1
|
Shirasawa K, Harada K, Haramoto N, Aoki H, Kammera S, Yamamoto M, Nishizawa Y. Chromosome-scale genome assembly of acerola (Malpighia emarginata DC.). DNA Res 2024; 31:dsae029. [PMID: 39374107 PMCID: PMC11555059 DOI: 10.1093/dnares/dsae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
Acerola (Malpighia emarginata DC.) is a tropical evergreen shrub that produces vitamin C-rich fruits. Increasing fruit nutrition is one of the main targets of acerola breeding programs. Genomic tools have been shown to accelerate plant breeding even in fruiting tree species, which generally have a long-life cycle; however, the availability of genomic resources in acerola, so far, has been limited. In this study, as a first step toward developing an efficient breeding technology for acerola, we established a chromosome-scale genome assembly of acerola using high-fidelity long-read sequencing and genetic mapping. The resultant assembly comprises 10 chromosome-scale sequences that span a physical distance of 1,032.5 Mb and contain 35,892 predicted genes. Phylogenetic analysis of genome-wide SNPs in 60 acerola breeding materials revealed 3 distinct genetic groups. Overall, the genomic resource of acerola developed in this study, including its genome and gene sequences, genetic map, and phylogenetic relationship among breeding materials, will not only be useful for acerola breeding but will also facilitate genomic and genetic studies on acerola and related species.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | | | | | | | - Shota Kammera
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masashi Yamamoto
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yu Nishizawa
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Martínez-Rivas FJ, Fernie AR. Metabolomics to understand metabolic regulation underpinning fruit ripening, development, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1726-1740. [PMID: 37864494 PMCID: PMC10938048 DOI: 10.1093/jxb/erad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Classically fruit ripening and development was studied using genetic approaches, with understanding of metabolic changes that occurred in concert largely focused on a handful of metabolites including sugars, organic acids, cell wall components, and phytohormones. The advent and widespread application of metabolomics has, however, led to far greater understanding of metabolic components that play a crucial role not only in this process but also in influencing the organoleptic and nutritive properties of the fruits. Here we review how the study of natural variation, mutants, transgenics, and gene-edited fruits has led to a considerable increase in our understanding of these aspects. We focus on fleshy fruits such as tomato but also review berries, receptacle fruits, and stone-bearing fruits. Finally, we offer a perspective as to how comparative analyses and machine learning will likely further improve our comprehension of the functional importance of various metabolites in the future.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Xiao L, Shibuya T, Watanabe T, Kato K, Kanayama Y. Effect of Light Quality on Metabolomic, Ionomic, and Transcriptomic Profiles in Tomato Fruit. Int J Mol Sci 2022; 23:13288. [PMID: 36362073 PMCID: PMC9654364 DOI: 10.3390/ijms232113288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Light quality affects plant growth and the functional component accumulation of fruits. However, there is little knowledge of the effects of light quality based on multiomics profiles. This study combined transcriptomic, ionomic, and metabolomic analyses to elucidate the effects of light quality on metabolism and gene expression in tomato fruit. Micro-Tom plants were grown under blue or red light-emitting diode light for 16 h daily after anthesis. White fluorescent light was used as a reference. The metabolite and element concentrations and the expression of genes markedly changed in response to blue and red light. Based on the metabolomic analysis, amino acid metabolism and secondary metabolite biosynthesis were active in blue light treatment. According to transcriptomic analysis, differentially expressed genes in blue and red light treatments were enriched in the pathways of secondary metabolite biosynthesis, carbon fixation, and glycine, serine, and threonine metabolism, supporting the results of the metabolomic analysis. Ionomic analysis indicated that the element levels in fruits were more susceptible to changes in light quality than in leaves. The concentration of some ions containing Fe in fruits increased under red light compared to under blue light. The altered expression level of genes encoding metal ion-binding proteins, metal tolerance proteins, and metal transporters in response to blue and red light in the transcriptomic analysis contributes to changes in the ionomic profiles of tomato fruit.
Collapse
Affiliation(s)
- Lingran Xiao
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Tomoki Shibuya
- Faulty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kazuhisa Kato
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
4
|
Fan G, He Y, Kou X, Dou J, Li T, Wu C, Zhu J. Proteomic analysis reveals the mechanism of green regulation in garlic puree induced by purple light stress. J Food Sci 2022; 87:4548-4568. [PMID: 36084143 DOI: 10.1111/1750-3841.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Greening is an undesirable appearance in garlic puree during processing. Our previous study indicated that purple light could induce the greening changes in garlic. In order to investigate the mechanism of green regulation in garlic puree, purple light-induced greening and nongreening garlic puree were used as materials to investigate the differentially expressed proteins (DEPs) by sodium dodecyl-sulfate polyacrylamide gel electrophoresis and data-independent acquisition (DIA) technology. The results showed that a total of 186 DEPs were detected by DIA, with 73 DEPs were up-regulated in greening garlic puree and 113 of them were down-regulated in greening garlic puree. Most DEPs were belonged to 20 functional categories, and mainly participated in post-translational modification and transport of proteins, molecular chaperones (12.93%) and signal transduction mechanisms (10.20%), energy production and transformation (6.80%), carbohydrate transport and metabolism (5.44%) and amino acid transport and metabolism (4.08%), indicating that the biological metabolic pathway, metabolic direction, and metabolic strength efficiency significantly changed in garlic puree after greening. Besides, the physiological and biochemical experiments showed that purple light significantly induced the γ-glutathione transpeptidase activity and prompted the conversion of thiosulfinate into garlic green pigment. This study explained the general molecular mechanism of greening changes of garlic puree in response to purple light. Practical Application Greening is an undesirable appearance in garlic puree during processing, which deteriorate the qualities of garlic. This study provides a comprehensive understanding of green regulation in garlic puree based on proteomics analysis.
Collapse
Affiliation(s)
- Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yi He
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jinfeng Dou
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinpeng Zhu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Habibi F, Liu T, Folta K, Sarkhosh A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. HORTICULTURE RESEARCH 2022; 9:uhac032. [PMID: 35184166 PMCID: PMC8976691 DOI: 10.1093/hr/uhac032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
Grafting is a widely used practice for asexual propagation of fruit trees. Many physiological, biochemical, and molecular changes occur upon grafting that can influence important horticultural traits. This technology has many advantages, including avoidance of juvenility, modifying the scion architecture, improving productivity, adapting scion cultivars to unfavourable environmental conditions, and developing traits in resistance to insect pests, bacterial and fungal diseases. A limitation of grafting is scion-rootstock incompatibility. It may be caused by many factors, including insufficient genetic proximity, physiological or biochemical factors, lignification at the graft union, poor graft architecture, insufficient cell recognition between union tissues, and metabolic differences in the scion and the rootstock. Plant hormones, like auxin, ethylene (ET), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), and jasmonic acid (JA) orchestrate several crucial physiological and biochemical processes happening at the site of the graft union. Additionally, epigenetic changes at the union affect chromatin architecture by DNA methylation, histone modification, and the action of small RNA molecules. The mechanism triggering these effects likely is affected by hormonal crosstalk, protein and small molecules movement, nutrients uptake, and transport in the grafted trees. This review provides an overview of the basis of physiological, biochemical, and molecular aspects of fruit tree grafting between scion and rootstock.
Collapse
Affiliation(s)
- Fariborz Habibi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Tie Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Kevin Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
6
|
Walker RP, Battistelli A, Bonghi C, Drincovich MF, Falchi R, Lara MV, Moscatello S, Vizzotto G, Famiani F. Non-structural Carbohydrate Metabolism in the Flesh of Stone Fruits of the Genus Prunus (Rosaceae) - A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:549921. [PMID: 33240291 PMCID: PMC7683422 DOI: 10.3389/fpls.2020.549921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/24/2020] [Indexed: 05/13/2023]
Abstract
Non-structural carbohydrates are abundant constituents of the ripe flesh of all stone fruits. The bulk of their content comprises sucrose, glucose, fructose and sorbitol. However, the abundance of each of these carbohydrates in the flesh differs between species, and also with its stage of development. In this article the import, subcellular compartmentation, contents, metabolism and functions of non-structural carbohydrates in the flesh of commercially cultivated stone fruits of the family Rosaceae are reviewed.
Collapse
Affiliation(s)
- Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Alberto Battistelli
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Porano, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - María F. Drincovich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - María V. Lara
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Stefano Moscatello
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Porano, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
7
|
Chitarrini G, Riccadonna S, Zulini L, Vecchione A, Stefanini M, Larger S, Pindo M, Cestaro A, Franceschi P, Magris G, Foria S, Morgante M, Di Gaspero G, Vrhovsek U. Two-omics data revealed commonalities and differences between Rpv12- and Rpv3-mediated resistance in grapevine. Sci Rep 2020; 10:12193. [PMID: 32699241 PMCID: PMC7376207 DOI: 10.1038/s41598-020-69051-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Plasmopara viticola is the causal agent of grapevine downy mildew (DM). DM resistant varieties deploy effector-triggered immunity (ETI) to inhibit pathogen growth, which is activated by major resistance loci, the most common of which are Rpv3 and Rpv12. We previously showed that a quick metabolome response lies behind the ETI conferred by Rpv3 TIR-NB-LRR genes. Here we used a grape variety operating Rpv12-mediated ETI, which is conferred by an independent locus containing CC-NB-LRR genes, to investigate the defence response using GC/MS, UPLC, UHPLC and RNA-Seq analyses. Eighty-eight metabolites showed significantly different concentration and 432 genes showed differential expression between inoculated resistant leaves and controls. Most metabolite changes in sugars, fatty acids and phenols were similar in timing and direction to those observed in Rpv3-mediated ETI but some of them were stronger or more persistent. Activators, elicitors and signal transducers for the formation of reactive oxygen species were early observed in samples undergoing Rpv12-mediated ETI and were paralleled and followed by the upregulation of genes belonging to ontology categories associated with salicylic acid signalling, signal transduction, WRKY transcription factors and synthesis of PR-1, PR-2, PR-5 pathogenesis-related proteins.
Collapse
Affiliation(s)
- Giulia Chitarrini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Samantha Riccadonna
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Luca Zulini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Antonella Vecchione
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Marco Stefanini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Simone Larger
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Pietro Franceschi
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Gabriele Magris
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy.,Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Serena Foria
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy
| | - Michele Morgante
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy.,Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Gabriele Di Gaspero
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy.
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy.
| |
Collapse
|
8
|
|
9
|
Comparative Transcriptomic and Proteomic Analysis to Deeply Investigate the Role of Hydrogen Cyanamide in Grape Bud Dormancy. Int J Mol Sci 2019; 20:ijms20143528. [PMID: 31323865 PMCID: PMC6679053 DOI: 10.3390/ijms20143528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
Hydrogen cyanamide (HC) is an agrochemical compound that is frequently used to break bud dormancy in grapevines grown under mild winter conditions globally. The present study was carried out to provide an in-depth understanding of the molecular mechanism associated with HC releasing bud dormancy in grapevines. For this purpose, RNA-seq based transcriptomic and tandem mass tag (TMT)-based proteomic information was acquired and critically analyzed. The combined results of transcriptomic and proteomic analysis were utilized to demonstrate differential expression pattern of genes at the translational and transcriptional levels. The outcome of the proteomic analysis revealed that a total of 7135 proteins (p-value ≤ 0.05; fold change ≥ 1.5) between the treatments (HC treated versus control) were identified, out of which 6224 were quantified. Among these differentially expressed proteins (DEPs), the majority of these proteins were related to heat shock, oxidoreductase activity, and energy metabolism. Metabolic, ribosomal, and hormonal signaling pathways were found to be significantly enriched at both the transcriptional and translational levels. It was illustrated that genes associated with metabolic and oxidoreductase activity were mainly involved in the regulation of bud dormancy at the transcriptomic and proteomic levels. The current work furnishes a new track to decipher the molecular mechanism of bud dormancy after HC treatment in grapes. Functional characterization of key genes and proteins will be informative in exactly pinpointing the crosstalk between transcription and translation in the release of bud dormancy after HC application.
Collapse
|
10
|
Pedreschi R, Uarrota V, Fuentealba C, Alvaro JE, Olmedo P, Defilippi BG, Meneses C, Campos-Vargas R. Primary Metabolism in Avocado Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:795. [PMID: 31293606 PMCID: PMC6606701 DOI: 10.3389/fpls.2019.00795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/31/2019] [Indexed: 05/25/2023]
Abstract
Avocado (Persea americana Mill) is rich in a variety of essential nutrients and phytochemicals; thus, consumption has drastically increased in the last 10 years. Avocado unlike other fruit is characterized by oil accumulation during growth and development and presents a unique carbohydrate pattern. There are few previous and current studies related to primary metabolism. The fruit is also quite unique since it contains large amounts of C7 sugars (mannoheptulose and perseitol) acting as transportable and storage sugars and as potential regulators of fruit ripening. These C7 sugars play a central role during fruit growth and development, but still confirmation is needed regarding the biosynthetic routes and the physiological function during growth and development of avocado fruit. Relatively recent transcriptome studies on avocado mesocarp during development and ripening have revealed that most of the oil is synthesized during early stages of development and that oil synthesis is halted when the fruit is harvested (pre-climacteric stage). Most of the oil is accumulated in the form of triacylglycerol (TAG) representing 60-70% in dry basis of the mesocarp tissue. During early stages of fruit development, high expression of transcripts related to fatty acid and TAG biosynthesis has been reported and downregulation of same genes in more advanced stages but without cessation of the process until harvest. The increased expression of fatty acid key genes and regulators such as PaWRI1, PaACP4-2, and PapPK-β-1 has also been reported to be consistent with the total fatty acid increase and fatty acid composition during avocado fruit development. During postharvest, there is minimal change in the fatty acid composition of the fruit. Almost inexistent information regarding the role of organic acid and amino acid metabolism during growth, development, and ripening of avocado is available. Cell wall metabolism understanding in avocado, even though crucial in terms of fruit quality, still presents severe gaps regarding the interactions between cell wall remodeling, fruit development, and postharvest modifications.
Collapse
Affiliation(s)
- Romina Pedreschi
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Virgilio Uarrota
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Claudia Fuentealba
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Juan E. Alvaro
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Patricio Olmedo
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Bruno G. Defilippi
- Unidad de Postcosecha, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Claudio Meneses
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
11
|
Coelho J, Almeida-Trapp M, Pimentel D, Soares F, Reis P, Rego C, Mithöfer A, Fortes AM. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:266-277. [PMID: 31128697 DOI: 10.1016/j.plantsci.2019.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Hormones play an important role in fruit ripening and in response to biotic stress. Nevertheless, analyses of hormonal profiling during plant development and defense are scarce. In this work, changes in hormonal metabolism in grapevine (Vitis vinifera) were compared between a susceptible (Trincadeira) and a tolerant (Syrah) variety during grape ripening and upon infection with Botrytis cinerea. Infection of grapes with the necrotrophic pathogen Botrytis cinerea leads to significant economic losses worldwide. Peppercorn-sized fruits were infected in the field and mock-treated and infected berries were collected at green, veraison and harvest stages for hormone analysis and targeted qPCR analysis of genes involved in hormonal metabolism and signaling. Results indicate a substantial reprogramming of hormonal metabolism during grape ripening and in response to fungal attack. Syrah and Trincadeira presented differences in the metabolism of abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonates during grape ripening that may be connected to fruit quality. On the other hand, high basal levels of salicylic acid (SA), jasmonates and IAA at an early stage of ripening, together with activated SA, jasmonates and IAA signaling, likely enable a fast defense response leading to grape resistance/ tolerance towards B. cinerea. The balance among the different phytohormones seems to depend on the ripening stage and on the intra-specific genetic background and may be fundamental in providing resistance or susceptibility. In addition, this study indicated the involvement of SA and IAA in defense against necrotrophic pathogens and gains insights into possible strategies for conventional breeding and/or gene editing aiming at improving grape quality and grape resistance against Botrytis cinerea.
Collapse
Affiliation(s)
- João Coelho
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Marilia Almeida-Trapp
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Diana Pimentel
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Flávio Soares
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Pedro Reis
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Cecília Rego
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Ana Margarida Fortes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
12
|
Labena AA, Gao YZ, Dong C, Hua HL, Guo FB. Metabolic pathway databases and model repositories. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-017-0108-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Dutra de Souza J, de Andrade Silva EM, Coelho Filho MA, Morillon R, Bonatto D, Micheli F, da Silva Gesteira A. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PLoS One 2017; 12:e0177993. [PMID: 28545114 PMCID: PMC5435350 DOI: 10.1371/journal.pone.0177993] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/05/2017] [Indexed: 01/31/2023] Open
Abstract
Scion/rootstock interaction is important for plant development and for breeding programs. In this context, polyploid rootstocks presented several advantages, mainly in relation to biotic and abiotic stresses. Here we analyzed the response to drought of two different scion/rootstock combinations presenting different polyploidy: the diploid (2x) and autotetraploid (4x) Rangpur lime (Citrus limonia, Osbeck) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Based on previous gene expression data, we developed an interactomic approach to identify proteins involved in V/2xRL and V/4xRL response to drought. A main interactomic network containing 3,830 nodes and 97,652 edges was built from V/2xRL and V/4xRL data. Exclusive proteins of the V/2xRL and V/4xRL networks (2,056 and 1,001, respectively), as well as common to both networks (773) were identified. Functional clusters were obtained and two models of drought stress response for the V/2xRL and V/4xRL genotypes were designed. Even if the V/2xRL plant implement some tolerance mechanisms, the global plant response to drought was rapid and quickly exhaustive resulting in a general tendency to dehydration avoidance, which presented some advantage in short and strong drought stress conditions, but which, in long terms, does not allow the plant survival. At the contrary, the V/4xRL plants presented a response which strong impacts on development but that present some advantages in case of prolonged drought. Finally, some specific proteins, which presented high centrality on interactomic analysis were identified as good candidates for subsequent functional analysis of citrus genes related to drought response, as well as be good markers of one or another physiological mechanism implemented by the plants.
Collapse
Affiliation(s)
- Joadson Dutra de Souza
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Ilhéus-BA, Brazil
| | - Edson Mario de Andrade Silva
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Ilhéus-BA, Brazil
| | - Mauricio Antônio Coelho Filho
- Embrapa Mandioca e Fruticultura, Departamento de Biologia Molecular, Rua Embrapa, s/n°, Cruz das Almas, Bahia, Brazil
| | | | - Diego Bonatto
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia, Avenida Bento Goncalves 9500–Predio 43421, Porto Alegre-RS, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Ilhéus-BA, Brazil
- CIRAD, UMR AGAP, Montpellier, France
- * E-mail:
| | - Abelmon da Silva Gesteira
- Embrapa Mandioca e Fruticultura, Departamento de Biologia Molecular, Rua Embrapa, s/n°, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
14
|
Adrian M, Lucio M, Roullier-Gall C, Héloir MC, Trouvelot S, Daire X, Kanawati B, Lemaître-Guillier C, Poinssot B, Gougeon R, Schmitt-Kopplin P. Metabolic Fingerprint of PS3-Induced Resistance of Grapevine Leaves against Plasmopara viticola Revealed Differences in Elicitor-Triggered Defenses. FRONTIERS IN PLANT SCIENCE 2017; 8:101. [PMID: 28261225 PMCID: PMC5306141 DOI: 10.3389/fpls.2017.00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/18/2017] [Indexed: 05/05/2023]
Abstract
Induction of plant resistance against pathogens by defense elicitors constitutes an attractive strategy to reduce the use of fungicides in crop protection. However, all elicitors do not systematically confer protection against pathogens. Elicitor-induced resistance (IR) thus merits to be further characterized in order to understand what makes an elicitor efficient. In this study, the oligosaccharidic defense elicitors H13 and PS3, respectively, ineffective and effective to trigger resistance of grapevine leaves against downy mildew, were used to compare their effect on the global leaf metabolism. Ultra high resolution mass spectrometry (FT-ICR-MS) analysis allowed us to obtain and compare the specific metabolic fingerprint induced by each elicitor and to characterize the associated metabolic pathways. Moreover, erythritol phosphate was identified as a putative marker of elicitor-IR.
Collapse
Affiliation(s)
- Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
- *Correspondence: Marielle Adrian,
| | - Marianna Lucio
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Chloé Roullier-Gall
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Marie-Claire Héloir
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Xavier Daire
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Basem Kanawati
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | | | - Benoît Poinssot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Régis Gougeon
- UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules GuyotDijon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität MünchenFreising-Weihenstephan, Germany
| |
Collapse
|
15
|
Dias DA, Koal T. Progress in Metabolomics Standardisation and its Significance in Future Clinical Laboratory Medicine. EJIFCC 2016; 27:331-343. [PMID: 28149265 PMCID: PMC5282916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Today, the technology of 'targeted' based metabolomics is pivotal in the clinical analysis workflow as it provides information of metabolic phenotyping (metabotypes) by enhancing our understanding of metabolism of complex diseases, biomarker discovery for disease development, progression, treatment, and drug function and assessment. This review is focused on surveying and providing a gap analysis on metabolic phenotyping with a focus on targeted based metabolomics from an instrumental, technical point-of-view discussing the state-of-the-art instrumentation, pre- to post- analytical aspects as well as an overall future necessity for biomarker discovery and future (pre-) clinical routine application.
Collapse
Affiliation(s)
- Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Victoria, Australia
| | - Therese Koal
- Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Reuscher S, Fukao Y, Morimoto R, Otagaki S, Oikawa A, Isuzugawa K, Shiratake K. Quantitative Proteomics-Based Reconstruction and Identification of Metabolic Pathways and Membrane Transport Proteins Related to Sugar Accumulation in Developing Fruits of Pear (Pyrus communis). PLANT & CELL PHYSIOLOGY 2016; 57:505-18. [PMID: 26755692 DOI: 10.1093/pcp/pcw004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
During their 6 month development, pear (Pyrus communis) fruits undergo drastic changes in their morphology and their chemical composition. To gain a better understanding of the metabolic pathways and transport processes active during fruit development, we performed a time-course analysis using mass spectrometry (MS)-based protein identification and quantification of fruit flesh tissues. After pre-fractionation of the samples, 2,841 proteins were identified. A principal component analysis (PCA) separated the samples from seven developmental stages into three distinct clusters representing the early, mid and late developmental phase. Over-representation analysis of proteins characteristic of each developmental phase revealed both expected and novel biological processes relevant at each phase. A high abundance of aquaporins was detected in samples from fruits in the cell expansion stage. We were able quantitatively to reconstruct basic metabolic pathways such as the tricarboxylic acid (TCA) cycle, which indicates sufficient coverage to reconstruct other metabolic pathways. Most of the enzymes that presumably contribute to sugar accumulation in pear fruits could be identified. Our data indicate that invertases do not play a major role in the sugar conversions in developing pear fruits. Rather, sucrose might be broken down by sucrose synthases. Further focusing on sugar transporters, we identified several putative sugar transporters from diverse families which showed developmental regulation. In conclusion, our data set comprehensively describes the proteome of developing pear fruits and provides novel insights about sugar accumulation as well as candidate genes for key reactions and transport steps.
Collapse
Affiliation(s)
- Stefan Reuscher
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577 Japan
| | - Reina Morimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555 Japan RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Kanji Isuzugawa
- Yamagata Integrated Agricultural Research Center, Sagae, 999-7601 Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
17
|
AbuQamar SF, Moustafa K, Tran LSP. 'Omics' and Plant Responses to Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2016; 7:1658. [PMID: 27895649 PMCID: PMC5108755 DOI: 10.3389/fpls.2016.01658] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 05/20/2023]
Abstract
Botrytis cinerea is a dangerous plant pathogenic fungus with wide host ranges. This aggressive pathogen uses multiple weapons to invade and cause serious damages on its host plants. The continuing efforts of how to solve the "puzzle" of the multigenic nature of B. cinerea's pathogenesis and plant defense mechanisms against the disease caused by this mold, the integration of omic approaches, including genomics, transcriptomics, proteomics and metabolomics, along with functional analysis could be a potential solution. Omic studies will provide a foundation for development of genetic manipulation and breeding programs that will eventually lead to crop improvement and protection. In this mini-review, we will highlight the current progresses in research in plant stress responses to B. cinerea using high-throughput omic technologies. We also discuss the opportunities that omic technologies can provide to research on B. cinerea-plant interactions as an example showing the impacts of omics on agricultural research.
Collapse
Affiliation(s)
- Synan F. AbuQamar
- Department of Biology, United Arab Emirates UniversityAl Ain, UAE
- *Correspondence: Synan F. AbuQamar, Lam-Son P. Tran, ;
| | | | - Lam-Son P. Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Synan F. AbuQamar, Lam-Son P. Tran, ;
| |
Collapse
|
18
|
Zandalinas SI, Sales C, Beltrán J, Gómez-Cadenas A, Arbona V. Activation of Secondary Metabolism in Citrus Plants Is Associated to Sensitivity to Combined Drought and High Temperatures. FRONTIERS IN PLANT SCIENCE 2016; 7:1954. [PMID: 28119698 PMCID: PMC5220112 DOI: 10.3389/fpls.2016.01954] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/09/2016] [Indexed: 05/06/2023]
Abstract
Drought and heat stresses are two of the most frequent environmental factors that take place simultaneously in the field constraining global crop productivity. Metabolism reconfiguration is often behind the adaptation of plants to adverse environmental conditions. Carrizo citrange and Cleopatra mandarin, two citrus genotypes with contrasting ability to tolerate combined heat and drought conditions, showed different metabolite patterns. Increased levels of phenylpropanoid metabolites were observed in Cleopatra in response to stress, including scopolin, a metabolite involved in defense mechanisms. Tolerant Carrizo accumulated sinapic acid and sinapoyl aldehyde, direct precursors of lignins. Finally, Cleopatra showed an accumulation of flavonols and glycosylated and polymethoxylated flavones such as tangeritin. The activation of flavonoid biosynthesis in Cleopatra could be aimed to mitigate the higher oxidative damage observed in this genotype. In general, limonoids were more severely altered in Cleopatra than in Carrizo in response to stress imposition. To conclude, all metabolite changes observed in Cleopatra suggest the activation of energy metabolism along with metabolic pathways leading to the accumulation of photoprotective and antioxidant secondary metabolites, oriented to mitigate the damaging effects of stress. Conversely, the higher ability of Carrizo to retain a high photosynthetic activity and to cope with oxidative stress allowed the maintenance of the metabolic activity and prevented the accumulation of antioxidant metabolites.
Collapse
Affiliation(s)
- Sara I. Zandalinas
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia, Universitat Jaume ICastelló de la Plana, Spain
| | - Carlos Sales
- Departament de de Química Física i Analítica, Research Institute for Pesticides and Water, Universitat Jaume ICastelló de la Plana, Spain
| | - Joaquim Beltrán
- Departament de de Química Física i Analítica, Research Institute for Pesticides and Water, Universitat Jaume ICastelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia, Universitat Jaume ICastelló de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia, Universitat Jaume ICastelló de la Plana, Spain
- *Correspondence: Vicent Arbona
| |
Collapse
|
19
|
Bustamante CA, Monti LL, Gabilondo J, Scossa F, Valentini G, Budde CO, Lara MV, Fernie AR, Drincovich MF. Differential Metabolic Rearrangements after Cold Storage Are Correlated with Chilling Injury Resistance of Peach Fruits. FRONTIERS IN PLANT SCIENCE 2016; 7:1478. [PMID: 27746802 PMCID: PMC5044465 DOI: 10.3389/fpls.2016.01478] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 05/18/2023]
Abstract
Reconfiguration of the metabolome is a key component involved in the acclimation to cold in plants; however, few studies have been devoted to the analysis of the overall metabolite changes after cold storage of fruits prior to consumption. Here, metabolite profiling of six peach varieties with differential susceptibility to develop mealiness, a chilling-injury (CI) symptom, was performed. According to metabolic content at harvest; after cold treatment; and after ripening, either following cold treatment or not; peach fruits clustered in distinct groups, depending on harvest-time, cold treatment, and ripening state. Both common and distinct metabolic responses among the six varieties were found; common changes including dramatic galactinol and raffinose rise; GABA, Asp, and Phe increase; and 2-oxo-glutarate and succinate decrease. Raffinose content after long cold treatment quantitatively correlated to the degree of mealiness resistance of the different peach varieties; and thus, raffinose emerges as a candidate biomarker of this CI disorder. Xylose increase after cold treatment was found only in the susceptible genotypes, indicating a particular cell wall reconfiguration of these varieties while being cold-stored. Overall, results indicate that peach fruit differential metabolic rearrangements due to cold treatment, rather than differential metabolic priming before cold, are better related with CI resistance. The plasticity of peach fruit metabolism renders it possible to induce a diverse metabolite array after cold, which is successful, in some genotypes, to avoid CI.
Collapse
Affiliation(s)
- Claudia A. Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Laura L. Monti
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Julieta Gabilondo
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - Federico Scossa
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la FrutticolturaRome, Italy
| | - Gabriel Valentini
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - Claudio O. Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - María V. Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - María F. Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
- *Correspondence: María F. Drincovich
| |
Collapse
|