1
|
Zeng CW. Stem Cell-Based Approaches for Spinal Cord Injury: The Promise of iPSCs. BIOLOGY 2025; 14:314. [PMID: 40136570 PMCID: PMC11940451 DOI: 10.3390/biology14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Spinal cord injury (SCI) is a life-altering condition that leads to severe neurological deficits and significantly impacts patients' quality of life. Despite advancements in medical care, current treatment options remain largely palliative, with limited ability to promote meaningful functional recovery. Induced pluripotent stem cells (iPSCs) have emerged as a promising avenue for regenerative medicine, offering patient-specific, cell-based therapeutic potential for SCI repair. This review provides a comprehensive overview of recent advancements in iPSC-based approaches for SCI, detailing the strategies used to generate neural cell types, including neural progenitor cells, oligodendrocytes, astrocytes, and microglia, and their roles in promoting neuroprotection and regeneration. Additionally, we examine key preclinical and clinical studies, highlighting functional recovery assessments and discussing both standardized and debated evaluation metrics. Furthermore, we address critical challenges related to safety, tumorigenicity, immune response, survival, integration, and overcoming the inhibitory microenvironment of the injured spinal cord. We also explore emerging approaches in biomaterial scaffolds, gene editing, and rehabilitation strategies that may enhance the clinical applicability of iPSC-based therapies. By addressing these challenges and refining translational strategies, iPSC-based interventions hold significant potential to revolutionize SCI treatment and improve outcomes for affected individuals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Shevchenko RV, Garifulin RR, Valiullin VV, Fadeev FO, Izmailov AA, Agaev AM, Islamov RR. Transtraumatic Epidural Electrostimulation Promotes the Preservation of the Spinal Cord and Skeletal Muscles in Pigs. Bull Exp Biol Med 2025; 178:503-506. [PMID: 40155582 DOI: 10.1007/s10517-025-06364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 04/01/2025]
Abstract
Morphological confirmation of the recovery of the spinal cord (SC) and the skeletal muscle (m. soleus) in both hind limbs was achieved in pigs with contusion injury in the lower thoracic region (Th8-Th9), following transtraumatic epidural electrical stimulation (TEES). Sixty days after the neurotrauma model, the anterior and posterior horns of the rostral and caudal spinal cord segments were examined using histological and immunofluorescent techniques relative to the injury epicenter. In animals with a 6-week TEES regimen at the Th5 and L2 levels, a larger area of intact gray matter, a smaller number of caspase-3+ cells undergoing apoptosis, decreased expression of the heat shock protein 27 (HSP27), inhibition of astrogliosis development, and an increase in the number of oligodendroglial cells were observed. This agrees with data on the suppression of m. soleus atrophy and the maintenance of its original phenotype. The information we previously received about the functional recovery of the spinal cord and the results of this study allow us to make conclusion about the morphofunctional post-traumatic recovery of the spinal cord under TEES conditions.
Collapse
Affiliation(s)
- R V Shevchenko
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia.
| | - R R Garifulin
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - V V Valiullin
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - F O Fadeev
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - A A Izmailov
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - A M Agaev
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - R R Islamov
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| |
Collapse
|
3
|
Zavvarian MM, Modi AD, Sadat S, Hong J, Fehlings MG. Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury. Int J Mol Sci 2024; 25:5708. [PMID: 38891894 PMCID: PMC11172219 DOI: 10.3390/ijms25115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshat D. Modi
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Department of Biological Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada
| | - Sarah Sadat
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
4
|
Ghosh M, Pearse DD. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int J Mol Sci 2023; 24:17317. [PMID: 38139147 PMCID: PMC10743801 DOI: 10.3390/ijms242417317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles released by cells into their extracellular milieu. Within these nanovesicles reside a multitude of bioactive molecules, which orchestrate essential biological processes, including cell differentiation, proliferation, and survival, in the recipient cells. These bioactive properties of exosomes render them a promising choice for therapeutic use in the realm of tissue regeneration and repair. Exosomes possess notable positive attributes, including a high bioavailability, inherent safety, and stability, as well as the capacity to be functionalized so that drugs or biological agents can be encapsulated within them or to have their surface modified with ligands and receptors to imbue them with selective cell or tissue targeting. Remarkably, their small size and capacity for receptor-mediated transcytosis enable exosomes to cross the blood-brain barrier (BBB) and access the central nervous system (CNS). Unlike cell-based therapies, exosomes present fewer ethical constraints in their collection and direct use as a therapeutic approach in the human body. These advantageous qualities underscore the vast potential of exosomes as a treatment option for neurological injuries and diseases, setting them apart from other cell-based biological agents. Considering the therapeutic potential of exosomes, the current review seeks to specifically examine an area of investigation that encompasses the development of Schwann cell (SC)-derived exosomal vesicles (SCEVs) as an approach to spinal cord injury (SCI) protection and repair. SCs, the myelinating glia of the peripheral nervous system, have a long history of demonstrated benefit in repair of the injured spinal cord and peripheral nerves when transplanted, including their recent advancement to clinical investigations for feasibility and safety in humans. This review delves into the potential of utilizing SCEVs as a therapy for SCI, explores promising engineering strategies to customize SCEVs for specific actions, and examines how SCEVs may offer unique clinical advantages over SC transplantation for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Srikandarajah N, Alvi MA, Fehlings MG. Current insights into the management of spinal cord injury. J Orthop 2023; 41:8-13. [PMID: 37251726 PMCID: PMC10220467 DOI: 10.1016/j.jor.2023.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Background Traumatic spinal cord injury (SCI) is a serious disorder that results in severe impairment of neurological function as well as disability, ultimately reducing a patient's quality of life. The pathophysiology of SCI involves a primary and secondary phase, which causes neurological injury. Methods Narrative review on current clinical management of spinal cord injury and emerging therapies. Results This review explores the management of SCI through early decompressive surgery, optimizing mean arterial pressure, steroid therapy and focused rehabilitation. These management strategies reduce secondary injury mechanisms to prevent the propagation of further neurological damage. The literature regarding emerging research is also explored in cell-based, gene, pharmacological and neuromodulation therapies, which aim to repair the spinal cord following the primary injury mechanism. Conclusions Outcomes for patients with SCI can be enhanced and improved if primary and secondary phases of SCI can be addressed.
Collapse
Affiliation(s)
- Nisaharan Srikandarajah
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
7
|
Jeong SY, Lee HL, Wee S, Lee H, Hwang G, Hwang S, Yoon S, Yang YI, Han I, Kim KN. Co-Administration of Resolvin D1 and Peripheral Nerve-Derived Stem Cell Spheroids as a Therapeutic Strategy in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2023; 24:10971. [PMID: 37446149 DOI: 10.3390/ijms241310971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.
Collapse
Affiliation(s)
- Seung-Young Jeong
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - GwangYong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SolLip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Il Yang
- Paik Imje Memorial Institute for Clinical Research, InJe University College of Medicine, Busan 47392, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Garifulin R, Davleeva M, Izmailov A, Fadeev F, Markosyan V, Shevchenko R, Minyazeva I, Minekayev T, Lavrov I, Islamov R. Evaluation of the Autologous Genetically Enriched Leucoconcentrate on the Lumbar Spinal Cord Morpho-Functional Recovery in a Mini Pig with Thoracic Spine Contusion Injury. Biomedicines 2023; 11:biomedicines11051331. [PMID: 37239001 DOI: 10.3390/biomedicines11051331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Pathological changes associated with spinal cord injury (SCI) can be observed distant, rostral, or caudal to the epicenter of injury. These remote areas represent important therapeutic targets for post-traumatic spinal cord repair. The present study aimed to investigate the following in relation to SCI: distant changes in the spinal cord, peripheral nerve, and muscles. METHODS The changes in the spinal cord, the tibial nerve, and the hind limb muscles were evaluated in control SCI animals and after intravenous infusion of autologous leucoconcentrate enriched with genes encoding neuroprotective factors (VEGF, GDNF, and NCAM), which previously demonstrated a positive effect on post-traumatic restoration. RESULTS Two months after thoracic contusion in the treated mini pigs, a positive remodeling of the macro- and microglial cells, expression of PSD95 and Chat in the lumbar spinal cord, and preservation of the number and morphological characteristics of the myelinated fibers in the tibial nerve were observed and were aligned with hind limb motor recovery and reduced soleus muscle atrophy. CONCLUSION Here, we show the positive effect of autologous genetically enriched leucoconcentrate-producing recombinant neuroprotective factors on targets distant to the primary lesion site in mini pigs with SCI. These findings open new perspectives for the therapy of SCI.
Collapse
Affiliation(s)
- Ravil Garifulin
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Maria Davleeva
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Andrei Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Filip Fadeev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Vage Markosyan
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Roman Shevchenko
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Irina Minyazeva
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Tagir Minekayev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rustem Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
9
|
Cunningham C, Viskontas M, Janowicz K, Sani Y, Håkansson M, Heidari A, Huang W, Bo X. The potential of gene therapies for spinal cord injury repair: a systematic review and meta-analysis of pre-clinical studies. Neural Regen Res 2023; 18:299-305. [PMID: 35900407 PMCID: PMC9396485 DOI: 10.4103/1673-5374.347941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Currently, there is no cure for traumatic spinal cord injury but one therapeutic approach showing promise is gene therapy. In this systematic review and meta-analysis, we aim to assess the efficacy of gene therapies in pre-clinical models of spinal cord injury and the risk of bias. In this meta-analysis, registered at PROSPERO (Registration ID: CRD42020185008), we identified relevant controlled in vivo studies published in English by searching the PubMed, Web of Science, and Embase databases. No restrictions of the year of publication were applied and the last literature search was conducted on August 3, 2020. We then conducted a random-effects meta-analysis using the restricted maximum likelihood estimator. A total of 71 studies met our inclusion criteria and were included in the systematic review. Our results showed that overall, gene therapies were associated with improvements in locomotor score (standardized mean difference [SMD]: 2.07, 95% confidence interval [CI]:1.68–2.47, Tau2 = 2.13, I2 = 83.6%) and axonal regrowth (SMD: 2.78, 95%CI: 1.92–3.65, Tau2 = 4.13, I2 = 85.5%). There was significant asymmetry in the funnel plots of both outcome measures indicating the presence of publication bias. We used a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies) checklist to assess the risk of bias, finding that the median score was 4 (IQR:3–5). In particular, reports of allocation concealment and sample size calculations were lacking. In conclusion, gene therapies are showing promise as therapies for spinal cord injury repair, but there is no consensus on which gene or genes should be targeted.
Collapse
|
10
|
Park YM, Kim JH, Lee JE. Neural Stem Cells Overexpressing Arginine Decarboxylase Improve Functional Recovery from Spinal Cord Injury in a Mouse Model. Int J Mol Sci 2022; 23:15784. [PMID: 36555425 PMCID: PMC9779865 DOI: 10.3390/ijms232415784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Current therapeutic strategies for spinal cord injury (SCI) cannot fully facilitate neural regeneration or improve function. Arginine decarboxylase (ADC) synthesizes agmatine, an endogenous primary amine with neuroprotective effects. Transfection of human ADC (hADC) gene exerts protective effects after injury in murine brain-derived neural precursor cells (mNPCs). Following from these findings, we investigated the effects of hADC-mNPC transplantation in SCI model mice. Mice with experimentally damaged spinal cords were divided into three groups, separately transplanted with fluorescently labeled (1) control mNPCs, (2) retroviral vector (pLXSN)-infected mNPCs (pLXSN-mNPCs), and (3) hADC-mNPCs. Behavioral comparisons between groups were conducted weekly up to 6 weeks after SCI, and urine volume was measured up to 2 weeks after SCI. A subset of animals was euthanized each week after cell transplantation for molecular and histological analyses. The transplantation groups experienced significantly improved behavioral function, with the best recovery occurring in hADC-mNPC mice. Transplanting hADC-mNPCs improved neurological outcomes, induced oligodendrocyte differentiation and remyelination, increased neural lineage differentiation, and decreased glial scar formation. Moreover, locomotor and bladder function were both rehabilitated. These beneficial effects are likely related to differential BMP-2/4/7 expression in neuronal cells, providing an empirical basis for gene therapy as a curative SCI treatment option.
Collapse
Affiliation(s)
- Yu Mi Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- CHA Advanced Research Institute, CHA University, CHA Bio-Complex, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, CHA University, CHA Bio-Complex, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. SMART MEDICINE 2022; 1:e20220017. [PMID: 39188731 PMCID: PMC11235943 DOI: 10.1002/smmd.20220017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health. The regeneration process of the spinal cord is hampered by a series of events that occur following SCI like edema, hemorrhage, formation of cystic cavities, and ischemia. An effective strategy for the treatment of SCI and functional recovery still has not been discovered; however, recent advances have been made in bioengineering fields that therapies based on cells, biomaterials, and biomolecules have proved effective in the repair of the spinal cord. In the light of worldwide importance of treatments for SCI, this article aims to provide a review of recent advances by first introducing the physiology, etiology, epidemiology, and mechanisms of SCI. We then put emphasis on the widely used clinical treatments and bioengineering strategies (cell-based, biomaterial-based, and biomolecule-based) for the functional regeneration of the spinal cord as well as challenges faced by scientists currently. This article provides scientists and clinicians with a comprehensive outlook on the recent advances of preclinical and clinical treatments of SCI, hoping to help them find keys to the functional regeneration of SCI.
Collapse
Affiliation(s)
- Yingbo Shen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minli Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - David A. Posner
- Molecular Immunity UnitCambridge Institute of Therapeutic Immunology and Infectious DiseasesDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Hashemizadeh S, Gharaylou Z, Hosseindoost S, Sardari M, Omidi A, Hosseini ravandi H, Hadjighassem M. Long-term administration of bumetanide improve functional recovery after spinal cord injury in rats. Front Pharmacol 2022; 13:932487. [PMID: 36339604 PMCID: PMC9628211 DOI: 10.3389/fphar.2022.932487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ion disturbances are among the most remarkable deficits in spinal cord injury (SCI). GABA is an integral part of neural interaction. Action of the GABAA receptor depends on the amount of intracellular chloride. Homeostasis of chloride is controlled by two co-transporters, NKCC1 and KCC2. Previous studies revealed that NKCC1 are disturbed in SCI. In this study, NKCC1 is highly expressed in the epicenter of the lesioned spinal cord at 3 hours after induction of the lesion and reached the peak around 6 hours after SCI. Bumetanide (2 and 4 mg/day), as a specific NKCC1 inhibitor, was used at 3 hours post SCI for 28 days. The functional recovery outcomes were measured by the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, ladder walking test, and hot plate test. The rats that received bumetanide 4 mg/day exhibited improved recovery of locomotor function, reduction of NKCC1 gene expression, and upregulation of GAP protein levels 28 days post SCI. Histological tissue evaluations confirmed bumetanide's neuroprotective and regenerative effects. This study provides novel evidence for the benefits of bumetanide in early administration after SCI.
Collapse
Affiliation(s)
- Shiva Hashemizadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | | | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5079153. [PMID: 35978649 PMCID: PMC9377911 DOI: 10.1155/2022/5079153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating central nervous system disease caused by accidental events, resulting in loss of sensory and motor function. Considering the multiple effects of primary and secondary injuries after spinal cord injury, including oxidative stress, tissue apoptosis, inflammatory response, and neuronal autophagy, it is crucial to understand the underlying pathophysiological mechanisms, local microenvironment changes, and neural tissue functional recovery for preparing novel treatment strategies. Treatment based on cell transplantation has become the forefront of spinal cord injury therapy. The transplanted cells provide physical and nutritional support for the damaged tissue. At the same time, the implantation of biomaterials with specific biological functions at the site of the SCI has also been proved to improve the local inhibitory microenvironment and promote axonal regeneration, etc. The combined transplantation of cells and functional biomaterials for SCI treatment can result in greater neuroprotective and regenerative effects by regulating cell differentiation, enhancing cell survival, and providing physical and directional support for axon regeneration and neural circuit remodeling. This article reviews the pathophysiology of the spinal cord, changes in the microenvironment after injury, and the mechanisms and strategies for spinal cord regeneration and repair. The article will focus on summarizing and discussing the latest intervention models based on cell and functional biomaterial transplantation and the latest progress in combinational therapies in SCI repair. Finally, we propose the future prospects and challenges of current treatment regimens for SCI repair, to provide references for scientists and clinicians to seek better SCI repair strategies in the future.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Wenhao Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoyu Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaolong Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Qiang Xin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kexin Chen
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Haifeng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
14
|
Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular Matrix and Oxidative Stress Following Traumatic Spinal Cord Injury: Physiological and Pathophysiological Roles and Opportunities for Therapeutic Intervention. Antioxid Redox Signal 2022; 37:184-207. [PMID: 34465134 DOI: 10.1089/ars.2021.0120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Traumatic spinal cord injury (SCI) causes significant disruption to neuronal, glial, vascular, and extracellular elements. The spinal cord extracellular matrix (ECM) comprises structural and communication proteins that are involved in reparative and regenerative processes after SCI. In the healthy spinal cord, the ECM helps maintain spinal cord homeostasis. After SCI, the damaged ECM limits plasticity and contributes to inflammation through the expression of damage-associated molecules such as proteoglycans. Recent Advances: Considerable insights have been gained by characterizing the origins of the gliotic and fibrotic scars, which not only reduce the spread of injury but also limit neuroregeneration. These properties likely limit the success of therapies used to treat patients with SCI. The ECM, which is a major contributor to the scars and normal physiological functions of the spinal cord, represents an exciting therapeutic target to enhance recovery post-SCI. Critical Issue: Various ECM-based preclinical therapies have been developed. These include disrupting scar components, inhibiting activity of ECM metalloproteinases, and maintaining iron homeostasis. Biomaterials have also been explored. However, the majority of these treatments have not experienced successful clinical translation. This could be due to the ECM and scars' polarizing roles. Future Directions: This review surveys the complexity involved in spinal ECM modifications, discusses new ECM-based combinatorial strategies, and explores the biomaterials evaluated in clinical trials, which hope to introduce new treatments that enhance recovery after SCI. These topics will incorporate oxidative species, which are both beneficial and harmful in reparative and regenerative processes after SCI, and not often assessed in pertinent literature. Antioxid. Redox Signal. 37, 184-207.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nayaab Punjani
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nader Hejrati
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Mohammad-Masoud Zavvarian
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery and Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022; 10:812340. [PMID: 35646849 PMCID: PMC9136098 DOI: 10.3389/fbioe.2022.812340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a severe and traumatic disorder that ultimately results in the loss of motor, sensory, and autonomic nervous function. After SCI, local immune inflammatory response persists and does not weaken or disappear. The interference of local adverse immune factors after SCI brings great challenges to the repair of SCI. Among them, microglia, macrophages, neutrophils, lymphocytes, astrocytes, and the release of various cytokines, as well as the destruction of the extracellular matrix are mainly involved in the imbalance of the immune microenvironment. Studies have shown that immune remodeling after SCI significantly affects the survival and differentiation of stem cells after transplantation and the prognosis of SCI. Recently, immunological reconstruction strategies based on biomaterials have been widely explored and achieved good results. In this review, we discuss the important factors leading to immune dysfunction after SCI, such as immune cells, cytokines, and the destruction of the extracellular matrix. Additionally, the immunomodulatory strategies based on biomaterials are summarized, and the clinical application prospects of these immune reconstructs are evaluated.
Collapse
|
16
|
Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Exp Neurol 2022; 354:114102. [PMID: 35513025 DOI: 10.1016/j.expneurol.2022.114102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that can permanently disrupt multiple modalities. Unfortunately, the combination of the inhibitory environment at a central nervous system (CNS) injury site and the diminished intrinsic capacity of adult axons for growth results in the failure for robust axonal regeneration, limiting the ability for repair. Delivering genetic material that can either positively or negatively modulate gene expression has the potential to counter the obstacles that hinder axon growth within the spinal cord after injury. A popular gene therapy method is to deliver the genetic material using viral vectors. There are considerations when deciding on a viral vector approach for a particular application, including the type of vector, as well as serotypes, and promoters. In this review, we will discuss some of the aspects to consider when utilizing a viral vector approach to as a therapy for SCI. Additionally, we will discuss some recent applications of gene therapy to target extrinsic and/or intrinsic barriers to promote axon regeneration after SCI in preclinical models. While still in early stages, this approach has potential to treat those living with SCI.
Collapse
Affiliation(s)
- Ashraful Islam
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Veronica J Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
18
|
Failli V, Kleitman N, Lammertse DP, Hsieh JTC, Steeves JD, Fawcett JW, Tuszynski MH, Curt A, Fehlings MG, Guest JD, Blight AR. Experimental Treatments for Spinal Cord Injury: What you Should Know. Top Spinal Cord Inj Rehabil 2022; 27:50-74. [PMID: 34108834 PMCID: PMC8152172 DOI: 10.46292/sci2702-50] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - John D Steeves
- ICORD, University of British Columbia, Vancouver, Canada
| | - James W Fawcett
- Cambridge University Centre for Brain Repair, Cambridge, United Kingdom
| | - Mark H Tuszynski
- University of California - San Diego, Department of Neuroscience, La Jolla, California
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Michael G Fehlings
- University of Toronto Spine Program and Toronto Western Hospital, Toronto, Ontario, Canada
| | - James D Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida
| | | |
Collapse
|
19
|
New Therapy for Spinal Cord Injury: Autologous Genetically-Enriched Leucoconcentrate Integrated with Epidural Electrical Stimulation. Cells 2022; 11:cells11010144. [PMID: 35011706 PMCID: PMC8750549 DOI: 10.3390/cells11010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
The contemporary strategy for spinal cord injury (SCI) therapy aims to combine multiple approaches to control pathogenic mechanisms of neurodegeneration and stimulate neuroregeneration. In this study, a novel regenerative approach using an autologous leucoconcentrate enriched with transgenes encoding vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) combined with supra- and sub-lesional epidural electrical stimulation (EES) was tested on mini-pigs similar in morpho-physiological scale to humans. The complex analysis of the spinal cord recovery after a moderate contusion injury in treated mini-pigs compared to control animals revealed: better performance in behavioural and joint kinematics, restoration of electromyography characteristics, and improvement in selected immunohistology features related to cell survivability, synaptic protein expression, and glial reorganization above and below the injury. These results for the first time demonstrate the positive effect of intravenous infusion of autologous genetically-enriched leucoconcentrate producing recombinant molecules stimulating neuroregeneration combined with neuromodulation by translesional multisite EES on the restoration of the post-traumatic spinal cord in mini-pigs and suggest the high translational potential of this novel regenerative therapy for SCI patients.
Collapse
|
20
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
21
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
22
|
Zavvarian MM, Zhou C, Kahnemuyipour S, Hong J, Fehlings MG. The MAPK Signaling Pathway Presents Novel Molecular Targets for Therapeutic Intervention after Traumatic Spinal Cord Injury: A Comparative Cross-Species Transcriptional Analysis. Int J Mol Sci 2021; 22:12934. [PMID: 34884738 PMCID: PMC8657729 DOI: 10.3390/ijms222312934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Despite the debilitating consequences following traumatic spinal cord injury (SCI), there is a lack of safe and effective therapeutics in the clinic. The species-specific responses to SCI present major challenges and opportunities for the clinical translation of biomolecular and pharmacological interventions. Recent transcriptional analyses in preclinical SCI studies have provided a snapshot of the local SCI-induced molecular responses in different animal models. However, the variation in the pathogenesis of traumatic SCI across species is yet to be explored. This study aims to identify and characterize the common and inconsistent SCI-induced differentially expressed genes across species to identify potential therapeutic targets of translational relevance. A comprehensive search of open-source transcriptome datasets identified four cross-compatible microarray experiments in rats, mice, and salamanders. We observed consistent expressional changes in extracellular matrix components across the species. Conversely, salamanders showed downregulation of intracellular MAPK signaling compared to rodents. Additionally, sequence conservation and interactome analyses highlighted the well-preserved sequences of Fn1 and Jun with extensive protein-protein interaction networks. Lastly, in vivo immunohistochemical staining for fibronectin was used to validate the observed expressional pattern. These transcriptional changes in extracellular and MAPK pathways present potential therapeutic targets for traumatic SCI with promising translational relevance.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cindy Zhou
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabah Kahnemuyipour
- Human Biology Department, University of Toronto, Toronto, ON M5S 3J6, Canada;
| | - James Hong
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
23
|
Mahmoodi N, Ai J, Hassannejad Z, Ebrahimi-Barough S, Hasanzadeh E, Nekounam H, Vaccaro AR, Rahimi-Movaghar V. Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen hydrogel. Sci Rep 2021; 11:21722. [PMID: 34741076 PMCID: PMC8571364 DOI: 10.1038/s41598-021-01071-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord regeneration is limited due to various obstacles and complex pathophysiological events after injury. Combination therapy is one approach that recently garnered attention for spinal cord injury (SCI) recovery. A composite of three-dimensional (3D) collagen hydrogel containing epothilone B (EpoB)-loaded polycaprolactone (PCL) microspheres (2.5 ng/mg, 10 ng/mg, and 40 ng/mg EpoB/PCL) were fabricated and optimized to improve motor neuron (MN) differentiation efficacy of human endometrial stem cells (hEnSCs). The microspheres were characterized using liquid chromatography-mass/mass spectrometry (LC-mas/mas) to assess the drug release and scanning electron microscope (SEM) for morphological assessment. hEnSCs were isolated, then characterized by flow cytometry, and seeded on the optimized 3D composite. Based on cell morphology and proliferation, cross-linked collagen hydrogels with and without 2.5 ng/mg EpoB loaded PCL microspheres were selected as the optimized formulations to compare the effect of EpoB release on MN differentiation. After differentiation, the expression of MN markers was estimated by real-time PCR and immunofluorescence (IF). The collagen hydrogel containing the EpoB group had the highest HB9 and ISL-1 expression and the longest neurite elongation. Providing a 3D permissive environment with EpoB, significantly improves MN-like cell differentiation and maturation of hEnSCs and is a promising approach to replace lost neurons after SCI.
Collapse
Affiliation(s)
- Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Tissue, Cell and Gene Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules 2021; 11:biom11070972. [PMID: 34356596 PMCID: PMC8301989 DOI: 10.3390/biom11070972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) impairs neuronal function and introduces a complex cascade of secondary pathologies that limit recovery. Despite decades of preclinical and clinical research, there is a shortage of efficacious treatment options to modulate the secondary response to injury. Protein kinases are crucial signaling molecules that mediate the secondary SCI-induced cellular response and present promising therapeutic targets. The objective of this study was to examine the safety and efficacy of midostaurin—a clinically-approved multi-target protein kinase inhibitor—on cervical SCI pathogenesis. High-throughput analyses demonstrated that intraperitoneal midostaurin injection (25 mg/kg) in C6/7 injured Wistar rats altered the local inflammasome and downregulated adhesive and migratory genes at 24 h post-injury. Treated animals also exhibited enhanced recovery and restored coordination between forelimbs and hindlimbs after injury, indicating the synergistic impact of midostaurin and its dimethyl sulfoxide vehicle to improve functional recovery. Furthermore, histological analyses suggested improved tissue preservation and functionality in the treated animals during the chronic phase of injury. This study serves as a proof-of-concept experiment and demonstrates that systemic midostaurin administration is an effective strategy for mitigating cervical secondary SCI damage.
Collapse
|
25
|
Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol 2021; 343:113794. [PMID: 34166685 DOI: 10.1016/j.expneurol.2021.113794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
Regeneration is bungled following CNS injuries, including spinal cord injury (SCI). Inherent decay of permissive conditions restricts the regrowth of the mature CNS after an injury. Hypertrophic scarring, insignificant intrinsic axon-growth activity, and axon-growth inhibitory molecules such as myelin inhibitors and scar inhibitors constitute a significant hindrance to spinal cord repair. Besides these molecules, a combined absence of various mechanisms responsible for axonal regeneration is the main reason behind the dereliction of the adult CNS to regenerate. The neutralization of specific inhibitors/proteins by stymieing antibodies or encouraging enzymatic degradation results in improved axon regeneration. Previous efforts to induce regeneration after SCI have stimulated axonal development in or near lesion sites, but not beyond them. Several pathways are responsible for the axonal growth obstruction after a CNS injury, including SCI. Herein, we summarize the axonal, glial, and intrinsic factor which impedes the regeneration. We have also discussed the methods to stabilize microtubules and through this to maintain the proper cytoskeletal dynamics of growth cone as disorganized microtubules lead to the failure of axonal regeneration. Moreover, we primarily focus on diverse inhibitors of axonal growth and molecular approaches to counteract them and their downstream intracellular signaling through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
26
|
Stepankova K, Jendelova P, Machova Urdzikova L. Planet of the AAVs: The Spinal Cord Injury Episode. Biomedicines 2021; 9:613. [PMID: 34071245 PMCID: PMC8228984 DOI: 10.3390/biomedicines9060613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.
Collapse
Affiliation(s)
- Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
27
|
Olmsted ZT, Paluh JL. Stem Cell Neurodevelopmental Solutions for Restorative Treatments of the Human Trunk and Spine. Front Cell Neurosci 2021; 15:667590. [PMID: 33981202 PMCID: PMC8107236 DOI: 10.3389/fncel.2021.667590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
The ability to reliably repair spinal cord injuries (SCI) will be one of the greatest human achievements realized in regenerative medicine. Until recently, the cellular path to this goal has been challenging. However, as detailed developmental principles are revealed in mouse and human models, their application in the stem cell community brings trunk and spine embryology into efforts to advance human regenerative medicine. New models of posterior embryo development identify neuromesodermal progenitors (NMPs) as a major bifurcation point in generating the spinal cord and somites and is leading to production of cell types with the full range of axial identities critical for repair of trunk and spine disorders. This is coupled with organoid technologies including assembloids, circuitoids, and gastruloids. We describe a paradigm for applying developmental principles towards the goal of cell-based restorative therapies to enable reproducible and effective near-term clinical interventions.
Collapse
|
28
|
Lee HL, Yeum CE, Lee H, Oh J, Kim JT, Lee WJ, Ha Y, Yang YI, Kim KN. Peripheral Nerve-Derived Stem Cell Spheroids Induce Functional Recovery and Repair after Spinal Cord Injury in Rodents. Int J Mol Sci 2021; 22:ijms22084141. [PMID: 33923671 PMCID: PMC8072978 DOI: 10.3390/ijms22084141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Stem cell therapy is one of the most promising candidate treatments for spinal cord injury. Research has shown optimistic results for this therapy, but clinical limitations remain, including poor viability, engraftment, and differentiation. Here, we isolated novel peripheral nerve-derived stem cells (PNSCs) from adult peripheral nerves with similar characteristics to neural-crest stem cells. These PNSCs expressed neural-crest specific markers and showed multilineage differentiation potential into Schwann cells, neuroglia, neurons, and mesodermal cells. In addition, PNSCs showed therapeutic potential by releasing the neurotrophic factors, including glial cell-line-derived neurotrophic factor, insulin-like growth factor, nerve growth factor, and neurotrophin-3. PNSC abilities were also enhanced by their development into spheroids which secreted neurotrophic factors several times more than non-spheroid PNSCs and expressed several types of extra cellular matrix. These features suggest that the potential for these PNSC spheroids can overcome their limitations. In an animal spinal cord injury (SCI) model, these PNSC spheroids induced functional recovery and neuronal regeneration. These PNSC spheroids also reduced the neuropathic pain which accompanies SCI after remyelination. These PNSC spheroids may represent a new therapeutic approach for patients suffering from SCI.
Collapse
Affiliation(s)
- Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Chung-Eun Yeum
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Jinsoo Oh
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
| | - Jong-Tae Kim
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - Won-Jin Lee
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Young-Il Yang
- Paik Inje Memorial Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea; (C.-E.Y.); (J.-T.K.); (W.-J.L.)
- Correspondence: (Y.-I.Y.); (K.-N.K.)
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.-L.L.); (H.L.); (J.O.); (Y.H.)
- Correspondence: (Y.-I.Y.); (K.-N.K.)
| |
Collapse
|
29
|
Lindsay SL, Barnett SC. Therapeutic Potential of Niche-Specific Mesenchymal Stromal Cells for Spinal Cord Injury Repair. Cells 2021; 10:cells10040901. [PMID: 33919910 PMCID: PMC8070966 DOI: 10.3390/cells10040901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem/stromal cells (MSCs) for transplant-mediated repair represents an important and promising therapeutic strategy after spinal cord injury (SCI). The appeal of MSCs has been fuelled by their ease of isolation, immunosuppressive properties, and low immunogenicity, alongside the large variety of available tissue sources. However, despite reported similarities in vitro, MSCs sourced from distinct tissues may not have comparable biological properties in vivo. There is accumulating evidence that stemness, plasticity, immunogenicity, and adaptability of stem cells is largely controlled by tissue niche. The extrinsic impact of cellular niche for MSC repair potential is therefore important, not least because of its impact on ex vivo expansion for therapeutic purposes. It is likely certain niche-targeted MSCs are more suited for SCI transplant-mediated repair due to their intrinsic capabilities, such as inherent neurogenic properties. In addition, the various MSC anatomical locations means that differences in harvest and culture procedures can make cross-comparison of pre-clinical data difficult. Since a clinical grade MSC product is inextricably linked with its manufacture, it is imperative that cells can be made relatively easily using appropriate materials. We discuss these issues and highlight the importance of identifying the appropriate niche-specific MSC type for SCI repair.
Collapse
|
30
|
Delivery of pOXR1 through an injectable liposomal nanoparticle enhances spinal cord injury regeneration by alleviating oxidative stress. Bioact Mater 2021; 6:3177-3191. [PMID: 33778197 PMCID: PMC7970014 DOI: 10.1016/j.bioactmat.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidation resistance 1 (OXR1) is regarded as a critical regulator of cellular homeostasis in response to oxidative stress. However, the role of OXR1 in the neuronal response to spinal cord injury (SCI) remains undefined. On the other hand, gene therapy for SCI has shown limited success to date due in part to the poor utility of conventional gene vectors. In this study, we evaluated the function of OXR1 in SCI and developed an available carrier for delivering the OXR1 plasmid (pOXR1). We found that OXR1 expression is remarkably increased after SCI and that this regulation is protective after SCI. Meanwhile, we assembled cationic nanoparticles with vitamin E succinate-grafted ε-polylysine (VES-g-PLL) (Nps). The pOXR1 was precompressed with Nps and then encapsulated into cationic liposomes. The particle size of pOXR1 was compressed to 58 nm, which suggests that pOXR1 can be encapsulated inside liposomes with high encapsulation efficiency and stability to enhance the transfection efficiency. The agarose gel results indicated that Nps-pOXR1-Lip eliminated the degradation of DNA by DNase I and maintained its activity, and the cytotoxicity results indicated that pOXR1 was successfully transported into cells and exhibited lower cytotoxicity. Finally, Nps-pOXR1-Lip promoted functional recovery by alleviating neuronal apoptosis, attenuating oxidative stress and inhibiting inflammation. Therefore, our study provides considerable evidence that OXR1 is a beneficial factor in resistance to SCI and that Nps-Lip-pOXR1 exerts therapeutic effects in acute traumatic SCI. OXR1 is upregulated after SCI and may provide a protective effect in response to neural injury. OXR1 plasmid is condensed by VES-g-PLL micelles and then encapsulated into cationic liposomes. Liposome complexes significantly enhance the OXR1 protein expression in vivo and in vitro. Overexpressed OXR1 relieving oxidative stress after SCI through Nrf-2/HO-1 pathway.
Collapse
|