1
|
Schmidt MJ, Naghdloo A, Prabakar RK, Kamal M, Cadaneanu R, Garraway IP, Lewis M, Aparicio A, Zurita-Saavedra A, Corn P, Kuhn P, Pienta KJ, Amend SR, Hicks J. Polyploid cancer cells reveal signatures of chemotherapy resistance. Oncogene 2025; 44:439-449. [PMID: 39578659 PMCID: PMC11810791 DOI: 10.1038/s41388-024-03212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of circulating tumor cells with increased genomic content (CTC-IGC) was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and are associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and the expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Michael J Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Rishvanth K Prabakar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Radu Cadaneanu
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, CA, USA
| | - Isla P Garraway
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Lewis
- VA Greater Los Angeles Medical Center, Los Angeles, CA, USA
- Departments of Medicine and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Cancer Research and Cellular Therapeutics, Clark, Atlanta, GA, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado Zurita-Saavedra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Hicks J, Schmidt M, Nahgdloo A, Prabakar R, Kamal M, Cadaneanu R, Garraway I, Lewis M, Aparicio A, Zurita A, Corn P, Kuhn P, Pienta K, Amend S. Polyploid cancer cells reveal signatures of chemotherapy resistance. RESEARCH SQUARE 2024:rs.3.rs-4921634. [PMID: 39483900 PMCID: PMC11527255 DOI: 10.21203/rs.3.rs-4921634/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of CTC-IGC was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and their expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ana Aparicio
- The University of Texas M.D. Anderson Cancer Cetner
| | | | | | | | | | | |
Collapse
|
3
|
Altaf A, Munir MM, Khan MMM, Thammachack R, Rashid Z, Khalil M, Catalano G, Pawlik TM. Impact of patient, hospital, and operative characteristics relative to social determinants of health: Compliance with National Comprehensive Cancer Network guidelines for colon cancer. J Gastrointest Surg 2024; 28:1463-1471. [PMID: 38878955 DOI: 10.1016/j.gassur.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Despite an established association with improved patient outcomes, compliance with National Comprehensive Cancer Network (NCCN) guidelines remains suboptimal. We sought to assess the effect of patient characteristics (PCs), operative characteristics (OCs), hospital characteristics (HCs), and social determinants of health (SDoH) on noncompliance with NCCN guidelines for colon cancer. METHODS Patients treated for stage I to III colon cancer from 2004 to 2017 were identified from the National Cancer Database. Multilevel multivariate regression analysis was performed to identify factors associated with receipt of NCCN-compliant care and quantify the proportion of variance explained by PCs, OCs, HCs, and SDoH. RESULTS Among 468,097 patients with colon cancer treated across 1319 hospitals, 1 in 4 patients did not receive NCCN-compliant care (122,170 [26.1%]). On regression analysis, older age (odds ratio [OR], 0.96; 95% CI, 0.96-0.96), female sex (OR, 0.97; 95% CI, 0.96-0.99), Black race (OR, 0.96; 95% CI, 0.94-0.98), higher Charlson-Deyo score (OR, 0.84; 95% CI, 0.82-0.86), tumor stage ≥II (OR, 0.42; 95% CI, 0.40-0.44), and tumor grade ≥ 3 (OR, 0.33; 95% CI, 0.32-0.34) were associated with lower odds of receiving NCCN-compliant care (all P values <.05). Higher hospital volume (OR, 1.02; 95% CI, 1.02-1.03), minimally invasive or robotic surgical approach (OR, 1.26; 95% CI, 1.23-1.29), adequate (≥12) lymph node assessment (OR, 3.46; 95% CI, 3.38-3.53), private insurance status (OR, 1.33; 95% CI, 1.26-1.40), Medicare insurance status (OR, 1.42; 95% CI, 1.35-1.49), and higher educational status (OR, 1.06; 95% CI, 1.02-1.09) were associated with higher odds of receiving NCCN-compliant care (all P values <.05). Overall, PCs contributed 36.5%, HCs contributed 1.3%, and OCs contributed 12.9% to the variation in guideline-compliant care, while SDoH contributed only 3.6% of the variation in receipt of NCCN-compliant care. CONCLUSION The variation in NCCN-compliant care among patients with colon cancer was largely attributable to patient- and surgeon-level factors, whereas SDoH were associated with a smaller proportion of the variation.
Collapse
Affiliation(s)
- Abdullah Altaf
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Muhammad Musaab Munir
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Muhammad Muntazir Mehdi Khan
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Razeen Thammachack
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Zayed Rashid
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Mujtaba Khalil
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Giovanni Catalano
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States.
| |
Collapse
|
4
|
Schmidt MJ, Naghdloo A, Prabakar RK, Kamal M, Cadaneanu R, Garraway IP, Lewis M, Aparicio A, Zurita-Saavedra A, Corn P, Kuhn P, Pienta KJ, Amend SR, Hicks J. Polyploid cancer cells reveal signatures of chemotherapy resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608632. [PMID: 39229204 PMCID: PMC11370377 DOI: 10.1101/2024.08.19.608632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of circulating tumor cells with increased genomic content (CTC-IGC) was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and their expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Michael J. Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rishvanth K. Prabakar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Currently at: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Radu Cadaneanu
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, California, USA
| | - Isla P. Garraway
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael Lewis
- VA Greater Los Angeles Medical Center, Los Angeles, CA, USA
- Departments of Medicine and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Cancer Research and Cellular Therapeutics, Clark, Atlanta, GA, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado Zurita-Saavedra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Long F, Li X, Pan J, Ye H, Di C, Huang Y, Li J, Zhou X, Yi H, Huang Q, Si J. The role of lncRNA NEAT1 in human cancer chemoresistance. Cancer Cell Int 2024; 24:236. [PMID: 38970092 PMCID: PMC11227196 DOI: 10.1186/s12935-024-03426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Chemotherapy is currently one of the most effective methods in clinical cancer treatment. However, chemotherapy resistance is an important reason for poor chemotherapy efficacy and prognosis, which has become an urgent problem to be solved in the field of cancer chemotherapy. Therefore, it is very important to deeply study and analyze the mechanism of cancer chemotherapy resistance and its regulatory factors. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (LncRNA NEAT1) has been shown to be closely associated with chemotherapy resistance in cancer. NEAT1 induces cancer cell resistance to chemotherapeutic drugs by regulating cell apoptosis, cell cycle, drug transport and metabolism, DNA damage repair, EMT, autophagy, cancer stem cell characteristics, and metabolic reprogramming. This indicates that NEAT1 may be an important target to overcome chemotherapy resistance and is expected to be a potential biomarker to predict the effect of chemotherapy. This article summarizes the expression characteristics and clinical characteristics of NEAT1 in different cancers, and deeply discusses the regulatory role of NEAT1 in cancer chemotherapy resistance and related molecular mechanisms, aiming to clarify NEAT1 as a new target to overcome cancer chemotherapy resistance and the feasibility of chemotherapy sensitizers, with a view to providing a potential therapeutic direction for overcoming the dilemma of cancer resistance in the future.
Collapse
Affiliation(s)
- Feng Long
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Li
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yong Huang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiawei Li
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huiyi Yi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiaozhen Huang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
| |
Collapse
|
6
|
Yunos NM, Wahab HA, Al-Thiabat MG, Sallehudin NJ, Jauri MH. In Vitro and In Silico Analysis of the Anticancer Effects of Eurycomanone and Eurycomalactone from Eurycoma longifolia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2827. [PMID: 37570981 PMCID: PMC10421158 DOI: 10.3390/plants12152827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 08/13/2023]
Abstract
Eurycomanone and eurycomalactone are known quassinoids present in the roots and stems of Eurycoma longifolia. These compounds had been reported to have cytotoxic effects, however, their mechanism of action in a few cancer cell lines have yet to be elucidated. This study was aimed at investigating the anticancer effects and mechanisms of action of eurycomanone and eurycomalactone in cervical (HeLa), colorectal (HT29) and ovarian (A2780) cancer cell lines via Sulforhodamine B assay. Their mechanism of cell death was evaluated based on Hoechst 33342 assay and in silico molecular docking toward DHFR and TNF-α as putative protein targets. Eurycomanone and eurycomalactone exhibited in vitro anticancer effects manifesting IC50 values of 4.58 ± 0.090 µM and 1.60 ± 0.12 µM (HeLa), 1.22 ± 0.11 µM and 2.21 ± 0.049 µM (HT-29), and 1.37 ± 0.13 µM and 2.46 ± 0.081 µM (A2780), respectively. They induced apoptotic cancer cell death in dose- and time-dependent manners. Both eurycomanone and eurycomalactone were also predicted to have good inhibitory potential as demonstrated by the docking into TNF-α with binding affinity of -8.83 and -7.51 kcal/mol, respectively, as well as into DHFR with binding affinity results of -8.05 and -8.87 kcal/mol, respectively. These results support the evidence of eurycomanone and eurycomalactone as anticancer agents via apoptotic cell death mechanism that could be associated with TNF-α and DHFR inhibition as among possible protein targets.
Collapse
Affiliation(s)
- Nurhanan Murni Yunos
- Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (N.J.S.); (M.H.J.)
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Mohammad G. Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Nor Jannah Sallehudin
- Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (N.J.S.); (M.H.J.)
| | - Muhamad Haffiz Jauri
- Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (N.J.S.); (M.H.J.)
| |
Collapse
|
7
|
Yerragopu AK, Vellapandian C. Chemoimmunotherapy with doxorubicin and caffeine combination enhanced ICD induction and T-cell infiltration in B16F10 melanoma tumors. J Biochem Mol Toxicol 2023; 37:e23327. [PMID: 36807623 DOI: 10.1002/jbt.23327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Majority of chemotherapeutic agents can elicit antitumor immunity and modulate the composition, density, function, and distribution of tumor infiltrating lymphocytes (TILs), to influence differential therapeutic responses and prognosis in cancer patients. The clinical success of these agents, particularly anthracyclines like doxorubicin, not only depends on their cytotoxic activity but also by the enhancement of pre-existing immunity primarily through induction of immunogenic cell death (ICD). However, resistance for the induction of ICD either intrinsic or acquired is a major hurdle for most of these drugs. To enhance ICD by these agents, it has become clear that blockade of adenosine production or its signaling need to be specifically targeted as they represent highly resistant mechanisms. Given the prominent role of adenosine mediated immunosuppression and resistance to ICD induction in tumor microenvironment, combination strategies that involve ICD induction and adenosine signaling blockade are further warranted. In the present study, we investigated the antitumor effect of caffeine and doxorubicin combination therapy against 3-MCA-induced and cell-line induced tumors in mice. Our results demonstrated significant tumor growth inhibition by the combination therapy of doxorubicin and caffeine against both carcinogen-induced and cell-line induced tumor models. In addition, significant T-cell infiltration and enhanced ICD induction evidenced by increased intratumoral calreticulin and HMGB1 levels, was observed in B16F10 melanoma mice. The possible mechanism behind the observed antitumor activity might be due to the enhanced ICD induction and subsequent T-cell infiltration by the combination therapy. To prevent the development of resistance and to enhance the antitumor activity of ICD inducing drugs like doxorubicin, combination with adenosine-A2A receptor pathway inhibitors like caffeine might be a potential strategy.
Collapse
|
8
|
Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance. Cell Death Dis 2022; 8:383. [PMID: 36100611 PMCID: PMC9470550 DOI: 10.1038/s41420-022-01174-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapy has been one of the most important treatments for advanced cancer in recent decades. Although the sensitivity rate of initial chemotherapy is high, patients with chemotherapy resistant tumors, experience tumor recurrence. In recent years, many studies have shown that homeobox transcript antisense intergenic RNA (HOTAIR) is involved in many pathological processes including carcinogenesis. The abnormal regulation of a variety of cell functions by HOTAIR, such as apoptosis, the cell cycle, epithelial-mesenchymal transition, autophagy, self-renewal, and metabolism, is associated with chemotherapy resistance. Therefore, there is an urgent need to understand the biology and mechanism underlying the role of HOTAIR in tumor behavior and its potential as a biomarker for predicting the effect of chemotherapy. In this manuscript, we review the mechanisms underlying HOTAIR-related drug resistance and discuss the limitations of current knowledge and propose potential future directions.
Collapse
|
9
|
Imran KM, Nagai-Singer MA, Brock RM, Alinezhadbalalami N, Davalos RV, Allen IC. Exploration of Novel Pathways Underlying Irreversible Electroporation Induced Anti-Tumor Immunity in Pancreatic Cancer. Front Oncol 2022; 12:853779. [PMID: 35372046 PMCID: PMC8972192 DOI: 10.3389/fonc.2022.853779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Advancements in medical sciences and technologies have significantly improved the survival of many cancers; however, pancreatic cancer remains a deadly diagnosis. This malignancy is often diagnosed late in the disease when metastases have already occurred. Additionally, the location of the pancreas near vital organs limits surgical candidacy, the tumor's immunosuppressive environment limits immunotherapy success, and it is highly resistant to radiation and chemotherapy. Hence, clinicians and patients alike need a treatment paradigm that reduces primary tumor burden, activates systemic anti-tumor immunity, and reverses the local immunosuppressive microenvironment to eventually clear distant metastases. Irreversible electroporation (IRE), a novel non-thermal tumor ablation technique, applies high-voltage ultra-short pulses to permeabilize targeted cell membranes and induce cell death. Progression with IRE technology and an array of research studies have shown that beyond tumor debulking, IRE can induce anti-tumor immune responses possibly through tumor neo-antigen release. However, the success of IRE treatment (i.e. full ablation and tumor recurrence) is variable. We believe that IRE treatment induces IFNγ expression, which then modulates immune checkpoint molecules and thus leads to tumor recurrence. This indicates a co-therapeutic use of IRE and immune checkpoint inhibitors as a promising treatment for pancreatic cancer patients. Here, we review the well-defined and speculated pathways involved in the immunostimulatory effects of IRE treatment for pancreatic cancer, as well as the regulatory pathways that may negate these anti-tumor responses. By defining these underlying mechanisms, future studies may identify improvements to systemic immune system engagement following local tumor ablation with IRE and beyond.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Nastaran Alinezhadbalalami
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Chung YH, Park J, Cai H, Steinmetz NF. S100A9-Targeted Cowpea Mosaic Virus as a Prophylactic and Therapeutic Immunotherapy against Metastatic Breast Cancer and Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101796. [PMID: 34519180 PMCID: PMC8564454 DOI: 10.1002/advs.202101796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Indexed: 05/05/2023]
Abstract
Prognosis and treatment of metastatic cancer continues to be one of the most difficult and challenging areas of oncology. Treatment usually consists of chemotherapeutics, which may be ineffective due to drug resistance, adverse effects, and dose-limiting toxicity. Therefore, novel approaches such as immunotherapy have been investigated to improve patient outcomes and minimize side effects. S100A9 is a calcium-binding protein implicated in tumor metastasis, progression, and aggressiveness that modulates the tumor microenvironment into an immunosuppressive state. S100A9 is expressed in and secreted by immune cells in the pre-metastatic niche, as well as, post-tumor development, therefore making it a suitable targeted for prophylaxis and therapy. In previous work, it is demonstrated that cowpea mosaic virus (CPMV) acts as an adjuvant when administered intratumorally. Here, it is demonstrated that systemically administered, S100A9-targeted CPMV homes to the lungs leading to recruitment of innate immune cells. This approach is efficacious both prophylactically and therapeutically against lung metastasis from melanoma and breast cancer. The current research will facilitate and accelerate the development of next-generation targeted immunotherapies administered as prophylaxis, that is, after surgery of a primary breast tumor to prevent outgrowth of metastasis, as well as, therapy to treat established metastatic disease.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Jooneon Park
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Hui Cai
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Department of RadiologyUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Institute for Materials Discovery and DesignUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Moores Cancer CenterUniversity of CaliforniaLa JollaSan DiegoCAUSA
| |
Collapse
|
11
|
Bader AS, Bushell M. Damage-Net: A program for DNA repair meta-analysis identifies a network of novel repair genes that facilitate cancer evolution. DNA Repair (Amst) 2021; 105:103158. [PMID: 34147942 PMCID: PMC8385418 DOI: 10.1016/j.dnarep.2021.103158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
The advent of genome-wide methods for identifying novel components in biological processes including CRISPR screens and proteomic studies, has transformed the research landscape within the biological sciences. However, each study normally investigates a single aspect of a process without integration of other published datasets. Here, we present Damage-Net, a program with a curated database of published results from a broad range of studies investigating DNA repair, that facilitates simple and quick meta-analysis. Users can incorporate their own datasets for analysis, and query genes of interest in the database. Importantly, this program also allows users to examine the correlation of genes of interest with pan-cancer patient survival and mutational burden effects. Interrogating these datasets revealed a network of genes that associated with cancer progression in adrenocortical carcinoma via facilitating mutational burden, ultimately contributing substantially to adrenocortical carcinoma's poor prognosis. Download at www.damage-net.co.uk.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
12
|
Pires JG, da Silva GF, Weyssow T, Conforte AJ, Pagnoncelli D, da Silva FAB, Carels N. Galaxy and MEAN Stack to Create a User-Friendly Workflow for the Rational Optimization of Cancer Chemotherapy. Front Genet 2021; 12:624259. [PMID: 33679888 PMCID: PMC7935533 DOI: 10.3389/fgene.2021.624259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
One aspect of personalized medicine is aiming at identifying specific targets for therapy considering the gene expression profile of each patient individually. The real-world implementation of this approach is better achieved by user-friendly bioinformatics systems for healthcare professionals. In this report, we present an online platform that endows users with an interface designed using MEAN stack supported by a Galaxy pipeline. This pipeline targets connection hubs in the subnetworks formed by the interactions between the proteins of genes that are up-regulated in tumors. This strategy has been proved to be suitable for the inhibition of tumor growth and metastasis in vitro. Therefore, Perl and Python scripts were enclosed in Galaxy for translating RNA-seq data into protein targets suitable for the chemotherapy of solid tumors. Consequently, we validated the process of target diagnosis by (i) reference to subnetwork entropy, (ii) the critical value of density probability of differential gene expression, and (iii) the inhibition of the most relevant targets according to TCGA and GDC data. Finally, the most relevant targets identified by the pipeline are stored in MongoDB and can be accessed through the aforementioned internet portal designed to be compatible with mobile or small devices through Angular libraries.
Collapse
Affiliation(s)
- Jorge Guerra Pires
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Gilberto Ferreira da Silva
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Thomas Weyssow
- Informatic Department, Free University of Brussels (ULB), Brussels, Belgium
| | - Alessandra Jordano Conforte
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratório de Modelagem Computacional de Sistemas Biológicos, Scientific Computing Program, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Fabricio Alves Barbosa da Silva
- Laboratório de Modelagem Computacional de Sistemas Biológicos, Scientific Computing Program, FIOCRUZ, Rio de Janeiro, Brazil
| | - Nicolas Carels
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Peng Y, Tang D, Zhao M, Kajiyama H, Kikkawa F, Kondo Y. Long non-coding RNA: A recently accentuated molecule in chemoresistance in cancer. Cancer Metastasis Rev 2021; 39:825-835. [PMID: 32594276 DOI: 10.1007/s10555-020-09910-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemotherapy is one of the important and effective options for cancer treatment in the past decades. Although the response rate of initial chemotherapy is considerably high in certain types of cancers, such as ovarian cancer and lung cancer, the patients frequently suffer from chemoresistance and recurrence of disease. Recent genome-wide studies have shown that the large number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and involved in many biological processes including carcinogenesis. They aberrantly regulate variety of cell functions, such as cell cycle, apoptosis, autophagy, and metabolisms, which are associated with chemosensitivity. Therefore, understanding the biological and clinical impacts of lncRNAs on tumor behavior and its potential as a predictive biomarker for chemotherapy effectiveness is highly desired. In this review, we classify the major mechanisms of lncRNA-related chemoresistance and provide theoretical evidences for targeting lncRNAs in certain types of cancers that may open up new therapeutic paradigm for cancer treatment.
Collapse
Affiliation(s)
- Yang Peng
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410000, Hunan, China.,Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Division of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Dihong Tang
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410000, Hunan, China
| | - Meng Zhao
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroaki Kajiyama
- Division of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fumitaka Kikkawa
- Division of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
14
|
Caparica R, Amorim L, Amaral P, Uratani L, Muniz D, Hendlisz A, de Azambuja E, Glasberg J, Takahashi TK, Filho EA, Canellas R, Saragiotto D, Sabbaga J, Mak M. Malignant bowel obstruction: effectiveness and safety of systemic chemotherapy. BMJ Support Palliat Care 2020:bmjspcare-2020-002656. [PMID: 33334819 DOI: 10.1136/bmjspcare-2020-002656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Although systemic chemotherapy is often administered to patients with malignant bowel obstruction (MBO), its benefit remains unknown. This study assessed the outcomes of patients who received systemic chemotherapy as part of MBO treatment. METHODS For this retrospective cohort study, data were extracted from records of patients hospitalised due to MBO in a tertiary cancer centre from 2008 to 2020. Eligible patients were not candidates for surgery and received systemic chemotherapy targeting the underlying malignancy causing MBO. Primary objective was to assess patient outcomes after chemotherapy; secondary objectives were rates of intestinal function recovery, hospital discharge and grade ≥3 toxicities. The primary endpoint was overall survival (OS). RESULTS A total of 167 patients were included: median age was 55 (18-81) years, 91% had an Eastern Cooperative Oncology Group (ECOG) performance status ≥2, 75.5% had gastrointestinal tumours and 70% were treatment-naive. The median OS after chemotherapy was 4.4 weeks (95% CI 3.4 to 5.5) in the overall population. No OS difference was observed according to treatment line (p=0.24) or primary tumour (p=0.13). Intestinal function recovery occurred in 87 patients (52%), out of whom 21 (24.1%) had a reobstruction. Hospital discharge was possible in 74 patients (44.3%). Grade≥3 adverse events occurred in 26.9% of the patients, and a total of 12 deaths (7%) attributed to toxicities were observed after chemotherapy. CONCLUSIONS MBO was associated with a dismal prognosis in this mostly treatment-naive population. The administration of chemotherapy yielded a significant risk of toxicities, whereas it did not appear to provide any relevant survival benefit in this scenario.
Collapse
Affiliation(s)
- Rafael Caparica
- Department of Medical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Larissa Amorim
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paulo Amaral
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lucas Uratani
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David Muniz
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alain Hendlisz
- Department of Medical Oncology, Institut Jules Bordet, Brussels, Belgium
| | | | - João Glasberg
- Department of Medical Oncology, Hospital Sao Luiz Anália Franco, Oncologia D'or, Sao Paulo, Brazil
| | | | - Elias Abdo Filho
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo Canellas
- Department of Radiology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniel Saragiotto
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jorge Sabbaga
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Milena Mak
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Ortiz-Otero N, Marshall JR, Lash B, King MR. Chemotherapy-induced release of circulating-tumor cells into the bloodstream in collective migration units with cancer-associated fibroblasts in metastatic cancer patients. BMC Cancer 2020; 20:873. [PMID: 32917154 PMCID: PMC7488506 DOI: 10.1186/s12885-020-07376-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/02/2020] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Recent studies have shown that chemotherapy destabilizes the blood vasculature and increases circulating tumor cell (CTC) influx into the circulation of metastatic cancer patients (Met-pa). CTCs are a precursor of cancer metastasis, in which they can migrate as single CTCs or as CTC clusters with stromal cells such as cancer-associated fibroblasts (CAFs) as cell aggregates. METHODS Blood samples were collected from 52 Met-pa, and the number of CTC and CAF was determined along with the temporal fluctuation of these through the chemotherapy treatment. RESULTS In this study, CTC level was found to increase two-fold from the initial level after 1 cycle of chemotherapy and returned to baseline after 2 cycles of chemotherapy. Importantly, we determined for the first time that circulating CAF levels correlate with worse prognosis and a lower probability of survival in Met-pa. Based on the CTC release induced by chemotherapy, we evaluated the efficacy of our previously developed cancer immunotherapy to eradicate CTCs from Met-pa blood using an ex vivo approach and demonstrate this could kill over 60% of CTCs. CONCLUSION Collectively, we found that CAF levels in Met-pa serve as a predictive biomarker for cancer prognosis. Additionally, we demonstrate the efficacy of our therapy to kill primary CTCs for a range of cancer types, supporting its potential use as an anti-metastasis therapy in the clinical setting.
Collapse
Affiliation(s)
- Nerymar Ortiz-Otero
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Jocelyn R Marshall
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Bradley Lash
- Guthrie Clinical Research Center, Sayre, PA, 18840, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
16
|
Kooshkaki O, Derakhshani A, Hosseinkhani N, Torabi M, Safaei S, Brunetti O, Racanelli V, Silvestris N, Baradaran B. Combination of Ipilimumab and Nivolumab in Cancers: From Clinical Practice to Ongoing Clinical Trials. Int J Mol Sci 2020; 21:ijms21124427. [PMID: 32580338 PMCID: PMC7352976 DOI: 10.3390/ijms21124427] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are inhibitory checkpoints that are commonly seen on activated T cells and have been offered as promising targets for the treatment of cancers. Immune checkpoint inhibitors (ICIs)targeting PD-1, including pembrolizumab and nivolumab, and those targeting its ligand PD-L1, including avelumab, atezolizumab, and durvalumab, and two drugs targeting CTLA-4, including ipilimumab and tremelimumab have been approved for the treatment of several cancers and many others are under investigating in advanced trial phases. ICIs increased antitumor T cells’ responses and showed a key role in reducing the acquired immune system tolerance which is overexpressed by cancer and tumor microenvironment. However, 50% of patients could not benefit from ICIs monotherapy. To overcome this, a combination of ipilimumab and nivolumab is frequently investigated as an approach to improve oncological outcomes. Despite promising results for the combination of ipilimumab and nivolumab, safety concerns slowed down the development of such strategies. Herein, we review data concerning the clinical activity and the adverse events of ipilimumab and nivolumab combination therapy, assessing ongoing clinical trials to identify clinical outlines that may support combination therapy as an effective treatment. To the best of our knowledge, this paper is one of the first studies to evaluate the efficacy and safety of ipilimumab and nivolumab combination therapy in several cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student research committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.S.)
| | - Negar Hosseinkhani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Mitra Torabi
- Student research committee, Tabriz University of medical sciences, Tabriz 5165665811, Iran;
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.S.)
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Correspondence: (N.S.); (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.S.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Correspondence: (N.S.); (B.B.)
| |
Collapse
|
17
|
Wang S, Liu Y, Feng Y, Zhang J, Swinnen J, Li Y, Ni Y. A Review on Curability of Cancers: More Efforts for Novel Therapeutic Options Are Needed. Cancers (Basel) 2019; 11:E1782. [PMID: 31766180 PMCID: PMC6896199 DOI: 10.3390/cancers11111782] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer remains a major cause of death globally. Given its relapsing and fatal features, curing cancer seems to be something hardly possible for the majority of patients. In view of the development in cancer therapies, this article summarizes currently available cancer therapeutics and cure potential by cancer type and stage at diagnosis, based on literature and database reviews. Currently common cancer therapeutics include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, treatment with curative intent by these methods are mainly eligible for patients with localized disease or treatment-sensitive cancers and therefore their contributions to cancer curability are relatively limited. The prognosis for cancer patients varies among different cancer types with a five-year relative survival rate (RSR) of more than 80% in thyroid cancer, melanoma, breast cancer, and Hodgkin's lymphoma. The most dismal prognosis is observed in patients with small-cell lung cancer, pancreatic cancer, hepatocellular carcinoma, oesophagal cancer, acute myeloid leukemia, non-small cell lung cancer, and gastric cancer with a five-year RSR ranging between 7% and 28%. The current review is intended to provide a general view about how much we have achieved in curing cancer as regards to different therapies and cancer types. Finally, we propose a small molecule dual-targeting broad-spectrum anticancer strategy called OncoCiDia, in combination with emerging highly sensitive liquid biopsy, with theoretical curative potential for the management of solid malignancies, especially at the micro-cancer stage.
Collapse
Affiliation(s)
- Shuncong Wang
- KU Leuven, Campus Gasthuisberg, Faculty of Medicine, 3000 Leuven, Belgium; (S.W.); (Y.L.); (Y.F.); (J.S.)
| | - Yewei Liu
- KU Leuven, Campus Gasthuisberg, Faculty of Medicine, 3000 Leuven, Belgium; (S.W.); (Y.L.); (Y.F.); (J.S.)
| | - Yuanbo Feng
- KU Leuven, Campus Gasthuisberg, Faculty of Medicine, 3000 Leuven, Belgium; (S.W.); (Y.L.); (Y.F.); (J.S.)
| | - Jian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China;
| | - Johan Swinnen
- KU Leuven, Campus Gasthuisberg, Faculty of Medicine, 3000 Leuven, Belgium; (S.W.); (Y.L.); (Y.F.); (J.S.)
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yicheng Ni
- KU Leuven, Campus Gasthuisberg, Faculty of Medicine, 3000 Leuven, Belgium; (S.W.); (Y.L.); (Y.F.); (J.S.)
| |
Collapse
|
18
|
Opzoomer JW, Sosnowska D, Anstee JE, Spicer JF, Arnold JN. Cytotoxic Chemotherapy as an Immune Stimulus: A Molecular Perspective on Turning Up the Immunological Heat on Cancer. Front Immunol 2019; 10:1654. [PMID: 31379850 PMCID: PMC6652267 DOI: 10.3389/fimmu.2019.01654] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic chemotherapeutics (CCTs) are widely used in the treatment of cancer. Although their mechanisms of action have been best understood in terms of targeting the apparatus of mitosis, an ability to stimulate anti-tumor immune responses is increasing the recognition of these agents as immunotherapies. Immune checkpoint blockade antibodies neutralize important, but specific, immune-regulatory interactions such as PD-1/PD-L1 and CTLA-4 to improve the anti-tumor immune response. However, CCTs can provide a broad-acting immune-stimulus against cancer, promoting both T-cell priming and recruitment to the tumor, which compliments the effects of immune checkpoint blockade. A key pathway in this process is "immunogenic cell death" (ICD) which occurs as a result of tumor cell endoplasmic reticulum stress and apoptosis elicited by CCTs. ICD involves a series of non-redundant signaling events which break tolerance and license anti-tumor antigen-specific T-cells, allowing CCTs to act as "in situ" tumor vaccination tools. Not all responses are tumor cell-intrinsic, as CCTs can also modulate the broader tumor microenvironment. This modulation occurs through preferential depletion of stromal cells which suppress and neutralize robust anti-tumor immune responses, such as myeloid cell populations and Tregs, while effector CD8+ and CD4+ T-cells and NK cells are relatively spared. The immune-stimulating effects of CCTs are dependent on chemotherapy class, dose and tumor cell sensitivity to the agent, highlighting the need to understand the underlying biology of these responses. This mini review considers the immune-stimulating effects of CCTs from a molecular perspective, specifically highlighting considerations for their utilization in the context of combinations with immunotherapy.
Collapse
Affiliation(s)
- James W Opzoomer
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Dominika Sosnowska
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Joanne E Anstee
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - James F Spicer
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - James N Arnold
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
19
|
Rowswell-Turner RB, Rutishauser JA, Kim KK, Khazan N, Sivagnanalingam U, Jones AM, Singh RK, Moore RG. Novel Small Molecule MEK Inhibitor URML-3881 Enhances Cisplatin Sensitivity in Clear Cell Ovarian Cancer. Transl Oncol 2019; 12:917-924. [PMID: 31082584 PMCID: PMC6517847 DOI: 10.1016/j.tranon.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Advanced clear cell ovarian cancer (CCOC) is a highly fatal malignancy with a scarcity of effective treatment options. CCOC is inherently chemotherapy resistance, but the exact mechanism of this resistance has yet to be established. Prosurvival signaling, such as through the MAPK cascade, is one way in which cancer cells can evade chemotherapy. We have determined that CCOC exhibits baseline elevated levels of MAPK activity, which increase further upon cisplatin exposure. We have developed a novel MEK inhibitor, URML-3881, to test the effect of MAPK inhibition in CCOC. URML-3881 was found to reduce in vitro CCOC viability through apoptosis and proliferation inhibition, yet it failed to induce in vivo tumor regression. Similarly, cisplatin alone had minimal impact on tumor growth, but remarkably, the combination of MEK inhibition and cisplatin led to a significant and prolonged tumor regression. These studies confirm that the combination of MEK inhibition with URML-3881 and cisplatin is superior to either agent alone in CCOC. Our data support the design of future preclinical and clinical studies into the combination of MEK inhibition and platinum-based chemotherapy as a treatment strategy for CCOC.
Collapse
Affiliation(s)
- Rachael B Rowswell-Turner
- The Wilmot Cancer Institute at the University of Rochester Medical Center, Rochester, NY, United States.
| | - Jennifer A Rutishauser
- The Wilmot Cancer Institute at the University of Rochester Medical Center, Rochester, NY, United States
| | - Kyu Kwang Kim
- The Wilmot Cancer Institute at the University of Rochester Medical Center, Rochester, NY, United States
| | - Negar Khazan
- The Wilmot Cancer Institute at the University of Rochester Medical Center, Rochester, NY, United States
| | - Umayal Sivagnanalingam
- The Wilmot Cancer Institute at the University of Rochester Medical Center, Rochester, NY, United States
| | - Aaron M Jones
- The Wilmot Cancer Institute at the University of Rochester Medical Center, Rochester, NY, United States
| | - Rakesh K Singh
- The Wilmot Cancer Institute at the University of Rochester Medical Center, Rochester, NY, United States
| | - Richard G Moore
- The Wilmot Cancer Institute at the University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
20
|
On detection of periodicity in C-reactive protein (CRP) levels. Sci Rep 2018; 8:11979. [PMID: 30097610 PMCID: PMC6086826 DOI: 10.1038/s41598-018-30469-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/20/2018] [Indexed: 02/05/2023] Open
Abstract
C-reactive protein (CRP) is an acute-phase plasma protein that can be used as a biomarker for activation of the immune system. A spectral analysis of CRP level over time for patients with gynaecological tumours has been reported by Madondo et al., using a periodogram method, suggesting that there is no significant periodicity in the data. In our study, we investigate the impact of low sample number on periodogram analysis, for non-uniform sampling intervals—we conclude that data of Madondo et al. cannot rule out periodic behaviour. The search for patterns (periodic or otherwise) in the CRP time-series is of interest for providing a cue for the optimal times at which cancer therapies are best administered. In this paper we show (i) there is no evidence to rule out periodicity in CRP levels, and (ii) we provide a prescription for the minimum data sample rate required in future experiments for improved testing of a periodic CRP signal hypothesis. The analysis we provide may be used for establishing periodicity in any short time-series signal that is observed without a priori information.
Collapse
|
21
|
Chan CWH, Law BMH, So WKW, Chow KM, Waye MMY. Novel Strategies on Personalized Medicine for Breast Cancer Treatment: An Update. Int J Mol Sci 2017; 18:ijms18112423. [PMID: 29140300 PMCID: PMC5713391 DOI: 10.3390/ijms18112423] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common cancer type among women worldwide. With breast cancer patients and survivors being reported to experience a repertoire of symptoms that are detrimental to their quality of life, the development of breast cancer treatment strategies that are effective with minimal side effects is therefore required. Personalized medicine, the treatment process that is tailored to the individual needs of each patient, is recently gaining increasing attention for its prospect in the development of effective cancer treatment regimens. Indeed, recent studies have identified a number of genes and molecules that may be used as biomarkers for predicting drug response and severity of common cancer-associated symptoms. These would provide useful clues not only for the determination of the optimal drug choice/dosage to be used in personalized treatment, but also for the identification of gene or molecular targets for the development of novel symptom management strategies, which ultimately would lead to the development of more personalized therapies for effective cancer treatment. In this article, recent studies that would provide potential new options for personalized therapies for breast cancer patients and survivors are reviewed. We suggest novel strategies, including the optimization of drug choice/dosage and the identification of genetic changes that are associated with cancer symptom occurrence and severity, which may help in enhancing the effectiveness and acceptability of the currently available cancer therapies.
Collapse
Affiliation(s)
- Carmen W H Chan
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, The New Territories, Hong Kong, China.
| | - Bernard M H Law
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, The New Territories, Hong Kong, China.
| | - Winnie K W So
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, The New Territories, Hong Kong, China.
| | - Ka Ming Chow
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, The New Territories, Hong Kong, China.
| | - Mary M Y Waye
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, The New Territories, Hong Kong, China.
| |
Collapse
|
22
|
Tan LTH, Chan KG, Pusparajah P, Lee WL, Chuah LH, Khan TM, Lee LH, Goh BH. Targeting Membrane Lipid a Potential Cancer Cure? Front Pharmacol 2017; 8:12. [PMID: 28167913 PMCID: PMC5253362 DOI: 10.3389/fphar.2017.00012] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia Selangor, Malaysia
| | - Lay-Hong Chuah
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Department of Pharmacy, Abasyn University PeshawarPeshawar, Pakistan
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
23
|
Zhang Q, Meng XK, Wang WX, Zhang RM, Zhang T, Ren JJ. The Wnt/β-catenin signaling pathway mechanism for pancreatic cancer chemoresistance in a three-dimensional cancer microenvironment. Am J Transl Res 2016; 8:4490-4498. [PMID: 27830034 PMCID: PMC5095343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
β-catenin is a key protein that is encoded by the CTNNB1 gene in the Wnt signaling pathway. This study investigated the associations between β-catenin expression and implications for the efficacy of gemcitabine on pancreatic cancer cells in a three-dimensional (3-D) cancer microenvironment. For low β-catenin expression pancreatic carcinoma cells, the inhibition rates (IRs) for low, middle, and high doses of gemcitabine were 0.615 ± 0.079, 0.691 ± 0.093, and 0.765 ± 0.061, respectively. For the high β-catenin expression pancreatic carcinoma cells, the IRs for the same doses were 0.325 ± 0.072, 0.453 ± 0.075, and 0.537 ± 0.056, respectively. Additionally, the evaluation of β-catenin immunoreactivity in 31 pancreatic cancer patients revealed that the low β-catenin protein expression group had significantly longer overall survival (OS) and disease free survival (DFS) than the high β-catenin protein group (P < 0.05). Overall, β-catenin protein expression levels were significantly correlated to gemcitabine sensitivity in seven pancreatic carcinoma cell lines in the 3-D cancer microenvironment. These data suggest that large-scale clinical studies are warranted to assess the role of the Wnt/β-catenin signaling pathway on β-catenin protein expression and chemosensitivity to gemcitabine in pancreatic cancer.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Surgery, The Affiliated Hospital, Inner Mongolia Medical University Huhhot 010050, Inner Mongolia, China
| | - Xing-Kai Meng
- Department of Surgery, The Affiliated Hospital, Inner Mongolia Medical University Huhhot 010050, Inner Mongolia, China
| | - Wan-Xiang Wang
- Department of Surgery, The Affiliated Hospital, Inner Mongolia Medical University Huhhot 010050, Inner Mongolia, China
| | - Rui-Ming Zhang
- Department of Surgery, The Affiliated Hospital, Inner Mongolia Medical University Huhhot 010050, Inner Mongolia, China
| | - Tong Zhang
- Department of Surgery, The Affiliated Hospital, Inner Mongolia Medical University Huhhot 010050, Inner Mongolia, China
| | - Jian-Jun Ren
- Department of Surgery, The Affiliated Hospital, Inner Mongolia Medical University Huhhot 010050, Inner Mongolia, China
| |
Collapse
|