1
|
Jaroch M, Sun G, Tsui HCT, Reed C, Sun J, Jörg M, Winkler ME, Rice KC, Dziergowska A, Stich TA, Dedon PC, Dos Santos PC, de Crécy-Lagard V. Alternate routes to mnm 5s 2U synthesis in Gram-positive bacteria. J Bacteriol 2024; 206:e0045223. [PMID: 38551342 PMCID: PMC11025329 DOI: 10.1128/jb.00452-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/09/2024] [Indexed: 04/09/2024] Open
Abstract
The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
Collapse
Affiliation(s)
- Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | | | - Colbie Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | - Marko Jörg
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Troy A. Stich
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | | | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| |
Collapse
|
2
|
Jaroch M, Sun G, Tsui HCT, Reed C, Sun J, Jörg M, Winkler ME, Rice KC, Stich TA, Dedon PC, Dos Santos PC, de Crécy-Lagard V. Alternate routes to mnm 5 s 2 U synthesis in Gram-positive bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572861. [PMID: 38187551 PMCID: PMC10769405 DOI: 10.1101/2023.12.21.572861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
Collapse
|
3
|
Pham H, Tran TDT, Yang Y, Ahn JH, Hur HG, Kim YH. Analysis of phylogenetic markers for classification of a hydrogen peroxide producing Streptococcus oralis isolated from saliva by a newly devised differential medium. J Microbiol 2022; 60:795-805. [DOI: 10.1007/s12275-022-2261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
|
4
|
Vidal Amaral JR, Jucá Ramos RT, Almeida Araújo F, Bentes Kato R, Figueira Aburjaile F, de Castro Soares S, Góes-Neto A, Matiuzzi da Costa M, Azevedo V, Brenig B, Soares de Oliveira S, Soares Rosado A. Bacteriocin Producing Streptococcus agalactiae Strains Isolated from Bovine Mastitis in Brazil. Microorganisms 2022; 10:microorganisms10030588. [PMID: 35336163 PMCID: PMC8953382 DOI: 10.3390/microorganisms10030588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest health challenges of our time. We are now facing a post-antibiotic era in which microbial infections, currently treatable, could become fatal. In this scenario, antimicrobial peptides such as bacteriocins represent an alternative solution to traditional antibiotics because they are produced by many organisms and can inhibit bacteria, fungi, and/or viruses. Herein, we assessed the antimicrobial activity and biotechnological potential of 54 Streptococcus agalactiae strains isolated from bovine mastitis. Deferred plate antagonism assays revealed an inhibition spectrum focused on species of the genus Streptococcus—namely, S. pyogenes, S. agalactiae, S. porcinus, and S. uberis. Three genomes were successfully sequenced, allowing for their taxonomic confirmation via a multilocus sequence analysis (MLSA). Virulence potential and antibiotic resistance assessments showed that strain LGMAI_St_08 is slightly more pathogenic than the others. Moreover, the mreA gene was identified in the three strains. This gene is associated with resistance against erythromycin, azithromycin, and spiramycin. Assessments for secondary metabolites and antimicrobial peptides detected the bacteriocin zoocin A. Finally, comparative genomics evidenced high similarity among the genomes, with more significant similarity between the LGMAI_St_11 and LGMAI_St_14 strains. Thus, the current study shows promising antimicrobial and biotechnological potential for the Streptococcus agalactiae strains.
Collapse
Affiliation(s)
- João Ricardo Vidal Amaral
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Fabrício Almeida Araújo
- Socio-Environmental and Water Resources Institute, Universidade Federal Rural da Amazônia, Belém 66077-830, PA, Brazil
| | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Flávia Figueira Aburjaile
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Siomar de Castro Soares
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mateus Matiuzzi da Costa
- Department of Biological Sciences, Universidade Federal do Vale do São Francisco, Petrolina 56304-917, PE, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Selma Soares de Oliveira
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alexandre Soares Rosado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| |
Collapse
|
5
|
Lemaire C, Le Gallou B, Lanotte P, Mereghetti L, Pastuszka A. Distribution, Diversity and Roles of CRISPR-Cas Systems in Human and Animal Pathogenic Streptococci. Front Microbiol 2022; 13:828031. [PMID: 35173702 PMCID: PMC8841824 DOI: 10.3389/fmicb.2022.828031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococci form a wide group of bacteria and are involved in both human and animal pathologies. Among pathogenic isolates, differences have been highlighted especially concerning their adaptation and virulence profiles. CRISPR-Cas systems have been identified in bacteria and many streptococci harbor one or more systems, particularly subtypes I-C, II-A, and III-A. Since the demonstration that CRISPR-Cas act as an adaptive immune system in Streptococcus thermophilus, a lactic bacteria, the diversity and role of CRISPR-Cas were extended to many germs and functions were enlarged. Among those, the genome editing tool based on the properties of Cas endonucleases is used worldwide, and the recent attribution of the Nobel Prize illustrates the importance of this tool in the scientific world. Another application is CRISPR loci analysis, which allows to easily characterize isolates in order to understand the interactions of bacteria with their environment and visualize species evolution. In this review, we focused on the distribution, diversity and roles of CRISPR-Cas systems in the main pathogenic streptococci.
Collapse
Affiliation(s)
- Coralie Lemaire
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Brice Le Gallou
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
- *Correspondence: Philippe Lanotte,
| | - Laurent Mereghetti
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Adeline Pastuszka
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
6
|
Abdelbary MMH, Wilms G, Conrads G. A New Species-Specific Typing Method for Salivarius Group Streptococci Based on the Dephospho-Coenzyme A Kinase ( coaE) Gene Sequencing. Front Cell Infect Microbiol 2021; 11:685657. [PMID: 34422679 PMCID: PMC8378900 DOI: 10.3389/fcimb.2021.685657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Viridans streptococci are a group of α-hemolytic streptococcal species. They are mainly commensals, most abundant in the mouth supporting oral health. But they also include important human pathogens such as Streptococcus pneumoniae. Identification and molecular typing of viridans group streptococci are challenging, especially for members of the salivarius group. In this study, we developed a single-locus molecular typing method that is able to differentiate among the highly phylogenetically related members of the salivarius group (S. salivarius, S. vestibularis and S. thermophilus) and might support differentiation in other groups as well. This typing approach is based on the amplification and sequence analysis of the housekeeping gene dephospho-coenzyme A kinase (coaE), a gene with unrecognized taxonomic potential to date. Here, we analysed coaE gene sequences of 154 publicly available genomes and of 30 salivarius group isolates of our own collection that together belong to 20 different gram-positive bacterial (sub) species. Our results revealed that the coaE phylogeny distinguished between streptococcal and non-streptococcal genomes and that coaE gene sequences were species-specific. In contrast to MALDI-TOF MS performance, the coaE typing was able to precisely identify the phylogenetically very closely related members of the salivarius group.
Collapse
Affiliation(s)
- Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Gerrit Wilms
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
7
|
Sinha D, Sun X, Khare M, Drancourt M, Raoult D, Fournier PE. Pangenome analysis and virulence profiling of Streptococcus intermedius. BMC Genomics 2021; 22:522. [PMID: 34238216 PMCID: PMC8266483 DOI: 10.1186/s12864-021-07829-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background Streptococcus intermedius, a member of the S. anginosus group, is a commensal bacterium present in the normal microbiota of human mucosal surfaces of the oral, gastrointestinal, and urogenital tracts. However, it has been associated with various infections such as liver and brain abscesses, bacteremia, osteo-articular infections, and endocarditis. Since 2005, high throughput genome sequencing methods enabled understanding the genetic landscape and diversity of bacteria as well as their pathogenic role. Here, in order to determine whether specific virulence genes could be related to specific clinical manifestations, we compared the genomes from 27 S. intermedius strains isolated from patients with various types of infections, including 13 that were sequenced in our institute and 14 available in GenBank. Results We estimated the theoretical pangenome size to be of 4,020 genes, including 1,355 core genes, 1,054 strain-specific genes and 1,611 accessory genes shared by 2 or more strains. The pangenome analysis demonstrated that the genomic diversity of S. intermedius represents an “open” pangenome model. We identified a core virulome of 70 genes and 78 unique virulence markers. The phylogenetic clusters based upon core-genome sequences and SNPs were independent from disease types and sample sources. However, using Principal Component analysis based on presence/ absence of virulence genes, we identified the sda histidine kinase, adhesion protein LAP and capsular polysaccharide biosynthesis protein cps4E as being associated to brain abscess or broncho-pulmonary infection. In contrast, liver and abdominal abscess were associated to presence of the fibronectin binding protein fbp54 and capsular polysaccharide biosynthesis protein cap8D and cpsB. Conclusions Based on the virulence gene content of 27 S. intermedius strains causing various diseases, we identified putative disease-specific genetic profiles discriminating those causing brain abscess or broncho-pulmonary infection from those causing liver and abdominal abscess. These results provide an insight into S. intermedius pathogenesis and highlights putative targets in a diagnostic perspective.
Collapse
Affiliation(s)
- Dhiraj Sinha
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Xifeng Sun
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Mudra Khare
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France. .,IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
8
|
Nzoyikorera N, Diawara I, Fresia P, Maaloum F, Katfy K, Nayme K, Maaloum M, Cornick J, Chaguza C, Timinouni M, Belabess H, Zerouali K, Elmdaghri N. Whole genomic comparative analysis of Streptococcus pneumoniae serotype 1 isolates causing invasive and non-invasive infections among children under 5 years in Casablanca, Morocco. BMC Genomics 2021; 22:39. [PMID: 33413118 PMCID: PMC7792055 DOI: 10.1186/s12864-020-07316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae serotype 1 remains a leading cause of invasive pneumococcal diseases, even in countries with PCV-10/PCV-13 vaccine implementation. The main objective of this study, which is part of the Pneumococcal African Genome project (PAGe), was to determine the phylogenetic relationships of serotype 1 isolates recovered from children patients in Casablanca (Morocco), compared to these from other African countries; and to investigate the contribution of accessory genes and recombination events to the genetic diversity of this serotype. RESULTS The genome average size of the six-pneumococcus serotype 1 from Casablanca was 2,227,119 bp, and the average content of coding sequences was 2113, ranging from 2041 to 2161. Pangenome analysis of the 80 genomes used in this study revealed 1685 core genes and 1805 accessory genes. The phylogenetic tree based on core genes and the hierarchical bayesian clustering analysis revealed five sublineages with a phylogeographic structure by country. The Moroccan strains cluster in two different lineages, the five invasive strains clusters altogether in a divergent clade distantly related to the non-invasive strain, that cluster with all the serotype 1 genomes from Africa. CONCLUSIONS The whole genome sequencing provides increased resolution analysis of the highly virulent serotype 1 in Casablanca, Morocco. Our results are concordant with previous works, showing that the phylogeography of S. pneumoniae serotype 1 is structured by country, and despite the small size (six isolates) of the Moroccan sample, our analysis shows the genetic cohesion of the Moroccan invasive isolates.
Collapse
Affiliation(s)
- Néhémie Nzoyikorera
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco.
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco.
| | - Idrissa Diawara
- Faculty of Sciences and Health Techniques, Mohammed VI University of Health Sciences (UM6SS) of Casablanca, Casablanca, Morocco
| | - Pablo Fresia
- Institut Pasteur de Montevideo, Pasteur + INIA Joint Unit (UMPI), Montevideo, Uruguay
- Institut Pasteur de Montevideo, Microbial Genomics Laboratory, Montevideo, Uruguay
| | - Fakhreddine Maaloum
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| | - Khalid Katfy
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mossaab Maaloum
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houria Belabess
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| | - Khalid Zerouali
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| | - Naima Elmdaghri
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| |
Collapse
|
9
|
Zou Y, Sun Y, Qi H, Liu D, Tian H, Wang N, Li X. Streptococcus xiaochunlingii sp. nov. E24 Isolated From the Oropharynx of Healthy Chinese Children. Front Microbiol 2020; 11:563213. [PMID: 33133039 PMCID: PMC7550633 DOI: 10.3389/fmicb.2020.563213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
A Gram-positive, α-hemolytic, catalase-negative, facultative anaerobic and non-motile coccus was isolated form throat swabs taken from the oropharynx of healthy children. The genome was shown to be 1.950,659 bp long and contained 42.03 mol% G + C bases with 1,942 protein-coding and 53 RNA coding genes. The results of 16S rRNA gene sequencing strongly suggested that the strain is a member of the Streptococcus genus, with 98.04, 98.11, and 97.34% similarities to Streptococcus australis ATCC 700641T, Streptococcus rubneri LMG 27207T and Streptococcus parasanguinis ATCC 15912T, respectively. A sodA gene comparison exhibited a sequence identity of 92.6% with the closest strain Streptococcus australis ATCC 700641T. In silico DNA-DNA hybridization showed a highest DNA similarity value of 52% with Streptococcus australis ATCC 700641T. Comparing 18 biochemical traits, the similarities of the Streptococcus strain E24 were 72% with Streptococcus rubneri LMG 27207T, 78% with Streptococcus australis ATCC 700641T and 44% with Streptococcus parasanguinis ATCC 15912T. We suggest that based on the genotypic and phenotypic results that the strain E24 is a novel species of the Streptococcus genus and propose the name Streptococcus xiaochunlingii sp. nov. E24.
Collapse
Affiliation(s)
- Yang Zou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Ye Sun
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - He Qi
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Defeng Liu
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Han Tian
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Nan Wang
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Xinming Li
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| |
Collapse
|
10
|
Silva SM, Rodrigues ICG, Santos RDS, Ternes YMF. The direct and indirect effects of the pneumococcal conjugated vaccine on carriage rates in children aged younger than 5 years in Latin America and the Caribbean: a systematic review. EINSTEIN-SAO PAULO 2019; 18:eRW4890. [PMID: 31778464 PMCID: PMC6896659 DOI: 10.31744/einstein_journal/2020rw4890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/25/2019] [Indexed: 11/24/2022] Open
Abstract
Objective To demonstrate the impact of pneumococcal conjugate vaccine in Streptococcus pneumoniae carriage status in children younger than 5 years in Latin America and the Caribbean. Methods A systematic literature review was carried out on the direct and indirect effects of pneumococcal vaccine in the carriage status, after implementation in childhood immunization programs. Studies carried out in children younger than 5 years were selected from the PubMed® and Virtual Health Library databases, and data collected after implementation of pneumococcal vaccine in Latin America and the Caribbean, between 2008 and 2018. Results From 1,396 articles identified, 738 were selected based on titles and abstracts. After duplicate removal, 31 studies were eligible for full-text reading, resulting in 6 publications for analysis. All selected publications were observational studies and indicated a decrease in the carriage and vaccine types, and an increase in the circulation of non-vaccine serotypes, such as 6A, 19A, 35B, 21 and 38. We did not identify changes in the antimicrobial resistance after vaccine implementation. Conclusion A decrease in the carriage status of vaccine types and non-vaccine types was detected. The continuous monitoring of pneumococcal vaccine effect is fundamental to demonstrate the impact of the carriage status and, consequently, of invasive pneumococcal disease, allowing better targeting approaches in countries that included pneumococcal vaccine in their immunization programs. Our study protocol was registered in PROSPERO (www.crd.york.ac.uk/prospero) under number CRD42018096719.
Collapse
|
11
|
Development of a reference data set for assigning Streptococcus and Enterococcus species based on next generation sequencing of the 16S-23S rRNA region. Antimicrob Resist Infect Control 2019; 8:178. [PMID: 31788235 PMCID: PMC6858756 DOI: 10.1186/s13756-019-0622-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
Abstract
Background Many members of Streptococcus and Enterococcus genera are clinically relevant opportunistic pathogens warranting accurate and rapid identification for targeted therapy. Currently, the developed method based on next generation sequencing (NGS) of the 16S-23S rRNA region proved to be a rapid, reliable and precise approach for species identification directly from polymicrobial and challenging clinical samples. The introduction of this new method to routine diagnostics is hindered by a lack of the reference sequences for the 16S-23S rRNA region for many bacterial species. The aim of this study was to develop a careful assignment for streptococcal and enterococcal species based on NGS of the 16S-23S rRNA region. Methods Thirty two strains recovered from clinical samples and 19 reference strains representing 42 streptococcal species and nine enterococcal species were subjected to bacterial identification by four Sanger-based sequencing methods targeting the genes encoding (i) 16S rRNA, (ii) sodA, (iii) tuf and (iv) rpoB; and NGS of the 16S-23S rRNA region. Results This study allowed obtainment and deposition of reference sequences of the 16S-23S rRNA region for 15 streptococcal and 3 enterococcal species followed by enrichment for 27 and 6 species, respectively, for which reference sequences were available in the databases. For Streptococcus, NGS of the 16S-23S rRNA region was as discriminative as Sanger sequencing of the tuf and rpoB genes allowing for an unambiguous identification of 93% of analyzed species. For Enterococcus, sodA, tuf and rpoB genes sequencing allowed for identification of all species, while the NGS-based method did not allow for identification of only one enterococcal species. For both genera, the sequence analysis of the 16S rRNA gene was endowed with a low identification potential and was inferior to that of other tested identification methods. Moreover, in case of phylogenetically related species the sequence analysis of only the intergenic spacer region was not sufficient enough to precisely identify Streptococcus strains at the species level. Conclusions Based on the developed reference dataset, clinically relevant streptococcal and enterococcal species can now be reliably identified by 16S-23S rRNA sequences in samples. This study will be useful for introduction of a novel diagnostic tool, NGS of the 16S-23S rRNA region, which undoubtedly is an improvement for reliable culture-independent species identification directly from polymicrobially constituted clinical samples.
Collapse
|
12
|
Velsko IM, Perez MS, Richards VP. Resolving Phylogenetic Relationships for Streptococcus mitis and Streptococcus oralis through Core- and Pan-Genome Analyses. Genome Biol Evol 2019; 11:1077-1087. [PMID: 30847473 PMCID: PMC6461889 DOI: 10.1093/gbe/evz049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Taxonomic and phylogenetic relationships of Streptococcus mitis and Streptococcus oralis have been difficult to establish biochemically and genetically. We used core-genome analyses of S. mitis and S. oralis, as well as the closely related species Streptococcus pneumoniae and Streptococcus parasanguinis, to clarify the phylogenetic relationships between S. mitis and S. oralis, as well as within subclades of S. oralis. All S. mitis (n = 67), S. oralis (n = 89), S. parasanguinis (n = 27), and 27 S. pneumoniae genome assemblies were downloaded from NCBI and reannotated. All genes were delineated into homologous clusters and maximum-likelihood phylogenies built from putatively nonrecombinant core gene sets. Population structure was determined using Bayesian genome clustering, and patristic distance was calculated between populations. Population-specific gene content was assessed using a phylogenetic-based genome-wide association approach. Streptococcus mitis and S. oralis formed distinct clades, but species mixing suggests taxonomic misassignment. Patristic distance between populations suggests that S. oralis subsp. dentisani is a distinct species, whereas S. oralis subsp. tigurinus and subsp. oralis are supported as subspecies, and that S. mitis comprises two subspecies. None of the genes within the pan-genomes of S. mitis and S. oralis could be statistically correlated with either, and the dispensable genomes showed extensive variation among isolates. These are likely important factors contributing to established overlap in biochemical characteristics for these taxa. Based on core-genome analysis, the substructure of S. oralis and S. mitis should be redefined, and species assignments within S. oralis and S. mitis should be made based on whole-genome analysis to be robust to misassignment.
Collapse
Affiliation(s)
| | - Megan S Perez
- Department of Biological Sciences, Clemson University
- Department of Arts and Sciences, LeTourneau University
| | | |
Collapse
|
13
|
Rößler S, Berner R, Jacobs E, Toepfner N. Prevalence and molecular diversity of invasive Streptococcus dysgalactiae and Streptococcus pyogenes in a German tertiary care medical centre. Eur J Clin Microbiol Infect Dis 2018; 37:1325-1332. [PMID: 29725958 DOI: 10.1007/s10096-018-3254-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
Abstract
Prevalence of invasive ß-haemolytic streptococci (BHS) at a tertiary care hospital and molecular diversity of S. pyogenes and S. dysgalactiae was studied. Between 2012 and 2016, all blood culture sets (n = 55,839), CSF (n = 8413) and soft tissue (n = 20,926) samples were analysed for BHS positivity using HYBASE software. Molecular profiles of 99 S. pyogenes and S. dysgalactiae were identified by sequencing of M protein genes (emm types) and multiplex PCR typing of 20 other virulence determinants. Streptococci contributed to 6.2% of blood, 10.7% of CSF and 14.5% of soft tissue isolates, being among the most common invasive isolates. The overall rates of invasive S. pyogenes, S. agalactiae, S. dysgalactiae and S. pneumoniae were 2.4, 4.4, 2.1, and 5.3%. Whereas S. pneumoniae was 1.5% more common in CSF samples, BHS isolates were 2-fold and 11-fold higher in bacteraemia and invasive soft tissue infections. Genetic BHS typing revealed wide molecular diversity of invasive and noninvasive group A and group G BHS, whereas one emm-type (stG62647.0) and no other virulence determinants except scpA were detected in invasive group C BHS. BHS were important invasive pathogens, outpacing S. pneumoniae in bacteraemia and invasive soft tissue infections. The incidence of S. dysgalactiae infections was comparable to that of S. pyogenes even with less diversity of molecular virulence. The results of this study emphasise the need for awareness of BHS invasiveness in humans and the need to develop BHS prevention strategies.
Collapse
Affiliation(s)
- S Rößler
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| | - R Berner
- Department of Paediatrics, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - E Jacobs
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| | - N Toepfner
- Department of Paediatrics, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
14
|
Morales-Covarrubias MS, del Carmen Bolan-Mejía M, Vela Alonso AI, Fernandez-Garayzabal JF, Gomez-Gil B. Streptococcus penaeicida sp. nov., isolated from a diseased farmed Pacific white shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 2018. [DOI: 10.1099/ijsem.0.002693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Ana Isabel Vela Alonso
- Departamento de Sanidad Animal and Centro VISAVET, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Jose F. Fernandez-Garayzabal
- Departamento de Sanidad Animal and Centro VISAVET, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Bruno Gomez-Gil
- CIAD, A.C. Mazatlán Unit for Aquaculture, AP 711 Mazatlán, Sinaloa, 82000, Mexico
| |
Collapse
|
15
|
Sitkiewicz I. How to become a killer, or is it all accidental? Virulence strategies in oral streptococci. Mol Oral Microbiol 2017; 33:1-12. [PMID: 28727895 DOI: 10.1111/omi.12192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 01/03/2023]
Abstract
Streptococci are a diverse group of Gram-positive microorganisms sharing common virulence traits and similar strategies to escape the oral niche and establish an infection in other parts of the host organism. Invasive infection with oral streptococci is "a perfect storm" that requires the concerted action of multiple biotic and abiotic factors. Our understanding of streptococcal pathogenicity and infectivity should probably be less mechanistic and driven not only by the identification of novel virulence factors. The observed diversity of the genus, including the range of virulence and pathogenicity mechanisms, is most likely the result of interspecies interactions, a massive horizontal gene transfer between streptococci within a shared oral niche, recombination events, selection of specialized clones, and modification of regulatory circuits. Selective pressure by the host and bacterial communities is a driving force for the selection of virulence traits and shaping the streptococcal genome. Global regulatory events driving niche adaptation and interactions with bacterial communities and the host steer research interests towards attempts to define the oral interactome on the transcriptional level and define signal cross-feeding and co-expression and co-regulation of virulence genes.
Collapse
Affiliation(s)
- I Sitkiewicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
16
|
Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis. Sci Rep 2017; 7:2949. [PMID: 28592797 PMCID: PMC5462765 DOI: 10.1038/s41598-017-02399-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.
Collapse
|
17
|
Jensen A, Scholz CFP, Kilian M. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus. Int J Syst Evol Microbiol 2016; 66:4803-4820. [PMID: 27534397 DOI: 10.1099/ijsem.0.001433] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.
Collapse
Affiliation(s)
- Anders Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Aarhus 8000, Denmark
| | - Christian F P Scholz
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Aarhus 8000, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Aarhus 8000, Denmark
| |
Collapse
|
18
|
Obszańska K, Kern-Zdanowicz I, Kozińska A, Machura K, Stefaniuk E, Hryniewicz W, Sitkiewicz I. Streptococcus anginosus (milleri) Group Strains Isolated in Poland (1996-2012) and their Antibiotic Resistance Patterns. Pol J Microbiol 2016; 65:33-41. [PMID: 27281992 DOI: 10.5604/17331331.1197323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptococcus anginosus, Streptococcus intermedius and Streptococcus constellatus form a group of related streptococcal species, namely the Streptococcus Anginosus Group (SAG). The group, previously called "milleri" had been rarely described until 1980/1990 as source of infections. Nowadays SAG bacteria are often described as pathogens causing predominantly purulent infections. The number of infections is highly underestimated, as SAG strains are often classified in the microbiology laboratory as less virulent "viridans streptococci" Epidemiological situation regarding SAG infections in Poland has been unrecognized, therefore we performed a retrospective analysis of strains isolated between 1996 and 2012. Strains suspected of belonging to SAG were re-identified using an automated biochemical approach (Vitek2) and MALDI-TOF MS. We performed first analysis of antibiotic resistance among SAG strains isolated in Poland using automated methods (Vitek2), disk diffusion tests and E-Tests. We also performed PCR detection of resistance determinants in antibiotic resistant strains. Clonal structure of analyzed strains was evaluated with PFGE and MLVF methods. All three species are difficult to distinguish using automated diagnostic methods and the same is true for automated MIC evaluation. Our analysis revealed SAG strains are rarely isolated in Poland, predominantly from purulent infections. All isolates are very diverse on the genomic level as estimated by PFGE and MLVF analyses. All analyzed strains are sensitive to penicillin, a substantial group of strains is resistant to macrolides and the majority of strains are resistant to tetracycline.
Collapse
|
19
|
Whole genome sequencing as a tool for phylogenetic analysis of clinical strains of Mitis group streptococci. Eur J Clin Microbiol Infect Dis 2016; 35:1615-25. [PMID: 27325438 DOI: 10.1007/s10096-016-2700-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
Abstract
Identification of Mitis group streptococci (MGS) to the species level is challenging for routine microbiology laboratories. Correct identification is crucial for the diagnosis of infective endocarditis, identification of treatment failure, and/or infection relapse. Eighty MGS from Danish patients with infective endocarditis were whole genome sequenced. We compared the phylogenetic analyses based on single genes (recA, sodA, gdh), multigene (MLSA), SNPs, and core-genome sequences. The six phylogenetic analyses generally showed a similar pattern of six monophyletic clusters, though a few differences were observed in single gene analyses. Species identification based on single gene analysis showed their limitations when more strains were included. In contrast, analyses incorporating more sequence data, like MLSA, SNPs and core-genome analyses, provided more distinct clustering. The core-genome tree showed the most distinct clustering.
Collapse
|
20
|
Appolinario LR, Tschoeke DA, Rua CPJ, Venas T, Campeão ME, Amaral GRS, Leomil L, de Oliveira L, Vieira VV, Otsuki K, Swings J, Thompson FL, Thompson CC. Description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach. Antonie van Leeuwenhoek 2016; 109:431-8. [PMID: 26786501 DOI: 10.1007/s10482-016-0649-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 01/11/2016] [Indexed: 11/28/2022]
Abstract
The taxonomic position of strains Ab112(T) (CBAS 572(T)) and Ab227_MC (CBAS 573) was evaluated by means of genomic taxonomy. These isolates represent the dominant flora cultured from the healthy marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro. Strains CBAS 572(T) and CBAS 573 shared >98 % 16S rRNA sequence identity with Endozoicomonas numazuensis and Endozoicomonas montiporae. In silico DNA-DNA Hybridization, i.e. genome-to-genome distance (GGD), amino acid identity (AAI) and average nucleotide identity (ANI) further showed that these strains had <70 %, at maximum 71.1 and 78 % of identity, respectively, to their closest neighbours E. numazuensis and E. montiporae. The DNA G+C content of CBAS 572(T) and CBAS 573 were 47.6 and 47.7 mol%, respectively. Phenotypic and chemotaxonomic features also allowed a separation from the type strains of their phylogenetic neighbours. Useful phenotypic features for discriminating CBAS 572(T) and CBAS 573 from E. numazuensis and E. montiporae species include C8 esterase, N-acetyl-β-glucosaminidase, citric acid, uridine and siderophore. The species Endozoicomonas arenosclerae sp. nov. is proposed to harbour the new isolates. The type strain is CBAS 572(T) (=Ab112(T)).
Collapse
Affiliation(s)
- Luciana R Appolinario
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Diogo A Tschoeke
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Cintia P J Rua
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Tainá Venas
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Mariana E Campeão
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Gilda R S Amaral
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Luciana Leomil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Louisi de Oliveira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | | | - Koko Otsuki
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Jean Swings
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil.,Laboratory for Microbiology, Ghent University, Ghent, Belgium
| | - Fabiano L Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil.,SAGE-COPPE, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
21
|
Obszańska K, Kern-Zdanowicz I, Sitkiewicz I. MLVF analysis of anginosus (milleri) group streptococci. Diagn Microbiol Infect Dis 2015; 83:124-9. [PMID: 26234478 DOI: 10.1016/j.diagmicrobio.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 11/17/2022]
Abstract
We developed a new method of typing for anginosus group streptococci (SAG). It is the first SAG-dedicated, PCR-based method, which allows to determine the relationship between strains. The method is based on the detection of tandem repeats among 9 genomic loci and is classified as multilocus variable number tandem repeats fingerprint (MLVF) type of analysis. Using the described method, it is possible to detect over half million MLVF patterns, which correlate with pulsed-field gel electrophoresis profiles. The other advantage of the method is relatively short time from "cell to data", low costs, and easy application for epidemiological and evolutionary studies.
Collapse
Affiliation(s)
- Katarzyna Obszańska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Izabella Kern-Zdanowicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Izabela Sitkiewicz
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warszawa, Poland.
| |
Collapse
|
22
|
Zhang J, Gong G, Wang X, Zhang H, Tian W. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus. IET Syst Biol 2015; 9:172-9. [PMID: 26243834 PMCID: PMC8687177 DOI: 10.1049/iet-syb.2014.0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 11/19/2022] Open
Abstract
Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.
Collapse
Affiliation(s)
- Jifeng Zhang
- Department of Life Sciences, Huainan Normal University, Huainan 232001, People's Republic of China
| | - Guangyu Gong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiao Wang
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200082, People's Republic of China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Weidong Tian
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200082, People's Republic of China.
| |
Collapse
|
23
|
Angeletti S, Dicuonzo G, Avola A, Crea F, Dedej E, Vailati F, Farina C, De Florio L. Viridans Group Streptococci clinical isolates: MALDI-TOF mass spectrometry versus gene sequence-based identification. PLoS One 2015; 10:e0120502. [PMID: 25781023 PMCID: PMC4362942 DOI: 10.1371/journal.pone.0120502] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/23/2015] [Indexed: 11/29/2022] Open
Abstract
Viridans Group Streptococci (VGS) species-level identification is fundamental for patients management. Matrix-assisted laser desorption ionization—time of flight mass spectrometry (MALDI-TOF MS) has been used for VGS identification but discrimination within the Mitis group resulted difficult. In this study, VGS identifications with two MALDI-TOF instruments, the Biotyper (Bruker) and the VITEK MS (bioMérieux) have been compared to those derived from tuf, soda and rpoB genes sequencing. VGS isolates were clustered and a dendrogram constructed using the Biotyper 3.0 software (Bruker). RpoB gene sequencing resulted the most sensitive and specific molecular method for S. pneumonia identification and was used as reference method. The sensitivity and the specificity of the VITEK MS in S. pneumonia identification were 100%, while the Biotyper resulted less specific (92.4%). In non pneumococcal VGS strains, the group-level correlation between rpoB and the Biotyper was 100%, while the species-level correlation was 61% after database upgrading (than 37% before upgrading). The group-level correlation between rpoB and the VITEK MS was 100%, while the species-level correlation was 36% and increases at 69% if isolates identified as S. mitis/S. oralis are included. The less accurate performance of the VITEK MS in VGS identification within the Mitis group was due to the inability to discriminate between S. mitis and S. oralis. Conversely, the Biotyper, after the release of the upgraded database, was able to discriminate between the two species. In the dendrogram, VGS strains from the same group were grouped into the same cluster and had a good correspondence with the gene-based clustering reported by other authors, thus confirming the validity of the upgraded version of the database. Data from this study demonstrated that MALDI-TOF technique can represent a rapid and cost saving method for VGS identification even within the Mitis group but improvements of spectra database are still recommended.
Collapse
Affiliation(s)
- Silvia Angeletti
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Rome, Italy
- * E-mail:
| | - Giordano Dicuonzo
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Rome, Italy
| | - Alessandra Avola
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Rome, Italy
| | - Francesca Crea
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Rome, Italy
| | - Etleva Dedej
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Rome, Italy
| | - Francesca Vailati
- Microbiology Institute, AO ‘Papa Giovanni XXIII’ (formerly AO ‘Ospedali Riuniti’) of Bergamo, Bergamo, Italy
| | - Claudio Farina
- Microbiology Institute, AO ‘Papa Giovanni XXIII’ (formerly AO ‘Ospedali Riuniti’) of Bergamo, Bergamo, Italy
| | - Lucia De Florio
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
24
|
HAMADA S, KAWABATA S, NAKAGAWA I. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:539-59. [PMID: 26666305 PMCID: PMC4773581 DOI: 10.2183/pjab.91.539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85-1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these.
Collapse
Affiliation(s)
- Shigeyuki HAMADA
- Research Institute for Microbial Diseases, Japan-Thailand Collaboration Center for Emerging and Reemerging Infections, Osaka University, Osaka, Japan
- Correspondence should be addressed: S. Hamada, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan (e-mail: )
| | - Shigetada KAWABATA
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Ichiro NAKAGAWA
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 2014; 197:359-70. [PMID: 25533848 DOI: 10.1007/s00203-014-1071-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. Ultimately, we will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
Collapse
|
26
|
Streptococcus tangierensis sp. nov. and Streptococcus cameli sp. nov., two novel Streptococcus species isolated from raw camel milk in Morocco. Antonie van Leeuwenhoek 2014; 107:503-10. [DOI: 10.1007/s10482-014-0346-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/01/2014] [Indexed: 11/26/2022]
|
27
|
Amaral GRS, Dias GM, Wellington-Oguri M, Chimetto L, Campeão ME, Thompson FL, Thompson CC. Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol 2014; 64:357-365. [PMID: 24505074 DOI: 10.1099/ijs.0.057927-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrios are ubiquitous in the aquatic environment and can be found in association with animal or plant hosts. The range of ecological relationships includes pathogenic and mutualistic associations. To gain a better understanding of the ecology of these microbes, it is important to determine their phenotypic features. However, the traditional phenotypic characterization of vibrios has been expensive, time-consuming and restricted in scope to a limited number of features. In addition, most of the commercial systems applied for phenotypic characterization cannot characterize the broad spectrum of environmental strains. A reliable and possible alternative is to obtain phenotypic information directly from whole genome sequences. The aim of the present study was to evaluate the usefulness of whole genome sequences as a source of phenotypic information. We performed a comparison of the vibrio phenotypes obtained from the literature with the phenotypes obtained from whole genome sequences. We observed a significant correlation between the previously published phenotypic data and the phenotypic data retrieved from whole genome sequences of vibrios. Analysis of 26 vibrio genomes revealed that all genes coding for the specific proteins involved in the metabolic pathways responsible for positive phenotypes of the 14 diagnostic features (Voges-Proskauer reaction, indole production, arginine dihydrolase, ornithine decarboxylase, utilization of myo-inositol, sucrose and L-leucine, and fermentation of D-mannitol, D-sorbitol, L-arabinose, trehalose, cellobiose, D-mannose and D-galactose) were found in the majority of the vibrios genomes. Vibrio species that were negative for a given phenotype revealed the absence of all or several genes involved in the respective biochemical pathways, indicating the utility of this approach to characterize the phenotypes of vibrios. The absence of the global regulation and regulatory proteins in the Vibrio parahaemolyticus genome indicated a non-vibrio phenotype. Whole genome sequences represent an important source for the phenotypic identification of vibrios.
Collapse
Affiliation(s)
| | - Graciela M Dias
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Luciane Chimetto
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Mariana E Campeão
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | |
Collapse
|
28
|
Hanshew AS, Jetté ME, Thibeault SL. Characterization and comparison of bacterial communities in benign vocal fold lesions. MICROBIOME 2014; 2:43. [PMID: 25671105 PMCID: PMC4323261 DOI: 10.1186/2049-2618-2-43] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/20/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Benign vocal fold lesions, including cysts, nodules, polyps, and Reinke's edema, are common causes of hoarseness and subsequent voice disorders. Given the prevalence of these lesions, disease etiology and pathophysiology remain unclear and their microbiota has not been studied to date secondary to the paucity of available biopsies for investigation. We sought to characterize and compare the bacterial communities in biopsies of cysts, nodules, polyps, and Reinke's edema collected from patients in Germany and Wisconsin. These samples were then compared to the communities found in healthy saliva and throat samples from the Human Microbiome Project (HMP). RESULTS 454 pyrosequencing of the V3-V5 regions of the 16S rRNA gene revealed five phyla that explained most of the bacterial diversity, including Firmicutes (73.8%), Proteobacteria (12.7%), Bacteroidetes (9.2%), Actinobacteria (2.1%), and Fusobacteria (1.9%). Every lesion sample, regardless of diagnosis, had operational taxonomic units (OTUs) identified as Streptococcus, with a mean abundance of 68.7%. Most of the lesions, 31 out of 44, were indistinguishable in a principal coordinates analysis (PCoA) due to dominance by OTUs phylogenetically similar to Streptococcus pseudopneumoniae. Thirteen lesions not dominated by S. pseudopneumoniae were more similar to HMP throat and saliva samples, though 12 of them contained Pseudomonas, which was not present in any of the HMP samples. Community structure and abundance could not be correlated with lesion diagnosis or any other documented patient factor, including age, sex, or country of origin. CONCLUSIONS Dominance by S. pseudopneumoniae could be a factor in disease etiology, as could the presence of Pseudomonas in some samples. Likewise, decreased diversity, as compared to healthy saliva and throat samples, may be associated with disease, similar to disease models in other mucosal sites.
Collapse
Affiliation(s)
- Alissa S Hanshew
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, Madison, 53705 Wisconsin USA
| | - Marie E Jetté
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, Madison, 53705 Wisconsin USA
| | - Susan L Thibeault
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, Madison, 53705 Wisconsin USA
| |
Collapse
|
29
|
Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL. Microbial genomic taxonomy. BMC Genomics 2013; 14:913. [PMID: 24365132 PMCID: PMC3879651 DOI: 10.1186/1471-2164-14-913] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/18/2013] [Indexed: 01/23/2023] Open
Abstract
A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Thompson CC, Silva GGZ, Vieira NM, Edwards R, Vicente ACP, Thompson FL. Genomic taxonomy of the genus prochlorococcus. MICROBIAL ECOLOGY 2013; 66:752-762. [PMID: 23963220 DOI: 10.1007/s00248-013-0270-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
The genus Prochlorococcus is globally abundant and dominates the total phytoplankton biomass and production in the oligotrophic ocean. The single species, Prochlorococcus marinus, comprises six named ecotypes. Our aim was to analyze the taxonomic structure of the genus Prochlorococcus. We analyzed the complete genomes of 13 cultured P. marinus type and reference strains by means of several genomic taxonomy tools (i.e., multilocus sequence analysis, amino acid identity, Karlin genomic signature, and genome to genome distance). In addition, we estimated the diversity of Prochlorococcus species in over 100 marine metagenomes from all the major oceanic provinces. According to our careful taxonomic analysis, the 13 strains corresponded, in fact, to ten different Prochlorococcus species. This analysis establishes a new taxonomic framework for the genus Prochlorococcus. Further, the analysis of the metagenomic data suggests that, in total, there may only be 35 Prochlorococcus species in the world's oceans. We propose that the dearth of species observed in this study is driven by high selective pressures that limit diversification in the global ocean.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Laboratory of Molecular Genetics of Microrganisms, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil,
| | | | | | | | | | | |
Collapse
|