/journal.pone.0064724] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/17/2013] [Indexed: 01/07/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD), a serious complication following allogeneic HSCT (hematopoietic stem cell transplantation), is characterized by systemic fibrosis. The tissue renin-angiotensin system (RAS) is involved in the fibrotic pathogenesis, and an angiotensin II type 1 receptor (AT1R) antagonist can attenuate fibrosis. Tissue RAS is present in the lacrimal gland, lung, and liver, and is known to be involved in the fibrotic pathogenesis of the lung and liver. This study aimed to determine whether RAS is involved in fibrotic pathogenesis in the lacrimal gland and to assess the effect of an AT1R antagonist on preventing lacrimal gland, lung, and liver fibrosis in cGVHD model mice. We used the B10.D2→BALB/c (H-2d) MHC-compatible, multiple minor histocompatibility antigen-mismatched model, which reflects clinical and pathological symptoms of human cGVHD. First, we examined the localization and expression of RAS components in the lacrimal glands using immunohistochemistry and quantitative real-time polymerase chain reaction (PCR). Next, we administered an AT1R antagonist (valsartan; 10 mg/kg) or angiotensin II type 2 receptor (AT2R) antagonist (PD123319; 10 mg/kg) intraperitoneally into cGVHD model mice and assessed the fibrotic change in the lacrimal gland, lung, and liver. We demonstrated that fibroblasts expressed angiotensin II, AT1R, and AT2R, and that the mRNA expression of angiotensinogen was greater in the lacrimal glands of cGVHD model mice than in controls generated by syngeneic-HSCT. The inhibition experiment revealed that fibrosis of the lacrimal gland, lung, and liver was suppressed in mice treated with the AT1R antagonist, but not the AT2R antagonist. We conclude that RAS is involved in fibrotic pathogenesis in the lacrimal gland and that AT1R antagonist has a therapeutic effect on lacrimal gland, lung, and liver fibrosis in cGVHD model mice. Our findings point to AT1R antagonist as a possible target for therapeutic intervention in cGVHD.
Collapse
Affiliation(s)
- Saori Yaguchi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Kawakita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shingo Satofuka
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Imada
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Miyashita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Yoshida
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Susumu Ishida
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Vieira-Júnior JR, de Oliveira-Santos C, Della-Coletta R, Cristianismo-Costa D, Paranaíba LMR, Martelli-Júnior H. Immunoexpression of α2-integrin and Hsp47 in hereditary gingival fibromatosis and gingival fibromatosis-associated dental abnormalities. Med Oral Patol Oral Cir Bucal 2013; 18:e45-8. [PMID: 23229240 PMCID: PMC3548644 DOI: 10.4317/medoral.17970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 03/22/2012] [Indexed: 12/22/2022] Open
Abstract
Objective: The purpose of the present study was to investigate the expression of the α2-integrin subunit and heat shock protein 47 (Hsp47) in two families with isolated gingival fibromatosis (GF) form and one family with GF associated with dental abnormalities and normal gingiva (NG).
Study Design: Immunohistochemistry was performed with antibodies against α2-integrin and Hsp47 in specimens from two unrelated families with hereditary gingival fibromatosis (Families 1 and 2) and from one family with a gingival fibromatosis-associated dental abnormality (Family 3); NG samples were used for comparison. The results were analysed statistically.
Results: Immunoreactivity for α2-integrin and Hsp47 was observed in the nucleus of epithelial cells of both the basal and suprabasal layer and a more discreet signal was noted in connective tissue in all study samples. Hsp47 showed higher immunoreactivity in Family 2 compared with the other families (p≤0.05). Despite the markup α2-integrin was higher in Family 3 there was no statistically significant difference between the families studied (p≥0.05).
Conclusions: Our results confirmed the heterogeneity of GF, such that similar patterns of expression of the condition may show differences in the expression of proteins such as Hsp47. Although no difference in α2-integrin expression was observed between GF and NG groups, future studies are necessary to determine the exact role of this protein in the various forms of GF and whether it contributes to GF pathogenesis.
Key words:Gingival fibromatosis, integrin alpha2, heat shock protein Hsp47.
Collapse
Affiliation(s)
- João-Robson Vieira-Júnior
- Dental School, State University of Montes Claros, Unimontes, Montes Claros, Minas Gerais State, Brazil.
| | | | | | | | | | | |
Collapse
|
19
|
XIANG XIANHONG, JIANG TIANPENG, ZHANG SHUAI, SONG JIE, LI XING, YANG JIANYONG, ZHOU SHI. Pirfenidone inhibits proliferation, arrests the cell cycle, and downregulates heat shock protein-47 and collagen type I in rat hepatic stellate cells in vitro. Mol Med Rep 2012; 12:309-14. [DOI: 10.3892/mmr.2015.3403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/26/2015] [Indexed: 11/06/2022] Open
|
20
|
Tugwood JD, Kelsall J, Coverley LC, Westwood FR, Haque K, Huby RDJ. Fibrodysplasia Induced in Dog Skin by a Matrix Metalloproteinase (MMP) Inhibitor—A Mechanistic Analysis. Toxicol Sci 2012; 127:236-45. [DOI: 10.1093/toxsci/kfs075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Osuka S, Razzaque MS. Can features of phosphate toxicity appear in normophosphatemia? J Bone Miner Metab 2012; 30:10-8. [PMID: 22219005 PMCID: PMC3804315 DOI: 10.1007/s00774-011-0343-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022]
Abstract
Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels.
Collapse
Affiliation(s)
- Satoko Osuka
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Room: 304, 188 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|