1
|
Zhang L, Wei X. The Lego hypothesis of tissue morphogenesis: stereotypic organization of parallel orientational cell adhesions for epithelial self-assembly. Biol Rev Camb Philos Soc 2025; 100:445-460. [PMID: 39308450 PMCID: PMC11718597 DOI: 10.1111/brv.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
How tissues develop distinct structures remains poorly understood. We propose herein the Lego hypothesis of tissue morphogenesis, which states that during tissue morphogenesis, the topographical properties of cell surface adhesion molecules can be dynamically altered and polarised by regulating the spatiotemporal expression and localization of orientational cell adhesion (OCA) molecules cell-autonomously and non-cell-autonomously, thus modulating cells into unique Lego pieces for self-assembling into distinct cytoarchitectures. This concept can be exemplified by epithelial morphogenesis, in which cells are coalesced into a sheet by many types of adhesions. Among them, parallel OCAs (pOCAs) at the lateral cell membranes are essential for configuring cells in parallel. Major pOCAs include Na+/K+-ATPase-mediated adhesions, Crumbs-mediated adhesions, tight junctions, adherens junctions, and desmosomes. These pOCAs align in stereotypical orders along the apical-to-basal axis, and their absolute positioning is also regulated. Such spatial organization of pOCAs underlies proper epithelial morphogenesis. Thus, a key open question about tissue morphogenesis is how to regulate OCAs to make compatible adhesive cellular Lego pieces for tissue construction.
Collapse
Affiliation(s)
- Lili Zhang
- Department of PsychologyDalian Medical University9 Lvshun South Road WestDalian116044Liaoning ProvinceChina
| | - Xiangyun Wei
- Departments of Ophthalmology and Microbiology & Molecular GeneticsUniversity of Pittsburgh1622 Locust StreetPittsburgh15219PAUSA
| |
Collapse
|
2
|
Bock F, Elias BC, Dong X, Parekh DV, Mernaugh G, Viquez OM, Hassan A, Amara VR, Liu J, Brown KL, Terker AS, Chiusa M, Gewin LS, Fogo AB, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J Cell Biol 2021; 220:e202103080. [PMID: 34647970 PMCID: PMC8563289 DOI: 10.1083/jcb.202103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Diptiben V. Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anjana Hassan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Venkateswara Rao Amara
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jiageng Liu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
3
|
Pan XH, Chen M, Cao SH, Xu ZQ, Li Z, Li YQ. Plasmon Coupling Enhanced Micro-Spectroscopy and Imaging for Sensitive Discrimination of Membrane Domains of a Single Cell. Chemistry 2021; 27:17331-17335. [PMID: 34609776 DOI: 10.1002/chem.202103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 11/08/2022]
Abstract
Different cell membrane domains play different roles in many cell processes, and the discrimination of these domains is of considerable importance for the elucidation of cellular functions. However, the strategies available for distinguishing these cell membrane domains are limited. A novel technique called plasmon coupling enhanced micro-spectroscopy and imaging to discriminate basal and lateral membrane domains of a single cell combines the application of an additional plasmonic silver film for surface plasmon (SP) excitation to selectively excite and enhance the basal membranes in the near-field with directional enhanced microscopic imaging and spectroscopy. The SP and critical evanescent fields are induced upon excitation through a silver-coated semitransparent coverslip at the surface plasmon resonance and critical angles, respectively. The basal and lateral membrane domains located within the SP and critical evanescent fields can be selectively excited and distinguished by adjusting the incident angle of laser irradiation. Moreover, the brighter images and more intense spectra of membrane-targeting fluorescence-Raman probes under directional excitation than in conventional EPI mode allow clear identification of the membrane domains.
Collapse
Affiliation(s)
- Xiao-Hui Pan
- Department of Chemistry and, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Min Chen
- Department of Chemistry and, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Shuo-Hui Cao
- Department of Chemistry and, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Zi-Qian Xu
- Department of Chemistry and, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Zhao Li
- Department of Chemistry and, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| |
Collapse
|
4
|
Kirolos SA, Rijal R, Consalvo KM, Gomer RH. Using Dictyostelium to Develop Therapeutics for Acute Respiratory Distress Syndrome. Front Cell Dev Biol 2021; 9:710005. [PMID: 34350188 PMCID: PMC8326840 DOI: 10.3389/fcell.2021.710005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx of neutrophils from the blood into the lung airspaces, and the neutrophils causing further damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that a protein called AprA secreted by growing Dictyostelium cells functions as a repellent for Dictyostelium cells, causing cells to move away from a source of AprA. We then found that AprA has structural similarity to a human secreted protein called dipeptidyl peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this repulsion works to understand possible drug interactions and side effects. Combining biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction pathway, followed by drug studies in human neutrophils to determine similarities and differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to the safe use of DPPIV or DPPIV mimetics in the clinic.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Wang Y, Brieher WM. CD2AP links actin to PI3 kinase activity to extend epithelial cell height and constrain cell area. J Cell Biol 2020; 219:jcb.201812087. [PMID: 31723006 PMCID: PMC7039212 DOI: 10.1083/jcb.201812087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/26/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
Abstract
Epithelial cells are categorized as cuboidal versus squamous based on the height of the lateral membrane. Wang and Brieher show that CD2AP links PI3K activity to actin assembly to extend the height of the lateral membrane. Maintaining the correct ratio of apical, basal, and lateral membrane domains is important for epithelial physiology. Here, we show that CD2AP is a critical determinant of epithelial membrane proportions. Depletion of CD2AP or phosphoinositide 3-kinase (PI3K) inhibition results in loss of F-actin and expansion of apical–basal domains, which comes at the expense of lateral membrane height in MDCK cells. We demonstrate that the SH3 domains of CD2AP bind to PI3K and are necessary for PI3K activity along lateral membranes and constraining cell area. Tethering the SH3 domains of CD2AP or p110γ to the membrane is sufficient to rescue CD2AP-knockdown phenotypes. CD2AP and PI3K are both upstream and downstream of actin polymerization. Since CD2AP binds to both actin filaments and PI3K, CD2AP might bridge actin assembly to PI3K activation to form a positive feedback loop to support lateral membrane extension. Our results provide insight into the squamous to cuboidal to columnar epithelial transitions seen in complex epithelial tissues in vivo.
Collapse
Affiliation(s)
- Yuou Wang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL
| |
Collapse
|
6
|
Hagiyama M, Kimura R, Yoneshige A, Inoue T, Otani T, Ito A. Cell Adhesion Molecule 1 Contributes to Cell Survival in Crowded Epithelial Monolayers. Int J Mol Sci 2020; 21:ijms21114123. [PMID: 32527032 PMCID: PMC7312920 DOI: 10.3390/ijms21114123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
When epithelial cells in vivo are stimulated to proliferate, they crowd and often grow in height. These processes are likely to implicate dynamic interactions among lateral membranous proteins, such as cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member. Pulmonary epithelial cell lines that express CADM1, named NCI-H441 and RLE-6TN, were grown to become overconfluent in the polarized 2D culture system, and were examined for the expression of CADM1. Western analyses showed that the CADM1 expression levels increased gradually up to 3 times in a cell density-dependent manner. Confocal microscopic observations revealed dense immunostaining for CADM1 on the lateral membrane. In the overconfluent monolayers, CADM1 knockdown was achieved by two methods using CADM1-targeting siRNA and an anti-CADM1 neutralizing antibody. Antibody treatment experiments were also done on 6 other epithelial cell lines expressing CADM1. The CADM1 expression levels were reduced roughly by half, in association with cell height decrease by half in 3 lines. TUNEL assays revealed that the CADM1 knockdown increased the proportion of TUNEL-positive apoptotic cells approximately 10 folds. Increased expression of CADM1 appeared to contribute to cell survival in crowded epithelial monolayers.
Collapse
|
7
|
Dey B, Rikhy R. DE-cadherin and Myosin II balance regulates furrow length for onset of polygon shape in syncytial Drosophila embryos. J Cell Sci 2020; 133:jcs240168. [PMID: 32265269 DOI: 10.1242/jcs.240168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/26/2020] [Indexed: 08/31/2023] Open
Abstract
Cell shape morphogenesis, from spherical to polygonal, occurs in epithelial cell formation in metazoan embryogenesis. In syncytial Drosophila embryos, the plasma membrane incompletely surrounds each nucleus and is organized as a polygonal epithelial-like array. Each cortical syncytial division cycle shows a circular to polygonal plasma membrane transition along with furrow extension between adjacent nuclei from interphase to metaphase. In this study, we assess the relative contribution of DE-cadherin (also known as Shotgun) and Myosin II (comprising Zipper and Spaghetti squash in flies) at the furrow to polygonal shape transition. We show that polygonality initiates during each cortical syncytial division cycle when the furrow extends from 4.75 to 5.75 μm. Polygon plasma membrane organization correlates with increased junctional tension, increased DE-cadherin and decreased Myosin II mobility. DE-cadherin regulates furrow length and polygonality. Decreased Myosin II activity allows for polygonality to occur at a lower length than controls. Increased Myosin II activity leads to loss of lateral furrow formation and complete disruption of the polygonal shape transition. Our studies show that DE-cadherin-Myosin II balance regulates an optimal lateral membrane length during each syncytial cycle for polygonal shape transition.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bipasha Dey
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
8
|
Awadia S, Huq F, Arnold TR, Goicoechea SM, Sun YJ, Hou T, Kreider-Letterman G, Massimi P, Banks L, Fuentes EJ, Miller AL, Garcia-Mata R. SGEF forms a complex with Scribble and Dlg1 and regulates epithelial junctions and contractility. J Cell Biol 2019; 218:2699-2725. [PMID: 31248911 PMCID: PMC6683736 DOI: 10.1083/jcb.201811114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/18/2019] [Accepted: 04/12/2019] [Indexed: 01/15/2023] Open
Abstract
The canonical Scribble polarity complex is implicated in regulation of epithelial junctions and apical polarity. Here, we show that SGEF, a RhoG-specific GEF, forms a ternary complex with Scribble and Dlg1, two members of the Scribble complex. SGEF targets to apical junctions in a Scribble-dependent fashion and functions in the regulation of actomyosin-based contractility and barrier function at tight junctions as well as E-cadherin-mediated formation of adherens junctions. Surprisingly, SGEF does not control the establishment of polarity. However, in 3D cysts, SGEF regulates the formation of a single open lumen. Interestingly, SGEF's nucleotide exchange activity regulates the formation and maintenance of adherens junctions, and in cysts the number of lumens formed, whereas SGEF's scaffolding activity is critical for regulation of actomyosin contractility and lumen opening. We propose that SGEF plays a key role in coordinating junctional assembly and actomyosin contractility by bringing together Scribble and Dlg1 and targeting RhoG activation to cell-cell junctions.
Collapse
Affiliation(s)
- Sahezeel Awadia
- Department of Biological Sciences, The University of Toledo, Toledo, OH
| | - Farah Huq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Torey R Arnold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | - Young Joo Sun
- Department of Biochemistry, University of Iowa, Iowa City, IA
| | - Titus Hou
- Department of Biochemistry, University of Iowa, Iowa City, IA
| | | | - Paola Massimi
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
9
|
Cao J, Wong MK, Zhao Z, Yan H. 3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo. BMC Bioinformatics 2019; 20:176. [PMID: 30961566 PMCID: PMC6454620 DOI: 10.1186/s12859-019-2720-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Understanding the cellular architecture is a fundamental problem in various biological studies. C. elegans is widely used as a model organism in these studies because of its unique fate determinations. In recent years, researchers have worked extensively on C. elegans to excavate the regulations of genes and proteins on cell mobility and communication. Although various algorithms have been proposed to analyze nucleus, cell shape features are not yet well recorded. This paper proposes a method to systematically analyze three-dimensional morphological cellular features. RESULTS Three-dimensional Membrane Morphological Segmentation (3DMMS) makes use of several novel techniques, such as statistical intensity normalization, and region filters, to pre-process the cell images. We then segment membrane stacks based on watershed algorithms. 3DMMS achieves high robustness and precision over different time points (development stages). It is compared with two state-of-the-art algorithms, RACE and BCOMS. Quantitative analysis shows 3DMMS performs best with the average Dice ratio of 97.7% at six time points. In addition, 3DMMS also provides time series of internal and external shape features of C. elegans. CONCLUSION We have developed the 3DMMS based technique for embryonic shape reconstruction at the single-cell level. With cells accurately segmented, 3DMMS makes it possible to study cellular shapes and bridge morphological features and biological expression in embryo research.
Collapse
Affiliation(s)
- Jianfeng Cao
- Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
10
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
11
|
Chauvigné F, Parhi J, Ducat C, Ollé J, Finn RN, Cerdà J. The cellular localization and redistribution of multiple aquaporin paralogs in the spermatic duct epithelium of a maturing marine teleost. J Anat 2018; 233:177-192. [PMID: 29806093 DOI: 10.1111/joa.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Aquaporin-mediated fluid transport in the mammalian efferent duct and epididymis is believed to play a role in sperm maturation and concentration. In fish, such as the marine teleost gilthead seabream (Sparus aurata), the control of fluid homeostasis in the spermatic duct seems also to be crucial for male fertility, but no information exists on the expression and distribution of aquaporins. In this study, reverse transcriptase-polymerase chain reaction and immunoblotting analyses, employing available and newly raised paralog-specific antibodies for seabream aquaporins, indicate that up to nine functional aquaporins, Aqp0a, -1aa, -1ab, -3a, -4a, -7, -8bb, -9b and -10b, are expressed in the spermatic duct. Immunolocalization of the channels in the resting spermatic duct reveals that Aqp0a, -1aa, -4a, -7 and -10b are expressed in the monolayered luminal epithelium, Aqp8b and -9b in smooth muscle fibers, and Aqp1ab and -3a in different interstitial lamina cells. In the epithelial cells, Aqp0a and -1aa are localized in the short apical microvilli, and Aqp4a and -10b show apical and basolateral staining, whereas Aqp7 is solely detected in vesicular compartments. Upon spermiation, an elongation of the epithelial cells sterocilia, as well as the folding of the epithelium, is observed. At this stage, single- and double-immunostaining, using two aquaporin paralogs or the Na+ /K+ -ATPase membrane marker, indicate that Aqp1ab, -3a, -7, -8bb and -9b staining remains unchanged, whereas in epithelial cells Aqp1aa translation is supressed, Aqp4a internalizes, and Aqp0a and -10b accumulate in the apical, lateral and basal plasma membrane. These findings uncover a cell type- and region-specific distribution of multiple aquaporins in the piscine spermatic duct, which shares conserved features of the mammalian system. The data therefore suggest that aquaporins may play different roles in the regulation of fluid homeostasis and sperm maturation in the male reproductive tract of fish.
Collapse
Affiliation(s)
- François Chauvigné
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Janmejay Parhi
- Fish Genetics and Reproduction Department, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Carla Ducat
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Judith Ollé
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Roderick Nigel Finn
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Group of Comparative Molecular Physiology, IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|