1
|
Chuang YT, Liu W, Chien TM, Cheng YB, Jeng JH, Chen CY, Tang JY, Chang HW. Antiproliferative and apoptotic effects of (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione (CI-A) in oral cancer cells are mediated by oxidative stress and ERK activation. Int Immunopharmacol 2025; 155:114615. [PMID: 40199136 DOI: 10.1016/j.intimp.2025.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The anticancer effects and mechanisms of the main component (CI-A) of methanol extracts of Clavularia inflat have not been reported. This study explores the anti-oral cancer effect and mechanism of (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione (CI-A) and compared with normal cells. CI-A shows oxidative-stress-dependent preferential antiproliferation of oral cancer cells without normal cell toxicity. CI-A triggers cell cycle dysregulation, apoptosis/caspase activation, cellular/mitochondrial ROS induction, glutathione depletion, and oxidative DNA damage in oral cancer but not normal cells. After testing with three MAPK (p38, JNK, and ERK) inhibitors, only the ERK inhibitor (PD98059) protects against CI-A-induced antiproliferation in oral cancer cells. CI-A upregulates phosphorylated ERK in oral cancer cells compared to normal cells. Notably, a ROS inhibitor, N-acetylcysteine (NAC), attenuates all CI-A-modulated changes. Moreover, the CI-A-triggered annexin V-detected apoptosis and caspase 3/8/9 activations of oral cancer cells were downregulated by PD98059. In conclusion, CI-A induces the oxidative-stress- and ERK-dependent antiproliferative and apoptotic mechanism in oral cancer cells and shows the benefit of non-cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan.
| | - Ching-Yeu Chen
- Department of Physical Therapy, Tzu-Hui Institute of Technology, Pingtung 92641, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research and Research Center for Molecular Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Moreira H, Szyjka A, Bęben D, Siwiela O, Radajewska A, Stankiewicz N, Grzesiak M, Wiatrak B, Emhemmed F, Muller CD, Barg E. Genotoxic and Anti-Migratory Effects of Camptothecin Combined with Celastrol or Resveratrol in Metastatic and Stem-like Cells of Colon Cancer. Cancers (Basel) 2024; 16:3279. [PMID: 39409900 PMCID: PMC11476312 DOI: 10.3390/cancers16193279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Colorectal cancer is one of the leading and most lethal neoplasms. Standard chemotherapy is ineffective, especially in metastatic cancer, and does not target cancer stem cells. A promising approach to improve cancer treatment is the combination therapy of standard cytostatic drugs with natural compounds. Several plant-derived compounds have been proven to possess anticancer properties, including the induction of apoptosis and inhibition of cancer invasion. This study was focused on investigating in vitro the combination of camptothecin (CPT) with celastrol (CEL) or resveratrol (RSV) as a potential strategy to target metastatic (LOVO) and stem-like (LOVO/DX) colon cancer cells. Methods: The genotoxic effects that drive cancer cells into death-inducing pathways and the ability to inhibit the migratory properties of cancer cells were evaluated. The γH2AX+ assay and Fast-Halo Assay (FHA) were used to evaluate genotoxic effects, the annexin-V apoptosis assay to rate the level of apoptosis, and the scratch test to assess antimigratory capacity. Results: The results showed that both combinations CPT-CEL and CPT-RSV improve general genotoxicity of CPT alone on metastatic cells and CSCs. However, the assessment of specific double-stranded breaks (DSBs) indicated a better efficacy of the CPT-CEL combination on LOVO cells and CPT-RSV in LOVO/DX cells. Interestingly, the combinations CPT-CEL and CPT-RSV did not improve the pro-apoptotic effect of CPT alone, with both LOVO and LOVO/DX cells suggesting activation of different cell death mechanisms. Furthermore, it was found that the combinations of CPT-CEL and CPT-RSV improve the inhibitory effect of camptothecin on cell migration. Conclusions: These findings suggest the potential utility of combining camptothecin with celastrol or resveratrol in the treatment of colon cancer, including more aggressive forms of the disease. So far, no studies evaluating the effects of combinations of these compounds have been published in the available medical databases.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Anna Szyjka
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dorota Bęben
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Oliwia Siwiela
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Radajewska
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Nadia Stankiewicz
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Benita Wiatrak
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Fathi Emhemmed
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Christian D. Muller
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Ewa Barg
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Tamizh Selvan G, Venkatachalam P. Ataxia Telengectesia Protein Influences Bleomycin-Induced DNA Damage in Human Fibroblast Cells. Cell Biochem Biophys 2024; 82:1235-1242. [PMID: 38696104 DOI: 10.1007/s12013-024-01275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/25/2024]
Abstract
Human cancer is caused mainly by exposure to genotoxic chemicals; therefore, cellular defence mechanisms against genotoxic stress are crucial. Genetic factors are essential to maintaining genome stability and play a vital role in overcoming this by repairing the genome damage caused by any agent in order to prevent chromosomal instability. To examine the influence of the genetic makeup in specific ataxia-telangiectasia (ATM), we have examined non-cancerous fibroblast cell lines (HLF, AG1522 and L6) and cells with ATM mutated deficiency (GM4405). Cell lines were exposed in vitro to bleomycin (0, 40 and 80 µg/mL). The induced DNA damages were measured using endpoints including the micronucleus assay (MN) to measure chromosome damage and gamma-H2AX (γ-H2AX) assay to measure DNA damage/repair foci formation. An increase in DNA damage were observed in bleomycin-treated cells compared to unexposed controls (p < 0.05). A concentration-dependent increase of MN and γ-H2AX foci was observed and the sensitivity differed among the cell lines as follows: GM4405 > HLF > AG1522 > L6 for MN frequency and HLF > AG1522 > GM4405 > L6 for γ-H2AX foci. These findings suggest that the genetic makeup of the cellular genome would play an essential role in repairing bleomycin-induced DNA damage. Signalling of DNA damage, and the genes responsible for the repair process, could contribute to the differential susceptibility of different tissues to carcinomas induced by environmental mutagens.
Collapse
Affiliation(s)
- G Tamizh Selvan
- Central Research Laboratory, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India.
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamilnadu, India
| |
Collapse
|
4
|
Wang YC, Lu MC, Li YT, Tang HL, Hsiao PY, Chen BH, Teng RH, Chiou CS, Lai YC. Microevolution of CG23-I Hypervirulent Klebsiella pneumoniae during Recurrent Infections in a Single Patient. Microbiol Spectr 2022; 10:e0207722. [PMID: 36129301 PMCID: PMC9602619 DOI: 10.1128/spectrum.02077-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
CG23-I lineage constitutes the majority of hypervirulent Klebsiella pneumoniae. A diabetic patient suffered six episodes of infections caused by CG23-I K. pneumoniae. A total of nine isolates were collected in 2020. We performed whole-genome sequencing to elucidate the within-patient evolution of CG23-I K. pneumoniae. The maximum pairwise difference among the nine longitudinally collected isolates was five single nucleotide polymorphisms. One of the mutations was at the Asp87 position of GyrA. Four indels were identified, including an initiator tRNAfMet duplication, a tRNAArg deletion, a 7-bp insertion, and a 22-bp deletion. All 9 isolates had the genomic features of CG23-I K. pneumoniae, a chromosome-borne ICEKp10, and a large virulence plasmid. The carriage of a complete set of genes for the biosynthesis of colibactin by ICEKp10 gave the nine isolates an ability to cause DNA damage to RAW264.7 cells. Compared with the initial isolate, the last isolate with an additional copy of initiator tRNAfMet grew faster in a nutrient-limiting condition and exhibited enhanced virulence in BALB/c mice. Collectively, we characterized the within-patient microevolution of CG23-I K. pneumoniae through an in-depth comparison of genome sequences. Using the in vitro experiments and mouse models, we also demonstrated that these genomic alterations endowed the isolates with advantages to pass through in vivo selection. IMPORTANCE CG23-I is a significant lineage of hypervirulent Klebsiella pneumoniae. This study characterizes the within-patient microevolution of CG23-I K. pneumoniae. Selective pressures from continuous use of antibiotics favored point mutations contributing to bacterial resistance to antibiotics. The duplication of an initiator tRNAfMet gene helped CG23-I K. pneumoniae proliferate to reach a maximal population size during infections. For longer persistence inside a human host, the large virulence plasmid evolved with more flexible control of replication through duplication of the iteron-1 region. With the genomic alterations, the last isolate had a growth advantage over the initial isolate and exhibited enhanced virulence in BALB/c mice. This study gives us a deeper understanding of the genome evolution during the within-patient pathoadaptation of CG23-I K. pneumoniae.
Collapse
Affiliation(s)
- Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yia-Ting Li
- Division of Respiratory Therapy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Tang
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Yi Hsiao
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Bo-Han Chen
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ru-Hsiou Teng
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chien-Shun Chiou
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Chyi Lai
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Delbart W, Karabet J, Marin G, Penninckx S, Derrien J, Ghanem GE, Flamen P, Wimana Z. Understanding the Radiobiological Mechanisms Induced by 177Lu-DOTATATE in Comparison to External Beam Radiation Therapy. Int J Mol Sci 2022; 23:ijms232012369. [PMID: 36293222 PMCID: PMC9604190 DOI: 10.3390/ijms232012369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Radionuclide Therapy (RNT) with 177Lu-DOTATATE targeting somatostatin receptors (SSTRs) in neuroendocrine tumours (NET) has been successfully used in routine clinical practice, mainly leading to stable disease. Radiobiology holds promise for RNT improvement but is often extrapolated from external beam radiation therapy (EBRT) studies despite differences in these two radiation-based treatment modalities. In a panel of six human cancer cell lines expressing SSTRs, common radiobiological endpoints (i.e., cell survival, cell cycle, cell death, oxidative stress and DNA damage) were evaluated over time in 177Lu-DOTATATE- and EBRT-treated cells, as well as the radiosensitizing potential of poly (ADP-ribose) polymerase inhibition (PARPi). Our study showed that common radiobiological mechanisms were induced by both 177Lu-DOTATATE and EBRT, but to a different extent and/or with variable kinetics, including in the DNA damage response. A higher radiosensitizing potential of PARPi was observed for EBRT compared to 177Lu-DOTATATE. Our data reinforce the need for dedicated RNT radiobiology studies, in order to derive its maximum therapeutic benefit.
Collapse
Affiliation(s)
- Wendy Delbart
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-541-30-05
| | - Jirair Karabet
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gwennaëlle Marin
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Jonathan Derrien
- Laboratoire de Physique Nucléaire et Des Radiations, Institut Supérieur Industriel de Bruxelles (ISIB), 1000 Brussels, Belgium
- NEMP Applied Research Lab, Institut de Recherche de l’Institut Supérieur Industriel de Bruxelles (IRISIB), 1000 Brussels, Belgium
| | - Ghanem E. Ghanem
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Patrick Flamen
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Zéna Wimana
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
6
|
Effects of photon radiation on DNA damage, cell proliferation, cell survival and apoptosis of murine and human mesothelioma cell lines. Adv Radiat Oncol 2022; 7:101013. [DOI: 10.1016/j.adro.2022.101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
|
7
|
Noubissi FK, McBride AA, Leppert HG, Millet LJ, Wang X, Davern SM. Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay. Sci Rep 2021; 11:8945. [PMID: 33903655 PMCID: PMC8076281 DOI: 10.1038/s41598-021-88296-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the histone protein H2AX to form γ-H2AX foci directly represents DNA double-strand break formation. Traditional γ-H2AX detection involves counting individual foci within individual nuclei. The novelty of this work is the application of a time-resolved fluorescence assay using dissociation-enhanced lanthanide fluorescence immunoassay for quantitative measurements of γ-H2AX. For comparison, standard fluorescence detection was employed and analyzed either by bulk fluorescent measurements or by direct foci counting using BioTek Spot Count algorithm and Gen 5 software. Etoposide induced DNA damage in A549 carcinoma cells was compared across all test platforms. Time resolved fluorescence detection of europium as a chelated complex enabled quantitative measurement of γ-H2AX foci with nanomolar resolution. Comparative bulk fluorescent signals achieved only micromolar sensitivity. Lanthanide based immunodetection of γ-H2AX offers superior detection and a user-friendly workflow. These approaches have the potential to improve screening of compounds that either enhance DNA damage or protect against its deleterious effects.
Collapse
Affiliation(s)
| | - Amber A McBride
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hannah G Leppert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Larry J Millet
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Sandra M Davern
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
8
|
Chen C, Sun MA, Warzecha C, Bachu M, Dey A, Wu T, Adams PD, Macfarlan T, Love P, Ozato K. HIRA, a DiGeorge Syndrome Candidate Gene, Confers Proper Chromatin Accessibility on HSCs and Supports All Stages of Hematopoiesis. Cell Rep 2021; 30:2136-2149.e4. [PMID: 32075733 DOI: 10.1016/j.celrep.2020.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
HIRA is a histone chaperone that deposits the histone variant H3.3 in transcriptionally active genes. In DiGeorge syndromes, a DNA stretch encompassing HIRA is deleted. The syndromes manifest varied abnormalities, including immunodeficiency and thrombocytopenia. HIRA is essential in mice, as total knockout (KO) results in early embryonic death. However, the role of HIRA in hematopoiesis is poorly understood. We investigate hematopoietic cell-specific Hira deletion in mice and show that it dramatically reduces bone marrow hematopoietic stem cells (HSCs), resulting in anemia, thrombocytopenia, and lymphocytopenia. In contrast, fetal hematopoiesis is normal in Hira-KO mice, although fetal HSCs lack the reconstitution capacity. Transcriptome analysis reveals that HIRA is required for expression of many transcription factors and signaling molecules critical for HSCs. ATAC-seq analysis demonstrates that HIRA establishes HSC-specific DNA accessibility, including the SPIB/PU.1 sites. Together, HIRA provides a chromatin environment essential for HSCs, thereby steering their development and survival.
Collapse
Affiliation(s)
- Chao Chen
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-An Sun
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claude Warzecha
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anup Dey
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiyun Wu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Todd Macfarlan
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Love
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Radiobiological Studies of Microvascular Damage through In Vitro Models: A Methodological Perspective. Cancers (Basel) 2021; 13:cancers13051182. [PMID: 33803333 PMCID: PMC7967181 DOI: 10.3390/cancers13051182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation (IR) is used in radiotherapy as a treatment to destroy cancer. Such treatment also affects other tissues, resulting in the so-called normal tissue complications. Endothelial cells (ECs) composing the microvasculature have essential roles in the microenvironment's homeostasis (ME). Thus, detrimental effects induced by irradiation on ECs can influence both the tumor and healthy tissue. In-vitro models can be advantageous to study these phenomena. In this systematic review, we analyzed in-vitro models of ECs subjected to IR. We highlighted the critical issues involved in the production, irradiation, and analysis of such radiobiological in-vitro models to study microvascular endothelial cells damage. For each step, we analyzed common methodologies and critical points required to obtain a reliable model. We identified the generation of a 3D environment for model production and the inclusion of heterogeneous cell populations for a reliable ME recapitulation. Additionally, we highlighted how essential information on the irradiation scheme, crucial to correlate better observed in vitro effects to the clinical scenario, are often neglected in the analyzed studies, limiting the translation of achieved results.
Collapse
|
10
|
Prooxidative Activity of Celastrol Induces Apoptosis, DNA Damage, and Cell Cycle Arrest in Drug-Resistant Human Colon Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6793957. [PMID: 31485297 PMCID: PMC6710751 DOI: 10.1155/2019/6793957] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/12/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023]
Abstract
Cancer resistance to chemotherapy is closely related to tumor heterogeneity, i.e., the existence of distinct subpopulations of cancer cells in a tumor mass. An important role is assigned to cancer stem cells (CSCs), a small subset of cancer cells with high tumorigenic potential and capacity of self-renewal and differentiation. These properties of CSCs are sustained by the ability of those cells to maintain a low intracellular reactive oxygen species (ROS) levels, via upregulation of ROS scavenging systems. However, the accumulation of ROS over a critical threshold disturbs CSCs—redox homeostasis causing severe cytotoxic consequences. In the present study, we investigated the capacity of celastrol, a natural pentacyclic triterpenoid, to induce the formation of ROS and, consequently, cell death of the colon cancer cells with acquired resistant to cytotoxic drugs (LOVO/DX cell line). LOVO/DX cells express several important stem-like cell features, including a higher frequency of side population (SP) cells, higher expression of multidrug resistant proteins, overexpression of CSC-specific cell surface marker (CD44), increased expression of DNA repair gene (PARP1), and low intracellular ROS level. We found that celastrol, at higher concentrations (above 1 μM), significantly increased ROS amount in LOVO/DX cells at both cytoplasmic and mitochondrial levels. This prooxidant activity was associated with the induction of DNA double-strand breaks (DSBs) and apoptotic/necrotic cell death, as well as with inhibition of cell proliferation by S phase cell cycle arrest. Coincubation with NAC, a ROS scavenger, completely reversed the above effects. In summary, our results provide evidence that celastrol exhibits effective cytotoxic effects via ROS-dependent mechanisms on drug-resistant colon cancer cells. These findings strongly suggest the potential of celastrol to effectively kill cancer stem-like cells, and thus, it is a promising agent to treat severe, resistant to conventional therapy, colon cancers.
Collapse
|
11
|
Raavi V, Surendran J, Karthik K, Paul SFD, Thayalan K, Arunakaran J, Venkatachalam P. Measurement of γ-H2AX foci, miRNA-101, and gene expression as a means to quantify radiation-absorbed dose in cancer patients who had undergone radiotherapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:69-80. [PMID: 30467642 DOI: 10.1007/s00411-018-0767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Radiological accidents and nuclear terrorism pose an increased threat to members of the public who, following such an event, would need to be assessed for medical care by fast triage. Assay methods such as chromosome aberrations (CA), cytokinesis-block micronucleus (CBMN) and fluorescence in situ hybridization (FISH) techniques have been well established for dose estimation and their potential for handling more samples has also been proved with automation. However, culturing of lymphocytes is an inevitable step, which limits the potential of these markers for triage. In vitro analysis of gamma-H2AX (γ-H2AX), gene and microRNA (miRNA) markers do not require culturing of lymphocytes, and as such have been suggested as attractive tools for triage. Despite studies reporting in vitro dose-response curves, limited evidence is available evaluating the suitability of these assays in real situations. In this study, we have measured the absorbed dose using γ-H2AX, gene (GADD45A, FDXR, and CDKN1A) and miRNA-101 expression in blood samples of cancer patients (n = 20) who had undergone partial-body radiotherapy and compared with the derived equivalent whole-body doses (EWBD). The obtained results from all patients showed a significant (p < 0.05) increase of γ-H2AX foci in post-irradiated as compared to pre-irradiated samples. Moreover, estimated doses using γ-H2AX foci showed a correlation with the derived EWBD (r2 = 0.60, p = 0.0003) and was also shown to be dependent on the irradiated body volume. Consistent with γ-H2AX foci frequency, an increase in fold change expression of genes and miRNA-101 was observed. However, the estimated dose significantly varied among the subjects and showed poor correlation (r2 = 0.09, 0.04, 0.01 and 0.03 for GADD45A, FDXR, CDKN1A and miRNA-101, respectively) with EWBD. The overall results suggest that the established in vitro γ-H2AX assay is suitable for the detection of radiation exposure and can also provide an estimate of the dose in in vivo irradiated samples. The genes and miRNA-101 markers showed increased expression; nevertheless, there is a need for further improvements to measure doses accurately using these markers.
Collapse
Affiliation(s)
- Venkateswarlu Raavi
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - J Surendran
- Department of Radiation Oncology, Kamakshi Memorial Hospital, Pallikaranai, Chennai, 600 100, India
| | - K Karthik
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - K Thayalan
- Department of Radiation Oncology, Kamakshi Memorial Hospital, Pallikaranai, Chennai, 600 100, India
| | - J Arunakaran
- Department of Endocrinology, Dr. ALM PGIBMS, University of Madras, Taramani, Chennai, 600 113, India
| | - Perumal Venkatachalam
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India.
| |
Collapse
|
12
|
Piekna-Przybylska D, Maggirwar SB. CD4+ memory T cells infected with latent HIV-1 are susceptible to drugs targeting telomeres. Cell Cycle 2018; 17:2187-2203. [PMID: 30198385 DOI: 10.1080/15384101.2018.1520568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The population of HIV reservoir in infected person is very small, but extremely long-lived and is a major obstacle for an HIV cure. We previously showed that cells with established HIV latency have deficiencies in DNA damage response (DDR). Here, we investigated ability of HIV-1 to interfere with telomere maintenance, and the effects of targeting telomeres on latently infected cells. Our results show that telomeres are elongated in cultured primary memory CD4 + T cells (TCM) after HIV-1 infection and when virus latency is established. Similarly, much longer telomeres were found in several Jurkat-derived latently infected cell lines, indicating that virus stimulates telomere elongation. Exposing primary CD4+ TCM cells to BRACO19, an agent targeting telomeres, resulted in a higher rate of apoptosis for infected cultures at day 3 post-infection, during HIV-1 latency and for PMA-stimulated cultures with low level of HIV-1 reactivation. Importantly, BRACO19 induced apoptosis in infected cells with potency similar to etoposide and camptothecin, whereas uninfected cells were less affected by BRACO19. We also determined that apoptosis induced by BRACO19 is not caused by telomeres shortening, but is related to formation of gamma-H2AX, implicating DNA damage or uncapping of telomeres, which triggers genome instability. In conclusion, our results indicate that HIV-1 stimulates telomere elongation during latency, suggesting that HIV reservoir has greater capacity for clonal expansion and extended lifespan. Higher rates of apoptosis in response to BRACO19 treatment suggest that HIV reservoirs are more susceptible to targeting telomere maintenance and to inhibitors targeting DDR, which is also involved in stabilizing telomeres.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| | - Sanjay B Maggirwar
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| |
Collapse
|
13
|
DNA double-strand breaks in blood lymphocytes induced by two-day 99mTc-MIBI myocardial perfusion scintigraphy. Eur Radiol 2018; 28:3075-3081. [PMID: 29383524 DOI: 10.1007/s00330-017-5239-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To investigate DNA double-strand breaks (DSBs) in blood lymphocytes induced by two-day 99mTc-MIBI myocardial perfusion scintigraphy (MPS) using y-H2AX immunofluorescence microscopy and to correlate the results with 99mTc activity in blood samples. METHODS Eleven patients who underwent two-day MPS were included. DSB blood sampling was performed before and 5min, 1h and 24h after the first and second radiotracer injections. 99mTc activity was measured in each blood sample. For immunofluorescence microscopy, distinct foci representing DSBs were quantified in lymphocytes after staining for the phosphorylated histone variant y-H2AX. RESULTS The 99mTc-MIBI activity measured on days one and two was similar (254±25 and 258±27 MBq; p=0.594). Compared with baseline DSB foci (0.09±0.05/cell), a significant increase was found at 5min (0.19±0.04/cell) and 1h (0.18±0.04/cell) after the first injection and at 5min and 1h after the second injection (0.21±0.03 and 0.19±0.04/cell, respectively; p=0.003 for both). At 24h after the first and second injections, the number of DSB foci had returned to baseline (0.06±0.02 and 0.12±0.05/cell, respectively). 99mTc activity levels in peripheral blood samples correlated well with DSB counts (r=0.451). CONCLUSIONS DSB counts reflect 99mTc-MIBI activity after injection for two-day MPS, and might allow individual monitoring of biological effects of cardiac nuclear imaging. KEY POINTS • Myocardial perfusion scintigraphy using 99mTc induces time-dependent double-strand breaks (DSBs) • γ-H2AX immunofluorescence microscopy shows DSB as an early response to radiotracer injection • Activity measurements of 99mTc correlate well with detected DSB • DSB foci induced by 99mTc return to baseline 24h after radiotracer injection.
Collapse
|
14
|
Dong J, Ren Y, Zhang T, Wang Z, Ling CC, Li GC, He F, Wang C, Wen B. Inactivation of DNA-PK by knockdown DNA-PKcs or NU7441 impairs non-homologous end-joining of radiation-induced double strand break repair. Oncol Rep 2018; 39:912-920. [PMID: 29344644 PMCID: PMC5802037 DOI: 10.3892/or.2018.6217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in non-homologous end-joining (NHEJ) repair. We investigated the mechanism of NU7441, a highly selective DNA-PK inhibitor, in NHEJ-competent mouse embryonic fibroblast (MEF) cells and NHEJ-deficient cells and explored the feasibility of its application in radiosensitizing nasopharyngeal carcinoma (NPC) cells. We generated wild-type and DNA-PKcs−/− MEF cells. Clonogenic survival assays, flow cytometry, and immunoblotting were performed to study the effect of NU7441 on survival, cell cycle, and DNA repair. NU7441 profoundly radiosensitized wild-type MEF cells and SUNE-1 cells, but not DNA-PKcs−/− MEF cells. NU7441 significantly suppressed radiation-induced DSB repair post-irradiation through unrepaired and lethal DNA damage, the cell cycle arrest. The effect was associated with the activation of cell cycle checkpoints. The present study revealed a mechanism by which inhibition of DNA-PK sensitizes cells to irradiation suggesting that radiotherapy in combination with DNA-PK inhibitor is a promising paradigm for the management of NPC which merits further investigation.
Collapse
Affiliation(s)
- Jun Dong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tian Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Clifton C Ling
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Gloria C Li
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Fuqiu He
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bixiu Wen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
15
|
Manivannan B, Kuppusamy T, Venkatesan S, Perumal V. A comparison of estimates of doses to radiotherapy patients obtained with the dicentric chromosome analysis and the γ-H2AX assay: Relevance to radiation triage. Appl Radiat Isot 2017; 131:1-7. [PMID: 29080427 DOI: 10.1016/j.apradiso.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022]
Abstract
The γ-H2AX assay was investigated as an alternative to the time-consuming dicentric chromosome assay (DCA). Radiation doses to 25 radiotherapy patients were estimated in parallel by DCA and the γ-H2AX assay. The γ-H2AX assay yielded doses in line with the calculated equivalent whole body doses in 92% of the patients, whereas the success rate of DCA was only 76%. The result shows that the γ-H2AX assay can be effectively used as a rapid and more precise alternative to DCA.
Collapse
Affiliation(s)
- Bhavani Manivannan
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - Thayalan Kuppusamy
- Dr. Kamakshi Memorial Hospital Pvt. Ltd., Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - Srinivasan Venkatesan
- Dr. Kamakshi Memorial Hospital Pvt. Ltd., Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - Venkatachalam Perumal
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| |
Collapse
|
16
|
Subhashree M, Venkateswarlu R, Karthik K, Shangamithra V, Venkatachalam P. DNA damage and the bystander response in tumor and normal cells exposed to X-rays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 821:20-27. [PMID: 28735740 DOI: 10.1016/j.mrgentox.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
Abstract
Monolayer and suspension cultures of tumor (BMG-1, CCRF-CEM), normal (AG1522, HADF, lymphocytes) and ATM-mutant (GM4405) human cells were exposed to X-rays at doses used in radiotherapy (high dose and high dose-rate) or radiological imaging (low dose and low dose-rate). Radiation-induced DNA damage, its persistence, and possible bystander effects were evaluated, based on DNA damage markers (γ-H2AX, p53ser15) and cell-cycle-specific cyclins (cyclin B1 and cyclin D1). Dose-dependent DNA damage and a dose-independent bystander response were seen after exposure to high dose and high dose-rate radiation. The level of induced damage (expression of p53ser15, γ-H2AX) depended on ATM status. However, low dose and dose-rate exposures neither increased expression of marker proteins nor induced a bystander response, except in the CCRF-CEM cells. Bystander effects after high-dose irradiation may contribute to stochastic and deterministic effects. Precautions to protect unexposed regions or to inhibit transmission of DNA damage signaling might reduce radiation risks.
Collapse
Affiliation(s)
- M Subhashree
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - R Venkateswarlu
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - K Karthik
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - V Shangamithra
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India.
| |
Collapse
|
17
|
Basheerudeen SAS, Kanagaraj K, Jose M, Ozhimuthu A, Paneerselvam S, Pattan S, Joseph S, Raavi V, Perumal V. Entrance surface dose and induced DNA damage in blood lymphocytes of patients exposed to low-dose and low-dose-rate X-irradiation during diagnostic and therapeutic interventional radiology procedures. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 818:1-6. [DOI: 10.1016/j.mrgentox.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023]
|
18
|
Abstract
Base excision repair (BER) is a key genome maintenance pathway that removes endogenously damaged DNA bases that arise in cells at very high levels on a daily basis. Failure to remove these damaged DNA bases leads to increased levels of mutagenesis and chromosomal instability, which have the potential to drive carcinogenesis. Next-generation sequencing of the germline and tumor genomes of thousands of individuals has uncovered many rare mutations in BER genes. Given that BER is critical for genome maintenance, it is important to determine whether BER genomic variants have functional phenotypes. In this chapter, we present our in silico methods for the identification and prioritization of BER variants for further study. We also provide detailed instructions and commentary on the initial cellular assays we employ to dissect potentially important phenotypes of human BER variants and highlight the strengths and weaknesses of our approaches. BER variants possessing interesting functional phenotypes can then be studied in more detail to provide important mechanistic insights regarding the role of aberrant BER in carcinogenesis.
Collapse
|
19
|
Tong KI, Ota K, Komuro A, Ueda T, Ito A, Anne Koch C, Okada H. Attenuated DNA damage repair delays therapy-related myeloid neoplasms in a mouse model. Cell Death Dis 2016; 7:e2401. [PMID: 27711078 PMCID: PMC5133969 DOI: 10.1038/cddis.2016.298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Abstract
Therapy-related cancers are potentially fatal late life complications for patients who received radio- or chemotherapy. So far, the mouse model showing reduction or delay of these diseases has not been described. We found that the disruption of Aplf in mice moderately attenuated DNA damage repair and, unexpectedly, impeded myeloid neoplasms after exposure to ionizing radiation (IR). Irradiated mutant mice showed higher rates of p53-dependent cell death, fewer chromosomal translocations, and a delay in malignancy-induce;/– mice. Depletion of APLF in non-tumorigenic human cells also markedly reduced the risk of radiation-induced chromosomal aberrations. We therefore conclude that proficient DNA damage repair may promote chromosomal aberrations in normal tissues after irradiation and induce malignant evolution, thus illustrating the potential benefit in sensitizing p53 function by manipulating DNA repair efficiency in cancer patients undergoing genotoxic therapies.
Collapse
Affiliation(s)
- Kit I Tong
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2M9
| | - Kazushige Ota
- Department of Biochemistry, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan
| | - Akiyoshi Komuro
- Department of Biochemistry, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - C Anne Koch
- Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9
| | - Hitoshi Okada
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2M9.,Department of Biochemistry, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9.,Anti-Aging Center, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
20
|
Kurashige T, Shimamura M, Nagayama Y. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine. JOURNAL OF RADIATION RESEARCH 2016; 57:312-7. [PMID: 26951077 PMCID: PMC4915540 DOI: 10.1093/jrr/rrw001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 05/21/2023]
Abstract
The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds.
Collapse
Affiliation(s)
- Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
21
|
Venkateswarlu R, Tamizh SG, Bhavani M, Kumar A, Alok A, Karthik K, Kalra N, Vijayalakshmi J, Paul SFD, Chaudhury NK, Venkatachalam P. Mean frequency and relative fluorescence intensity measurement of γ-H2AX foci dose response in PBL exposed to γ-irradiation: An inter- and intra-laboratory comparison and its relevance for radiation triage. Cytometry A 2015; 87:1138-1146. [PMID: 26305808 DOI: 10.1002/cyto.a.22729] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 11/07/2022]
Abstract
Measurement of γ-H2AX protein changes in the peripheral blood lymphocytes (PBL) of individuals exposed to ionizing radiation is a simple, sensitive, and rapid assay for radiation triage and early marker of dose estimation. The qualitative and quantitative measurements of the protein changes were examined using flow cytometry and microscopy. Whole blood and isolated lymphocytes were exposed in vitro between 0.1 and 5 Gy doses of (60) Co γ-radiation at a dose rate of 1 Gy/min. Radiation induced γ-H2AX foci frequency (n = 3) and relative fluorescence intensity (n = 7) in PBL was measured at 0.5 and 2 hrs postexposure. The observed dose response for γ-H2AX foci frequency at both time points, for whole blood and isolated lymphocytes did not show any significant (P > 0.05) differences. However, when compared with γ-H2AX foci frequency scored manually (microscopy), the semiautomated analysis (captured images) showed a better correlation (r(2) = 0.918) than that obtained with automated (Metafer) scoring (r(2) = 0.690). It is noteworthy to mention that, the γ-H2AX foci frequency quantified using microscopy showed a dose dependent increase up to 2 Gy and the relative fluorescence intensity (RFI) measured with flow cytometry revealed an increase up to 5 Gy in the PBL exposed in vitro. Moreover, a better correlation was observed between the γ-H2AX foci frequency obtained by manual scoring and RFI (r(2) = 0.910). Kinetic studies showed that the γ-H2AX foci remain more or less unchanged up to 4 hrs and reduces gradually over 48 hrs of postexposure at 37°C. Further, inter and intra-laboratory comparisons showed consistency in the scoring of γ-H2AX foci frequency by manual and semiautomated scoring. The overall results suggest that measurement of γ-H2AX (microscopy and flow cytometry) should be employed within 4 to 6 hrs for a reliable dosimetry either by sharing the work load between the laboratories or investing more manpower; however, triage can be possible even up to 48 hrs of postirradiation.
Collapse
Affiliation(s)
- Raavi Venkateswarlu
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Selvan G Tamizh
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Manivannan Bhavani
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Arun Kumar
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India-110 054
| | - Amit Alok
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India-110 054
| | - Kanagaraj Karthik
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Namita Kalra
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India-110 054
| | - J Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - N K Chaudhury
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India-110 054
| | - Perumal Venkatachalam
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| |
Collapse
|
22
|
Borràs M, Armengol G, De Cabo M, Barquinero JF, Barrios L. Comparison of methods to quantify histone H2AX phosphorylation and its usefulness for prediction of radiosensitivity. Int J Radiat Biol 2015; 91:915-24. [DOI: 10.3109/09553002.2015.1101501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Lee JM, Gordon N, Trepel JB, Lee MJ, Yu M, Kohn EC. Development of a multiparameter flow cytometric assay as a potential biomarker for homologous recombination deficiency in women with high-grade serous ovarian cancer. J Transl Med 2015; 13:239. [PMID: 26198537 PMCID: PMC4508767 DOI: 10.1186/s12967-015-0604-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES PARP inhibitors (PARPi) are a novel class of drugs with activity in patients with acquired or germline homologous recombination (HR) deficiency-associated high-grade serous ovarian cancer (HGSOC). We hypothesized that measuring γH2AX as an indicator of DNA double-strand breaks (DSB), and MRE11 or RAD51 as an indicator of DSB repair, would reflect HR status and predict response to PARPi-based therapy. Our aim was to develop and use high-throughput multiparametric flow cytometry to quantify γH2AX with MRE11 or RAD51 in PBMCs as a readily available surrogate. METHODS Healthy donor PBMCs were used for assay development and optimization. We validated induction of γH2AX, MRE11 and RAD51 by staining with fluorophore-conjugated antibodies. The multiparameter flow cytometric method was applied to PBMC samples from recurrent HGSOC patients who were treated with PARPi, olaparib and carboplatin. RESULTS Stimulation was necessary for quantification of a DNA damage response to olaparib/carboplatin in healthy donor PBMCs. The flow cytometric protocol could not distinguish between cytoplasmic and nuclear RAD51, erroneously indicating activation in response to injury. Thus, MRE11 was selected as the marker of DSB repair. PBMCs from 15 recurrent HGSOC patients were then examined. Patients who did not respond to PARPi therapy had a significantly higher pre-treatment level of γH2AX (p = 0.01), and a higher ratio of γH2AX/MRE11 (11.0 [3.5-13.2] v. 3.3 [2.8-9.9], p < 0.03) compared with responders. CONCLUSIONS We successfully developed and applied a multiparameter flow cytometry assay to measure γH2AX and MRE11 in PBMCs. Prospective studies will be required to validate this surrogate biomarker assay as a potential predictive biomarker of PARPi-based therapy.
Collapse
Affiliation(s)
- Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Dr. MSC1906, Building 10, Room 12N/226, Bethesda, MD, 20892-1906, USA.
| | - Nicolas Gordon
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Dr. MSC1906, Building 10, Room 12N/226, Bethesda, MD, 20892-1906, USA.
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Minshu Yu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Dr. MSC1906, Building 10, Room 12N/226, Bethesda, MD, 20892-1906, USA.
| | - Elise C Kohn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Dr. MSC1906, Building 10, Room 12N/226, Bethesda, MD, 20892-1906, USA.
| |
Collapse
|
24
|
Tommasino F, Friedrich T, Jakob B, Meyer B, Durante M, Scholz M. Induction and Processing of the Radiation-Induced Gamma-H2AX Signal and Its Link to the Underlying Pattern of DSB: A Combined Experimental and Modelling Study. PLoS One 2015; 10:e0129416. [PMID: 26067661 PMCID: PMC4465900 DOI: 10.1371/journal.pone.0129416] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/10/2015] [Indexed: 12/23/2022] Open
Abstract
We present here an analysis of DSB induction and processing after irradiation with X-rays in an extended dose range based on the use of the γH2AX assay. The study was performed by quantitative flow cytometry measurements, since the use of foci counting would result in reasonable accuracy only in a limited dose range of a few Gy. The experimental data are complemented by a theoretical analysis based on the GLOBLE model. In fact, original aim of the study was to test GLOBLE predictions against new experimental data, in order to contribute to the validation of the model. Specifically, the γH2AX signal kinetics has been investigated up to 24 h after exposure to increasing photon doses between 2 and 500 Gy. The prolonged persistence of the signal at high doses strongly suggests dose dependence in DSB processing after low LET irradiation. Importantly, in the framework of our modelling analysis, this is related to a gradually increased fraction of DSB clustering at the micrometre scale. The parallel study of γH2AX dose response curves shows the onset of a pronounced saturation in two cell lines at a dose of about 20 Gy. This dose is much lower than expected according to model predictions based on the values usually adopted for the DSB induction yield (≈ 30 DSB/Gy) and for the γH2AX foci extension of approximately 2 Mbp around the DSB. We show and discuss how theoretical predictions and experimental findings can be in principle reconciled by combining an increased DSB induction yield with the assumption of a larger genomic extension for the single phosphorylated regions. As an alternative approach, we also considered in our model the possibility of a 3D spreading-mechanism of the H2AX phosphorylation around the induced DSB, and applied it to the analysis of both the aspects considered. Our results are found to be supportive for the basic assumptions on which GLOBLE is built. Apart from giving new insights into the H2AX phosphorylation process, experiments performed at high doses are of relevance in the context of radiation therapy, where hypo-fractionated schemes become increasingly popular.
Collapse
Affiliation(s)
- Francesco Tommasino
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
- * E-mail:
| | - Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
| | - Burkhard Jakob
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
| | - Barbara Meyer
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
- Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
| |
Collapse
|
25
|
Kotov IN, Siebring-van Olst E, Knobel PA, van der Meulen-Muileman IH, Felley-Bosco E, van Beusechem VW, Smit EF, Stahel RA, Marti TM. Whole genome RNAi screens reveal a critical role of REV3 in coping with replication stress. Mol Oncol 2014; 8:1747-59. [PMID: 25113059 PMCID: PMC5528584 DOI: 10.1016/j.molonc.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022] Open
Abstract
REV3, the catalytic subunit of translesion polymerase zeta (polζ), is commonly associated with DNA damage bypass and repair. Despite sharing accessory subunits with replicative polymerase δ, very little is known about the role of polζ in DNA replication. We previously demonstrated that inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. To reveal determinants of this sensitivity and obtain insights into the cellular function of REV3, we performed whole human genome RNAi library screens aimed at identification of synthetic lethal interactions with REV3 in A549 lung cancer cells. The top confirmed hit was RRM1, the large subunit of ribonucleotide reductase (RNR), a critical enzyme of de novo nucleotide synthesis. Treatment with the RNR-inhibitor hydroxyurea (HU) synergistically increased the fraction of REV3-deficient cells containing single stranded DNA (ssDNA) as indicated by an increase in replication protein A (RPA). However, this increase was not accompanied by accumulation of the DNA damage marker γH2AX suggesting a role of REV3 in counteracting HU-induced replication stress (RS). Consistent with a role of REV3 in DNA replication, increased RPA staining was confined to HU-treated S-phase cells. Additionally, we found genes related to RS to be significantly enriched among the top hits of the synthetic sickness/lethality (SSL) screen further corroborating the importance of REV3 for DNA replication under conditions of RS.
Collapse
Affiliation(s)
- Ilya N Kotov
- Clinic of Oncology, University Hospital Zurich, 8044 Zurich, Switzerland
| | - Ellen Siebring-van Olst
- Department of Pulmonary Diseases, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Philip A Knobel
- Clinic of Oncology, University Hospital Zurich, 8044 Zurich, Switzerland
| | | | | | - Victor W van Beusechem
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Rolf A Stahel
- Clinic of Oncology, University Hospital Zurich, 8044 Zurich, Switzerland
| | - Thomas M Marti
- Clinic of Oncology, University Hospital Zurich, 8044 Zurich, Switzerland.
| |
Collapse
|
26
|
Sándor N, Walter FR, Bocsik A, Sántha P, Schilling-Tóth B, Léner V, Varga Z, Kahán Z, Deli MA, Sáfrány G, Hegyesi H. Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice. PLoS One 2014; 9:e112397. [PMID: 25393626 PMCID: PMC4231057 DOI: 10.1371/journal.pone.0112397] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/03/2014] [Indexed: 11/21/2022] Open
Abstract
Background High-dose radiation-induced blood-brain barrier breakdown contributes to acute radiation toxicity syndrome and delayed brain injury, but there are few data on the effects of low dose cranial irradiation. Our goal was to measure blood-brain barrier changes after low (0.1 Gy), moderate (2 Gy) and high (10 Gy) dose irradiation under in vivo and in vitro conditions. Methodology Cranial irradiation was performed on 10-day-old and 10-week-old mice. Blood-brain barrier permeability for Evans blue, body weight and number of peripheral mononuclear and circulating endothelial progenitor cells were evaluated 1, 4 and 26 weeks postirradiation. Barrier properties of primary mouse brain endothelial cells co-cultured with glial cells were determined by measurement of resistance and permeability for marker molecules and staining for interendothelial junctions. Endothelial senescence was determined by senescence associated β-galactosidase staining. Principle Findings Extravasation of Evans blue increased in cerebrum and cerebellum in adult mice 1 week and in infant mice 4 weeks postirradiation at all treatment doses. Head irradiation with 10 Gy decreased body weight. The number of circulating endothelial progenitor cells in blood was decreased 1 day after irradiation with 0.1 and 2 Gy. Increase in the permeability of cultured brain endothelial monolayers for fluorescein and albumin was time- and radiation dose dependent and accompanied by changes in junctional immunostaining for claudin-5, ZO-1 and β-catenin. The number of cultured brain endothelial and glial cells decreased from third day of postirradiation and senescence in endothelial cells increased at 2 and 10 Gy. Conclusion Not only high but low and moderate doses of cranial irradiation increase permeability of cerebral vessels in mice, but this effect is reversible by 6 months. In-vitro experiments suggest that irradiation changes junctional morphology, decreases cell number and causes senescence in brain endothelial cells.
Collapse
Affiliation(s)
- Nikolett Sándor
- Division of Molecular Radiobiology and Biodosimetry, “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
- Doctoral Schools of Pathological Sciences, Semmelweis University, Budapest, Hungary
| | - Fruzsina R. Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Alexandra Bocsik
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Petra Sántha
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Boglárka Schilling-Tóth
- Division of Molecular Radiobiology and Biodosimetry, “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Violetta Léner
- Division of Molecular Radiobiology and Biodosimetry, “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Care, Semmelweis University, Budapest, Hungary
| | - Zoltán Varga
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Mária A. Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Géza Sáfrány
- Division of Molecular Radiobiology and Biodosimetry, “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Hargita Hegyesi
- Division of Molecular Radiobiology and Biodosimetry, “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Care, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
27
|
DeFilippis RA, Fordyce C, Patten K, Chang H, Zhao J, Fontenay GV, Kerlikowske K, Parvin B, Tlsty TD. Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density. Cancer Res 2014; 74:5032-5044. [PMID: 25172842 DOI: 10.1158/0008-5472.can-13-3390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal nontumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared with epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g., activin A and CD36) to prevent breast cancer.
Collapse
Affiliation(s)
- Rosa Anna DeFilippis
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Colleen Fordyce
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kelley Patten
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hang Chang
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jianxin Zhao
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Karla Kerlikowske
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.,Departments of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Bahram Parvin
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thea D Tlsty
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
28
|
Pouliliou S, Koukourakis MI. Gamma histone 2AX (γ-H2AX)as a predictive tool in radiation oncology. Biomarkers 2014; 19:167-80. [DOI: 10.3109/1354750x.2014.898099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Stamatia Pouliliou
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, Democritus University of Thrace
AlexandroupolisGreece
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, Democritus University of Thrace
AlexandroupolisGreece
| |
Collapse
|
29
|
Double-strand breaks on F98 glioma rat cells induced by minibeam and broad-beam synchrotron radiation therapy. Clin Transl Oncol 2013; 16:696-701. [PMID: 24271740 DOI: 10.1007/s12094-013-1134-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To assess the DNA damage induced by MBRT and BB radiations on glioma cells. METHODS The analysis of fluorescent intensity emitted per nucleus was plotted versus DNA content 2 and 17 h after irradiations. At around cell-doubling time (17 h) after exposures, the remaining DNA radiation damage could be correlated with cellular death. RESULTS A higher γH2AX IF intensity per cell could be detected 2 and 17 h after MBRT when compared with BB. 17 h after MBRT, misrepaired damaged cells remained arrested in both G1 and G2 phases. CONCLUSIONS A pronounced G2 phase arrest was detected at 17 h after MBRT and BB. However, only after MBRT, a dose-dependent increasing number of damaged cells appeared arrested also in the G1 phase, and a higher amount of cells more prone to undergo apoptosis were detected. The threshold dose required to enhance the effectiveness of both synchrotron radiation techniques was 12 Gy.
Collapse
|
30
|
Basheerudeen SAS, Mani C, Kulkarni MAK, Pillai K, Rajan A, Venkatachalam P. Human brain glioblastoma cells do not induce but do respond to the bleomycin-induced bystander response from lung adenocarcinoma cells. Mutat Res 2013; 757:114-9. [PMID: 23906726 DOI: 10.1016/j.mrgentox.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/21/2022]
Abstract
To determine whether the bleomycin (BLM)-induced bystander response occurs in human brain glioblastoma (BMG-1) cells, the BMG-1 cells were exposed to two different concentrations of BLM. The co-culture methodology was adopted to study the in vitro bystander effects. DNA damage was measured using the micronucleus (MN) and γ-H2AX assays. Cytotoxicity was measured using the trypan blue assay. Cell cycle kinetics was analyzed using flow cytometry. The overall results did not show any significant increase in either genotoxicity or cytotoxicity or a delay in the cell cycle kinetics in BMG-1 bystander cells co-cultured with BLM-exposed cells, suggesting that BLM did not induce a bystander response in the BMG-1 cells. Furthermore, the MN results of the BLM-exposed BMG-1 cells co-cultured with unexposed bystander human lung adenocarcinoma (A549 and NCI-H460) cells and vice versa suggested that the BMG-1 cells do not secrete bystander signals but do respond to those signals. Analyzing the underlying mechanism and pathways involved in preventing the cells from secreting bystander signals will provide new insights that can be applied to inhibit these mechanisms in other cell types, thereby preventing and controlling the bystander response and genomic instability and increasing the therapeutic gain in chemotherapy.
Collapse
Affiliation(s)
- Safa Abdul Syed Basheerudeen
- Department of Human Genetics, College of Biomedical Science Technology and Research, Sri Ramachandra University, Porur, Chennai 600 116, India
| | | | | | | | | | | |
Collapse
|
31
|
Siddiqui MS, Filomeni E, Francois M, Collins SR, Cooper T, Glatz RV, Taylor PW, Fenech M, Leifert WR. Exposure of insect cells to ionising radiation in vivo induces persistent phosphorylation of a H2AX homologue (H2AvB). Mutagenesis 2013; 28:531-41. [DOI: 10.1093/mutage/get030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
32
|
Jerome-Morais A, Bera S, Rachidi W, Gann P, Diamond A. The effects of selenium and the GPx-1 selenoprotein on the phosphorylation of H2AX. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:3399-406. [PMID: 23518201 PMCID: PMC3668444 DOI: 10.1016/j.bbagen.2013.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/17/2013] [Accepted: 03/06/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Significant data supports the health benefits of selenium although supplementation trials have yielded mixed results. GPx-1, whose levels are responsive to selenium availability, is implicated in cancer etiology by human genetic data. Selenium's ability to alter the phosphorylation of the H2AX, a histone protein that functions in the reduction of DNA damage by recruiting repair proteins to the damage site, following exposure to ionizing radiation and bleomycin was investigated. METHODS Human cell lines that were either exposed to selenium or were transfected with a GPx-1 expression construct were exposed to ionizing radiation or bleomycin. Phosphorylation of histone H2AX was quantified by flow cytometry and survival by the MTT assay. Phosphorylation of the Chk1 and Chk2 checkpoint proteins was quantified by western blotting. RESULTS In colon-derived cells, selenium increases GPx-1 and attenuated H2AX phosphorylation following genotoxic exposures while the viability of these cells was unaffected. MCF-7 cells and transfectants that express high GPx-1 levels were exposed to ionizing radiation and bleomycin, and H2AX phosphorylation and cell viability were assessed. GPx-1 increased H2AX phosphorylation and viability following the induction of DNA damage while enhancing the levels of activated Chk1 and Chk2. CONCLUSIONS Exposure of mammalian cells to selenium can alter the DNA damage response and do so by mechanisms that are dependent and independent of its effect on GPx-1. GENERAL SIGNIFICANCE Selenium and GPx-1 may stimulate the repair of genotoxic DNA damage and this may account for some of the benefits attributed to selenium intake and elevated GPx-1 activity.
Collapse
Affiliation(s)
- A Jerome-Morais
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - S Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - W Rachidi
- Université Joseph Fourier, Grenoble 1, CEA, INAC, SCIB, Laboratoire, Lésions des AcidesNucléiques, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - P.H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - A.M Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Chinnadurai M, Paul SFD, Venkatachalam P. The effect of growth architecture on the induction and decay of bleomycin and X-ray-induced bystander response and genomic instability in lung adenocarcinoma cells and blood lymphocytes. Int J Radiat Biol 2012; 89:69-78. [PMID: 22947118 DOI: 10.3109/09553002.2012.726397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Cancer patients treated with radiomimetic drug bleomycin (BLM) have shown incidence of 7% second malignancy. Studies regarding BLM-induced genomic instability in bystander cells are scarce, and experiments with cells grown on three-dimensional (3D) cultures to mimic the in-vivo condition have never been attempted. MATERIALS AND METHODS A549 and NCI-H23 (human lung adenocarcinoma) cells were grown as 3D cultures using Cytomatrix(™), exposed to BLM or X-radiation and co-cultured with their respective unexposed cells. The DNA damage in direct and bystander cells were assessed by the induction of micronuclei (MN) or phosphorylated serine-15 residue in protein 53 (p53(ser-15)), a reflection of DNA damage, and by up-regulation of protein 21 (p21Waf1). The persistence of DNA damage was measured using MN assay and fluorescence in situ hybridization (FISH) in cancer cells and human peripheral blood lymphocytes (PBL) respectively. RESULTS BLM or X-irradiation induced DNA damage in both A549 and NCI-H23 cells and their respective bystander cells grown in 2D or 3D cultures. Further persistence of these damages in bystander PBL at delayed times indicated genomic instability in these cells. CONCLUSION BLM-induced genomic instability in the progeny of bystander cells and their significance in therapy-induced second malignancy may not be eliminated completely.
Collapse
Affiliation(s)
- Mani Chinnadurai
- Department of Human Genetics, College of Biomedical Science Technology and Research , Sri Ramachandra University, Porur, Chennai, India
| | | | | |
Collapse
|
34
|
Toyooka T, Kubota T, Ibuki Y. UVB irradiation changes genotoxic potential of nonylphenolpolyethoxylates— remarkable generation of γ-H2AX with degradation of chemical structure. Mutagenesis 2012; 28:7-14. [DOI: 10.1093/mutage/ges043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Chinnadurai M, Rao BS, Deepika R, Paul SFD, Venkatachalam P. Role of Reactive Oxygen Species and Nitric Oxide in Mediating Chemotherapeutic Drug Induced Bystander Response in Human Cancer Cells Exposed In-Vitro. World J Oncol 2012; 3:64-72. [PMID: 29147282 PMCID: PMC5649891 DOI: 10.4021/wjon474w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background The intention of cancer chemotherapy is to control the growth of cancer cells using chemical agents. However, the occurrence of second malignancies has raised concerns, leading to re-evaluation of the current strategy in use for chemotherapeutic agents. Although the mechanisms involved in second malignancy remain ambiguous, therapeutic-agent-induced non-DNA targeted effects like bystander response and genomic instability cannot be eliminated completely. Hence, Bleomycin (BLM) and Neocarzinostatin (NCS), chemotherapeutic drugs with a mode of action similar to ionizing radiation, were used to study the mechanism of bystander response in human cancer cells (A549, CCRF-CEM and HL-60) by employing co-culture methodology. Methods Bystander effect was quantified using micronucleus (MN) assay and in-situ immunofluorescence(γH2AX assay).The role of reactive oxygen species (ROS) and nitric oxide (NO) in mediating the bystander response was explored by pre-treating bystander cells with dimethylsulphoxide (DMSO) and C-PTIO respectively. Results Bystander response was observed only in CCRF-CEM and A549 cells (P < 0.001). A significant decrease in this response was observed with ROS scavenger, DMSO. Conclusion This significant attenuation in the bystander response on treatment with DMSO, suggests that ROS has a more significant role in mediating the bystander response.Since the possibility of the ROS and NO in mediating these bystander effect was confirmed, mechanistic control of these signaling molecules could either reduce radiation damage and potential carcinogenicity of normal tissues (by reducing bystander signaling) or maximize cell sterilization during chemotherapy (by amplifying bystander responses in tumors).
Collapse
Affiliation(s)
- Mani Chinnadurai
- Department of Human Genetics, College of Biomedical Science Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| | - Bhavna S Rao
- Department of Human Genetics, College of Biomedical Science Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| | - Ramasamy Deepika
- Department of Human Genetics, College of Biomedical Science Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| | - Solomon F D Paul
- Department of Human Genetics, College of Biomedical Science Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| | - Perumal Venkatachalam
- Department of Human Genetics, College of Biomedical Science Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
36
|
DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study. Eur Radiol 2012; 22:1641-50. [PMID: 22527372 DOI: 10.1007/s00330-012-2426-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA). METHODS 56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose-length product (DLP) and dose-area product (DAP) with conversion factors for CT and CCA, respectively. RESULTS On average there were 0.12 ± 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 ± 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups. CONCLUSIONS Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation. KEY POINTS • Radiation dose causes concern for both conventional coronary angiography and cardiac CT. • Estimations of the biological effects of ionising radiation may become feasible. • Fewer DNA double-strand breaks are induced by cardiac CT than CCA. • Conversion factors may underestimate the relative effects of ionising radiation from CCA.
Collapse
|
37
|
Catts VS, Catts SV, Jablensky A, Chandler D, Weickert CS, Lavin MF. Evidence of aberrant DNA damage response signalling but normal rates of DNA repair in dividing lymphoblasts from patients with schizophrenia. World J Biol Psychiatry 2012; 13:114-25. [PMID: 21830993 DOI: 10.3109/15622975.2011.565073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer incidence in schizophrenia is not increased commensurate with higher rates of risk exposures. Here we report an investigation of the DNA damage response, an anti-tumorigenic defence, in immortalised lymphoblasts from patients with schizophrenia. METHODS Unirradiated and irradiated (5Gy) lymphoblasts from schizophrenia patients (n = 28) and healthy controls (n = 28) were immunostained for the phosphorylated histone variant H2AX (γH2AX), an index of DNA double-strand breaks. Flow cytometry was used to assess cell cycle distribution and γH2AX immunofluorescence. Rate of DNA repair was quantified by determining the temporal change in γH2AX values following irradiation. RESULTS In unirradiated lymphoblasts, γH2AX levels were significantly increased in the schizophrenia group compared with controls (effect size = 0.86). This increase was most evident in patients with cognitive deficits. In irradiated lymphoblasts, peak radiation-induced γH2AX levels were significantly reduced in patients. No differences between patients and controls were found in the rate of DNA repair or in cell cycle distribution. CONCLUSIONS The significant differences in DNA damage response signalling observed involve modification of histone variant H2AX and thereby implicate regulatory processes determining chromatin structure in dividing lymphoblasts from patients with schizophrenia. The role that aberrant DNA damage response signalling plays in protecting patients from cancer is unclear.
Collapse
|
38
|
Toyooka T, Kubota T, Ibuki Y. Nonylphenol polyethoxylates induce phosphorylation of histone H2AX. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 741:57-64. [DOI: 10.1016/j.mrgentox.2011.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/02/2011] [Accepted: 10/09/2011] [Indexed: 10/15/2022]
|
39
|
Andreassi MG, Cioppa A, Manfredi S, Neri MG, Foffa I, Picano E. N-acetyl cysteine reduces chromosomal DNA damage in circulating lymphocytes during cardiac catheterization procedures: a pilot study. Int J Cardiol 2011; 161:93-6. [PMID: 21605919 DOI: 10.1016/j.ijcard.2011.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/29/2010] [Accepted: 05/02/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND N-acetylcysteine (NAC) is considered a promising radio-protector for its antioxidant and anticarcinogenic properties. We examined the ability of NAC to confer protection against radiation-induced chromosomal DNA damage during cardiac catheterization procedures. METHODS Sixty-five patients (52 males, age 64.4 ± 11.9 years) undergoing invasive cardiovascular procedures (peripheral transluminal angioplasty, n=45; cardiac resynchronization therapy, n=15 and ablation therapy n=5) were enrolled: 35 patients (26 males, age 63.4 ± 11.1 years) received the standard hydration protocol consisting of intravenous isotonic saline for 12h after catheterization (Group I), and 30 patients (26 males, age 65.5 ± 12.9 years) received a clinically driven double intravenous dose of NAC (6 mg/kg/h diluted in 250 mL of NaCl 0.9%) for 1h before and a standard dose (6 mg/kg/h diluted in 500 mL of NaCl 0.9%) for 12h following catheterization (Group II). Micronucleus assay (MN) was performed as biomarker of chromosomal DNA damage before, 2 and 24h after the radiation exposure. Dose-area product (DAP; Gy cm(2)) was assessed as physical measure of radiation load. RESULTS DAP was higher in NAC-treated patients (I=54.7 ± 23.6 vs II=126.2 ± 79.2 Gy cm(2), p=0.0001). MN frequency was 13.7 ± 4.7 ‰ at baseline and showed a significant rise at 2h (18.0 ± 6.8 p=0.01) and 24h (17.6 ± 5.9, p=0.03) in the Group I. There was no significant increase of MN in the Group II (13.7 ± 7.0, 15.5 ± 6.0 and 14.9 ± 6.3 for baseline, 2h and 24h respectively, p=0.4). CONCLUSION NAC treatment given to prevent contrast-induced nephropathy may also reduce DNA damage induced by ionizing radiation exposure during cardiac catheterization procedures.
Collapse
|
40
|
Schmid TE, Dollinger G, Beisker W, Hable V, Greubel C, Auer S, Mittag A, Tarnok A, Friedl AA, Molls M, Röper B. Differences in the kinetics of gamma-H2AX fluorescence decay after exposure to low and high LET radiation. Int J Radiat Biol 2010; 86:682-91. [PMID: 20569192 DOI: 10.3109/09553001003734543] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE In order to obtain more insight into heavy ion tumour therapy, some features of the underlying molecular mechanisms controlling the cellular response to high linear energy transfer (LET) radiation are currently analysed. MATERIALS AND METHODS We analysed the decay of the integrated fluorescence intensity of gamma-H2AX (phosphorylated histone H2AX) which is thought to reflect the repair kinetics of radiation-induced DNA double-strand breaks (DSB) using Laser-Scanning-Cytometry. Asynchronous human HeLa cells were irradiated with a single dose of either 1.89 Gy of 55 MeV carbon ions or 5 Gy of 70 kV X-rays. RESULTS Measurements of the gamma-H2AX-intensities from 15-60 min resulted in a 16 % decrease for carbon ions and in a 43 % decrease for X-rays. After 21 h, the decrease was 77 % for carbon ions and 85 % for X-rays. The corresponding time-effect relationship was fitted by a bi-exponential function showing a fast and a slow component with identical half-life values for both radiation qualities being 24 +/- 4 min and 13.9 +/- 0.7 h, respectively. Apparent differences in the kinetics following high and low LET irradiation could completely be attributed to quantitative differences in their contributions, with the slow component being responsible for 47 % of the repair after exposure to X-rays as compared to 80 % after carbon ion irradiation. CONCLUSION gamma-H2AX loss kinetics follows a bi-exponential decline with two definite decay times independent of LET. The higher contribution of the slow component determined for carbon ion exposure is thought to reflect the increased amount of complex DSB induced by high LET radiation.
Collapse
Affiliation(s)
- Thomas E Schmid
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jost G, Golfier S, Pietsch H, Lengsfeld P, Voth M, Schmid TE, Eckardt-Schupp F, Schmid E. The influence of x-ray contrast agents in computed tomography on the induction of dicentrics and gamma-H2AX foci in lymphocytes of human blood samples. Phys Med Biol 2009; 54:6029-39. [PMID: 19779223 DOI: 10.1088/0031-9155/54/20/001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to investigate and quantify two biomarkers for radiation exposure (dicentrics and gamma-H2AX foci) in human lymphocytes after CT scans in the presence of an iodinated contrast agent. Blood samples from a healthy donor were exposed to CT scans in the absence or presence of iotrolan 300 at iodine concentrations of 5 or 50 mg ml(-1) blood. The samples were exposed to 0.025, 0.05, 0.1 and 1 Gy in a tissue equivalent body phantom. Chromosome aberration scoring and automated microscopic analysis of gamma-H2AX foci were performed in parts of the same samples. The theoretical physical dose enhancement factor (DEF) was calculated on the basis of the mass energy-absorption coefficients of iodine and blood and the photon energy spectrum of the CT tube. No significant differences in the yields of dicentrics and gamma-H2AX foci were observed in the absence or presence of 5 mg iodine ml(-1) blood up to 0.1 Gy, whereas at 1 Gy the yields were elevated for both biomarkers. At an iodine concentration of 50 mg ml(-1) serving as a positive control, a biological DEF of 9.5 +/- 1.4 and 2.3 +/- 0.5 was determined for dicentrics and gamma-H2AX foci, respectively. A physical DEF of 1.56 and 6.30 was calculated for 5 and 50 mg iodine ml(-1), respectively. Thus, it can be concluded that in the diagnostic dose range (radiation and contrast dose), no relevant biological dose-enhancing effect could be detected, whereas a clear biological dose-enhancing effect could be found for a contrast dose well outside the diagnostic CT range for the complete radiation dose range with both methods.
Collapse
Affiliation(s)
- G Jost
- Bayer Schering Pharma AG, 13353 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Andrievski A, Wilkins RC. The response ofgamma-H2AX in human lymphocytes and lymphocytes subsets measured in whole blood cultures. Int J Radiat Biol 2009; 85:369-76. [DOI: 10.1080/09553000902781147] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Reliene R, Pollard JM, Sobol Z, Trouiller B, Gatti RA, Schiestl RH. N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat Res 2009; 665:37-43. [PMID: 19427509 DOI: 10.1016/j.mrfmmm.2009.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/14/2009] [Accepted: 02/28/2009] [Indexed: 05/27/2023]
Abstract
Ionizing radiation (IR) induces DNA strand breaks leading to cell death or deleterious genome rearrangements. In the present study, we examined the role of N-acetyl-L-cysteine (NAC), a clinically proven safe agent, for it's ability to protect against gamma-ray-induced DNA strand breaks and/or DNA deletions in yeast and mammals. In the yeast Saccharomyces cerevisiae, DNA deletions were scored by reversion to histidine prototrophy. Human lymphoblastoid cells were examined for the frequency of gamma-H2AX foci formation, indicative of DNA double strand break formation. DNA strand breaks were also measured in mouse peripheral blood by the alkaline comet assay. In yeast, NAC reduced the frequency of IR-induced DNA deletions. However, NAC did not protect against cell death. NAC also reduced gamma-H2AX foci formation in human lymphoblastoid cells but had no protective effect in the colony survival assay. NAC administration via drinking water fully protected against DNA strand breaks in mice whole-body irradiated with 1Gy but not with 4Gy. NAC treatment in the absence of irradiation was not genotoxic. These data suggest that, given the safety and efficacy of NAC in humans, NAC may be useful in radiation therapy to prevent radiation-mediated genotoxicity, but does not interfere with efficient cancer cell killing.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
44
|
Demirel C, Kilçiksiz S, Ay OI, Gürgül S, Ay ME, Erdal N. Effect of N-acetylcysteine on radiation-induced genotoxicity and cytotoxicity in rat bone marrow. JOURNAL OF RADIATION RESEARCH 2009; 50:43-50. [PMID: 19218780 DOI: 10.1269/jrr.08066] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim of this study is to evaluate the potential radioprotective effects of N-acetylcysteine (NAC) against genotoxicity and cytotoxicity. The effect of WR-2721, as a representative of clinically used radioprotector, was compared with that of NAC, using the chromosomal aberration (CA) and micronucleus (MN) test systems in the irradiated rat's femoral bone marrow cells. We also investigated the mitotic index (MI), and the ratio of polychromatic erythrocytes (PCEs) to normochromatic erythrocytes (NCEs). The rats (n = 16) were divided randomly and equally into four groups: Control (C), Radiation (R), R+NAC (received irradiation and 1000 mg/kg NAC) and R+WR-2721 (received irradiation and 200 mg/kg WR-2721) rats. All the irradiated groups received whole-body gamma irradiation as a single dose of 6 Gy. Group R showed higher CA and MN formation when compared to C. Group R showed higher frequency of MN formation when compared to both R+NAC and R+WR-2721. The mean MI and PCE/NCE ratios were lower in Group R when compared to those of Group C. The mean MI and PCE/NCE ratios of both R+NAC and R+WR-2721 groups were lower when compared to those of Group C. The MI in Group R was lower when compared to that of both R+NAC and R+WR-2721 groups. In this study, the results give clues about the beneficial effects of NAC against radiation-induced genotoxicity and cytotoxicity in rat bone marrow and its effect may be comparable to that observed for WR-2721.
Collapse
Affiliation(s)
- Can Demirel
- Department of Biophysics, Faculty of Medicine, Gaziantep University, TR-27310 Gaziantep, Turkey.
| | | | | | | | | | | |
Collapse
|
45
|
Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases. DNA Repair (Amst) 2008; 8:298-308. [PMID: 19071233 DOI: 10.1016/j.dnarep.2008.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 10/23/2008] [Accepted: 11/05/2008] [Indexed: 01/27/2023]
Abstract
Single-stranded oligonucleotides (ssODNs) and zinc-finger nucleases (ZFNs) are two approaches that are being pursued to achieve sequence specific genome modification. ZFNs induce high rates of homologous recombination (HR) between the target sequence and a given donor by introducing site-specific genomic double-strand breaks (DSBs). The mode of action that is used by ssODNs remains largely unknown, but may involve genomic integration of the ssODNs. In this work, cellular responses following ssODN and ZFN mediated correction of a genomic reporter gene have been investigated in human cells. Comparison of the cell cycle distribution of corrected cells following ssODN or ZFN exposure, established that ssODN corrected cells were arrested in the late S and G2/M cell cycle phases, while ZFN corrected cells displayed normal cell cycle profiles. We demonstrate that after ssODN mediated gene correction, phosphorylation of the damage sensor protein H2AX could be observed in 5.8% and 29% of the corrected cells, using a single copy and a multi copy reporter, respectively. When using the ZFN strategy in a single copy reporter only 1.5% of the corrected cells were positive for gamma-H2AX staining. By direct detection of genomic DSBs we establish that the observed cell cycle arrest following ssODN mediated gene correction could be associated with the presence of unrepaired genomic DSBs. Lastly, we establish that although a mutant cellular mismatch repair (MMR) system as expected enhanced ssODN mediated gene correction, the capacity of the ssODN corrected cells to proliferate was not influenced by the MMR system. In conclusion gene correction by means of the ssODN strategy leads to activation of DNA damage signalling and cell cycle arrest due to formation of unrepaired genomic DSBs in a high proportion of the corrected cells. On the contrary, cells corrected using ZFNs displayed normal cell cycle distribution and lower rates of DNA damage.
Collapse
|
46
|
Zhao H, Traganos F, Albino AP, Darzynkiewicz Z. Oxidative stress induces cell cycle-dependent Mre11 recruitment, ATM and Chk2 activation and histone H2AX phosphorylation. Cell Cycle 2008; 7:1490-5. [PMID: 18418078 DOI: 10.4161/cc.7.10.5963] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA damage response recruits complex molecular machinery involved in DNA repair, arrest of cell cycle progression, and potentially in activation of apoptotic pathway. Among the first responders is the Mre11- (MRN) complex of proteins (Mre11, Rad50, Nbs1), essential for activation of ATM; the latter activates checkpoint kinase 2 (Chk2) and phosphorylates histone H2AX. In the present study the recruitment of Mre11 and phosphorylation of ATM, Chk2 and H2AX (gammaH2AX) detected immunocytochemically were measured by laser scanning cytometry to assess kinetics of these events in A549 cells treated with H(2)O(2). Recruitment of Mre11 was rapid, peaked at 10 min of exposure to the oxidant, and was of similar extent in all phases of the cell cycle. ATM and Chk2 activation as well as H2AX phosphorylation reached maximum levels after 30 min of treatment with H(2)O(2); the extent of phosphorylation of each was most prominent in S-, less in G(1)-, and the least in G(2)M- phase cells. A strong correlation between activation of ATM and Chk2, measured in the same cells, was seen in all phases of the cycle. In untreated cells activated Chk2 and Mre11 were distinctly present in centrosomes while in interphase cells they had characteristic punctate nuclear localization. The punctate expression of activated Chk2 both in untreated and H(2)O(2) treated cells was accentuated when measured as maximal pixel rather than integrated value of immunofluorescence (IF) per nucleus, and was most pronounced in G(1) cells, likely reflecting the function of Chk2 in activating Cdc25A. Subpopulations of G(1) and G(2)M cells with strong maximal pixel of Chk2-Thr68(P) IF in association with centrosomes were present in untreated cultures. Cytometric multiparameter assessment of the DNA damage response utilizing quantitative image analysis that allows one to measure inhomogeneity of fluorochrome distribution (e.g., maximal pixel) offers unique advantage in studies of the response of different cell constituents in relation to cell cycle position.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|
47
|
Zhao H, Tanaka T, Halicka HD, Traganos F, Zarebski M, Dobrucki J, Darzynkiewicz Z. Cytometric assessment of DNA damage by exogenous and endogenous oxidants reports aging-related processes. Cytometry A 2008; 71:905-14. [PMID: 17879239 PMCID: PMC3860741 DOI: 10.1002/cyto.a.20469] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ongoing DNA damage caused by reactive oxygen species generated during oxidative metabolism is considered a key factor contributing to cell aging as well as preconditioning cells to neoplastic transformation. We postulated before that a significant fraction of constitutive histone H2AX phosphorylation (CHP) and constitutive activation of ATM (CAA) seen in untreated normal and tumor cells occurs in response to such DNA damage. In the present study, we provide further evidence in support of this postulate. The level of ATM activation and H2AX phosphorylation, detected immunocytochemically, has been monitored in WI-38, A549, and TK6 cells treated with H2O2 as well as growing under conditions known or suspected to affect the level of endogenous oxidants. Thirty- to 60-min exposure of cells to 100 or 200 microM H2O2 led to an increase in the level of H2AX phosphorylation and ATM activation, particularly pronounced (nearly fivefold) in S-phase cells. Cell growth for 24-48 h under hypoxic conditions (3% O2) distinctly lowered the level of CHP and CAA while it had minor effect on cell cycle progression. Treatment (4 h) with 0.1 or 0.3 mM 3-bromopyruvate, an inhibitor of glycolysis and mitochondrial oxidative phosphorylation, reduced the level of CHP (up to fourfold) and also decreased the level of CAA. Growth of WI-38 cells in 2% serum concentration for 48 h led to a 25 and 30% reduction in CHP and CHA, respectively, compared with cells growing in 10% serum. The antioxidant vitamin C (2 mM) reduced CHP and CAA by 20-30% after 24 h of treatment, while the COX-2 inhibitor celecoxib (5 microM) had a minor effect on CHP and CAA, though it decreased the level of H2O2-induced H2AX phosphorylation and ATM activation. In contrast, dichloroacetate known to shift metabolism from anaerobic to oxidative glycolysis through its effect on pyruvate dehydrogenase kinase enhanced the level of CHP and CAA. Our present data and earlier observations strongly support the postulate that a large fraction of CHP and CAA occurs in response to DNA damage caused by metabolically generated oxidants. Cytometric analysis of CHP and CAA provides the means to measure the effectiveness of exogenous factors, which either through lowering aerobic metabolism or neutralizing radicals may protect DNA from such damage.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Toshiki Tanaka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
- First Department of Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - H. Dorota Halicka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Frank Traganos
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Miroslaw Zarebski
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jurek Dobrucki
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
- Correspondence to: Z. Darzynkiewicz, Department of Pathology and Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY 10595, USA.
| |
Collapse
|
48
|
Tanaka T, Huang X, Halicka HD, Zhao H, Traganos F, Albino AP, Dai W, Darzynkiewicz Z. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A 2007; 71:648-61. [PMID: 17622968 PMCID: PMC3855668 DOI: 10.1002/cyto.a.20426] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.
Collapse
Affiliation(s)
- Toshiki Tanaka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
- First Department of Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Xuan Huang
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - H. Dorota Halicka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Hong Zhao
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Frank Traganos
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | | | - Wei Dai
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
- Correspondence to: Dr. Z. Darzynkiewicz, Brander Cancer Research Institute at NYMC, Department of Pathology, BSB 438, Valhalla, NY 10595, USA
| |
Collapse
|
49
|
Kataoka Y, Murley JS, Baker KL, Grdina DJ. Relationship between phosphorylated histone H2AX formation and cell survival in human microvascular endothelial cells (HMEC) as a function of ionizing radiation exposure in the presence or absence of thiol-containing drugs. Radiat Res 2007; 168:106-14. [PMID: 17723002 PMCID: PMC1958995 DOI: 10.1667/rr0975.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/20/2007] [Indexed: 11/03/2022]
Abstract
Human microvascular endothelial cells (HMEC) were exposed to ionizing radiation at doses ranging from 0 to 16 Gy in either the presence or absence of the active thiol forms of amifostine (WR1065), phosphonol (WR255591), N-acetyl-l-cysteine (NAC), captopril or mesna. Each of these clinically relevant thiols, administered to HMEC at a dose of 4 mM for 30 min prior to irradiation, is known to exhibit antioxidant properties. The purpose of this investigation was to determine the relationship(s), if any, between the frequency of radiation-induced histone H2AX phosphorylation at serine 139 (gamma-H2AX) in cells and subsequent survival, as assessed by colony-forming ability, in exposed cell populations as a function of the presence or absence of each of the five thiol compounds during irradiation. gamma-H2AX formation in irradiated cells, as a function of relative DNA content, was quantified by bivariant flow cytometry analysis with FITC-conjugated gamma-H2AX antibody and nuclear DAPI staining. gamma-H2AX formation in cells was measured as the relative fold increase as a function of the treatment conditions. The frequency of gamma-H2AX-positive cells increased with increasing dose of radiation followed by a dose- and time-dependent decay. The most robust response for gamma-H2AX formation occurred 1 h after irradiation with their relative frequencies decreasing as a function of time 4 and 24 h later. To assess the effects of the various thiols on gamma-H2AX formation, all measurements were made 1 h after irradiation. WR1065 was not only effective in protecting HMEC against gamma-H2AX formation across the entire dose range of radiation exposures used, but it was also significantly more cytoprotective than either its prodrug (WR2721) or disulfide (WR33278) analogue. WR1065 had no significant effect on gamma-H2AX formation when administered immediately or up to 30 min after radiation exposure. An inhibitory effect against gamma-H2AX formation induced by 8 Gy of radiation was expressed by each of the thiols tested. NAC, captopril and mesna were equally effective in reducing the frequency of gamma-H2AX formation, with both WR1065 and WR255591 exhibiting a slightly more robust protective effect. Each of the five thiols was effective in reducing the frequency of gamma-H2AX-positive cells across all phases of the cell cycle. In contrast to the relative ability of each of these thiols to inhibit gamma-H2AX formation after irradiation, NAC, captopril and mesna afforded no protection to HMEC as determined using a colony-forming survival assay. Only WR1065 and WR255591 were effective in reducing the frequencies of radiation-induced gamma-H2AX-positive cells as well as protecting against cell death. These results suggest that the use of gamma-H2AX as a biomarker for screening the efficacy of novel antioxidant radioprotective compounds is highly problematic since their formation and disappearance may be linked to processes beyond simply the formation and repair of radiation-induced DSBs.
Collapse
Affiliation(s)
- Yasushi Kataoka
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - Jeffrey S. Murley
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - Kenneth L. Baker
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - David J. Grdina
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
- Address for correspondence: University of Chicago, Department of Radiation and Cellular Oncology, MC1105, Rm. E-SB-11B, 5841 S. Maryland Avenue, Chicago, IL 60637; e-mail:
| |
Collapse
|