1
|
Wadan AHS, Moshref AS, Emam AM, Bakry YG, Khalil BO, Chaurasia A, Ibrahim RAH, Badawy T, Mehanny SS. Mitochondrial dysfunction as a key player in aggravating periodontitis among diabetic patients: review of the current scope of knowledge. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04025-x. [PMID: 40272516 DOI: 10.1007/s00210-025-04025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Periodontitis is a prevalent inflammatory disease that leads to significant periodontal tissue destruction and compromised dental health, with its severity exacerbated in individuals with Diabetes Mellitus (DM). This review explores the complex relationship between mitochondrial dysfunction and periodontitis in diabetic patients. Recent studies indicate that the excessive production of reactive oxygen species (ROS), primarily generated by dysfunctional mitochondrial electron transport chain (ETC) complexes, contributes to oxidative stress (OS) and subsequent periodontal tissue damage. The interplay between impaired mitochondrial biogenesis, apoptosis of periodontal cells, and ROS accumulation highlights a critical area of concern in understanding the pathophysiology of diabetic periodontitis. Furthermore, altered glycemic control due to inflammatory processes associated with periodontitis may perpetuate a cyclical detriment to oral and systemic health. This review aims to highlight the mechanistic roles of mitochondrial dysfunction in the aggravation of periodontitis among diabetic patients, emphasizing further research to identify potential therapeutic targets and improve treatment efficacy for this dual pathology.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt.
| | | | | | | | | | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George'S Medical University, Lucknow, India
| | - Reham A H Ibrahim
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
| | - Tamer Badawy
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Samah S Mehanny
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
3
|
Yang J, Zhong J, Fu Z, He D, Zhang J, Yuan J. Piezo1 Enhances Macrophage Phagocytosis and Pyrin Activation to Ameliorate Fungal Keratitis. Invest Ophthalmol Vis Sci 2025; 66:33. [PMID: 39808118 PMCID: PMC11737460 DOI: 10.1167/iovs.66.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Fungal keratitis (FK) remains a treatment challenge, necessitating new therapeutic targets. Piezo1, a mechanosensitive ion channel, regulates calcium signaling and immune cell function. This study investigates its role in macrophage-mediated antifungal responses in FK. Methods Piezo1 and Pyrin expression in corneas and bone marrow-derived macrophages (BMDMs) were assessed by RNAseq, quantitative real-time PCR (qRT-PCR), Western blot, and immunofluorescence. Intracellular calcium ion concentration was detected by Fluo-4 AM fluorescent probe staining. Heterozygous Piezo1 deficiency (Piezo1+/-) mice and Yoda1 were performed to regulate the expression of Piezo1. Results Our investigation demonstrates elevated expression of Piezo1 in the corneas of patients with FK and infected mice. This upregulation of Piezo1 corresponded with the swift recruitment of macrophages via the limbus. Additionally, Piezo1+/- mice exacerbate the progression of FK in the infection model. Furthermore, Piezo1 knockdown in macrophages exhibit a notable reduction phagocytic capacity, accompanied by an increase in viable colony-forming units in an in vitro model of fungal infection. Moreover, using a pharmacologic activator of Piezo1 (Yoda1), a calcium ion (Ca2+) chelator of BAPTA or Piezo1+/- mice, we demonstrate that Piezo1 activation triggers the Pyrin inflammasome via augmented calcium ion influx, which is required for protection against FK in murine hosts. Conclusions Piezo1 is crucial for innate immunity in FK, enhancing macrophage recruitment, activation, and Pyrin inflammasome-mediated antifungal activity via calcium signaling. Using Piezo1+/- mice and Yoda1, we confirm Piezo1's role in fungal clearance. Targeting Piezo1 offers a novel strategy to improve FK outcomes by boosting macrophage function and immune response.
Collapse
Affiliation(s)
- Jiahui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhenyuan Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Aksoy A. An Innovative Hybrid Model for Automatic Detection of White Blood Cells in Clinical Laboratories. Diagnostics (Basel) 2024; 14:2093. [PMID: 39335772 PMCID: PMC11431813 DOI: 10.3390/diagnostics14182093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Microscopic examination of peripheral blood is a standard practice in clinical medicine. Although manual examination is considered the gold standard, it presents several disadvantages, such as interobserver variability, being quite time-consuming, and requiring well-trained professionals. New automatic digital algorithms have been developed to eliminate the disadvantages of manual examination and improve the workload of clinical laboratories. Objectives: Regular analysis of peripheral blood cells and careful interpretation of their results are critical for protecting individual health and early diagnosis of diseases. Because many diseases can occur due to this, this study aims to detect white blood cells automatically. Methods: A hybrid model has been developed for this purpose. In the developed model, feature extraction has been performed with MobileNetV2 and EfficientNetb0 architectures. In the next step, the neighborhood component analysis (NCA) method eliminated unnecessary features in the feature maps so that the model could work faster. Then, different features of the same image were combined, and the extracted features were combined to increase the model's performance. Results: The optimized feature map was classified into different classifiers in the last step. The proposed model obtained a competitive accuracy value of 95.6%. Conclusions: The results obtained in the proposed model show that the proposed model can be used in the detection of white blood cells.
Collapse
Affiliation(s)
- Aziz Aksoy
- Department of Bioengineering, Malatya Turgut Ozal University, 44200 Malatya, Turkey
| |
Collapse
|
5
|
Li H, Zhao J, Cao L, Luo Q, Zhang C, Zhang L. The NLRP3 inflammasome in burns: a novel potential therapeutic target. BURNS & TRAUMA 2024; 12:tkae020. [PMID: 38957662 PMCID: PMC11218784 DOI: 10.1093/burnst/tkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024]
Abstract
Burns are an underestimated serious injury negatively impacting survivors physically, psychologically and economically, and thus are a considerable public health burden. Despite significant advancements in burn treatment, many burns still do not heal or develop serious complications/sequelae. The nucleotide-binding oligomerization domain-like receptors (NLRs) family pyrin domain-containing 3 (NLRP3) inflammasome is a critical regulator of wound healing, including burn wound healing. A better understanding of the pathophysiological mechanism underlying the healing of burn wounds may help find optimal therapeutic targets to promote the healing of burn wounds, reduce complications/sequelae following burn, and maximize the restoration of structure and function of burn skin. This review aimed to summarize current understanding of the roles and regulatory mechanisms of the NLRP3 inflammasome in burn wound healing, as well as the preclinical studies of the involvement of NLRP3 inhibitors in burn treatment, highlighting the potential application of NLRP3-targeted therapy in burn wounds.
Collapse
Affiliation(s)
- Haihong Li
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Junhong Zhao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, China
| | - Leilei Cao
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Qizhi Luo
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Lei Zhang
- Department of Psychiatry and Clinical Psychology, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| |
Collapse
|
6
|
Kupor D, Felder ML, Kodikalla S, Chu X, Eniola-Adefeso O. Nanoparticle-neutrophils interactions for autoimmune regulation. Adv Drug Deliv Rev 2024; 209:115316. [PMID: 38663550 PMCID: PMC11246615 DOI: 10.1016/j.addr.2024.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Neutrophils play an essential role as 'first responders' in the immune response, necessitating many immune-modulating capabilities. Chronic, unresolved inflammation is heavily implicated in the progression and tissue-degrading effects of autoimmune disease. Neutrophils modulate disease pathogenesis by interacting with the inflammatory and autoreactive cells through effector functions, including signaling, degranulation, and neutrophil extracellular traps (NETs) release. Since the current gold standard systemic glucocorticoid administration has many drawbacks and side effects, targeting neutrophils in autoimmunity provides a new approach to developing therapeutics. Nanoparticles enable targeting of specific cell types and controlled release of a loaded drug cargo. Thus, leveraging nanoparticle properties and interactions with neutrophils provides an exciting new direction toward novel therapies for autoimmune diseases. Additionally, recent work has utilized neutrophil properties to design novel targeted particles for delivery into previously inaccessible areas. Here, we outline nanoparticle-based strategies to modulate neutrophil activity in autoimmunity, including various nanoparticle formulations and neutrophil-derived targeting.
Collapse
Affiliation(s)
- Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Felder
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shivanie Kodikalla
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueqi Chu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Kiwit A, Lu Y, Lenz M, Knopf J, Mohr C, Ledermann Y, Klinke-Petrowsky M, Pagerols Raluy L, Reinshagen K, Herrmann M, Boettcher M, Elrod J. The Dual Role of Neutrophil Extracellular Traps (NETs) in Sepsis and Ischemia-Reperfusion Injury: Comparative Analysis across Murine Models. Int J Mol Sci 2024; 25:3787. [PMID: 38612596 PMCID: PMC11011604 DOI: 10.3390/ijms25073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).
Collapse
Affiliation(s)
- Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Yannick Ledermann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michaela Klinke-Petrowsky
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Cao D, Lv M, Hu C, Li S, Wang S, Xu C, Pan W. METTL9-catalyzed histidine methylation of S100A9 suppresses the anti-Staphylococcus aureus activity of neutrophils. Protein Cell 2024; 15:223-229. [PMID: 37522633 PMCID: PMC10903974 DOI: 10.1093/procel/pwad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Dan Cao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Mengyue Lv
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Chi Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Shukai Li
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Siwen Wang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Chao Xu
- Division of Life Sciences and Medicine, MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wen Pan
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
10
|
Zhao M, Xie Y, Gao W, Li C, Ye Q, Li Y. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol (Lausanne) 2023; 14:1192625. [PMID: 37664859 PMCID: PMC10469003 DOI: 10.3389/fendo.2023.1192625] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus is a main risk factor for periodontitis, but until now, the underlying molecular mechanisms remain unclear. Diabetes can increase the pathogenicity of the periodontal microbiota and the inflammatory/host immune response of the periodontium. Hyperglycemia induces reactive oxygen species (ROS) production and enhances oxidative stress (OS), exacerbating periodontal tissue destruction. Furthermore, the alveolar bone resorption damage and the epigenetic changes in periodontal tissue induced by diabetes may also contribute to periodontitis. We will review the latest clinical data on the evidence of diabetes promoting the susceptibility of periodontitis from epidemiological, molecular mechanistic, and potential therapeutic targets and discuss the possible molecular mechanistic targets, focusing in particular on novel data on inflammatory/host immune response and OS. Understanding the intertwined pathogenesis of diabetes mellitus and periodontitis can explain the cross-interference between endocrine metabolic and inflammatory diseases better, provide a theoretical basis for new systemic holistic treatment, and promote interprofessional collaboration between endocrine physicians and dentists.
Collapse
Affiliation(s)
- Mingcan Zhao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenjia Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Chunwang Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Faass L, Hauke M, Stein SC, Josenhans C. Innate activation of human neutrophils and neutrophil-like cells by the pro-inflammatory bacterial metabolite ADP-heptose and Helicobacter pylori. Int J Med Microbiol 2023; 313:151585. [PMID: 37399704 DOI: 10.1016/j.ijmm.2023.151585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Lipopolysaccharide inner core heptose metabolites, including ADP-heptose, play a substantial role in the activation of cell-autonomous innate immune responses in eukaryotic cells, via the ALPK1-TIFA signaling pathway, as demonstrated for various pathogenic bacteria. The important role of LPS heptose metabolites during Helicobacter pylori infection of the human gastric niche has been demonstrated for gastric epithelial cells and macrophages, while the role of heptose metabolites on human neutrophils has not been investigated. In this study, we aimed to gain a better understanding of the activation potential of bacterial heptose metabolites for human neutrophil cells. To do so, we used pure ADP-heptose and, as a bacterial model, H. pylori, which can transport heptose metabolites into the human host cell via the Cag Type 4 Secretion System (CagT4SS). Main questions were how bacterial heptose metabolites impact on the pro-inflammatory activation, alone and in the bacterial context, and how they influence maturation of human neutrophils. Results of the present study demonstrated that neutrophils respond with high sensitivity to pure heptose metabolites, and that global regulation networks and neutrophil maturation are influenced by heptose exposure. Furthermore, activation of human neutrophils by live H. pylori is strongly impacted by the presence of LPS heptose metabolites and the functionality of its CagT4SS. Similar activities were determined in cell culture neutrophils of different maturation states and in human primary neutrophils. In conclusion, we demonstrated that specific heptose metabolites or bacteria producing heptoses exhibit a strong activity on cell-autonomous innate responses of human neutrophils.
Collapse
Affiliation(s)
- Larissa Faass
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany
| | - Martina Hauke
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany
| | - Saskia C Stein
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany; DZIF Partner Site Munich, Germany.
| |
Collapse
|
12
|
Rizzo MG, Best TM, Huard J, Philippon M, Hornicek F, Duan Z, Griswold AJ, Kaplan LD, Hare JM, Kouroupis D. Therapeutic Perspectives for Inflammation and Senescence in Osteoarthritis Using Mesenchymal Stem Cells, Mesenchymal Stem Cell-Derived Extracellular Vesicles and Senolytic Agents. Cells 2023; 12:1421. [PMID: 37408255 PMCID: PMC10217382 DOI: 10.3390/cells12101421] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 07/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.
Collapse
Affiliation(s)
- Michael G. Rizzo
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Marc Philippon
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Francis Hornicek
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Zhenfeng Duan
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Lee D. Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Liu W, Wang D, Zhou Q, Wang J, Lian S. Effect of Mineral Element Imbalance on Neutrophil Respiratory Burst Function and Inflammatory and Antioxidant Responses in Sheep. Vet Sci 2023; 10:vetsci10040241. [PMID: 37104396 PMCID: PMC10141385 DOI: 10.3390/vetsci10040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
This study established a model of mineral element homeostatic imbalance and examined the respiratory burst function of peripheral blood neutrophils and inflammatory and antioxidant indicators before and after the imbalance in sheep. The results showed that after an EDTA injection, the number of activated neutrophils in the peripheral blood was significantly higher than that in the control group (p < 0.01). In addition, the serum IL-6 level was significantly increased (p < 0.05) and matrix metalloproteinase 7 (MMP7) was inhibited (p < 0.05), but returned to a normal level one week after the injection. Tissue inhibitor of metalloproteinase 1 (TIMP1) levels were consistently higher after the injection and significantly higher than in the control group (p < 0.05). CuZn-SOD, TNOS activity, serum creatinine and urea nitrogen levels were significantly higher than before the injection (p < 0.05). Combining the results of previous studies, the EDTA injection altered the metabolism and transcription of peripheral blood neutrophils. These changes enhance the respiratory burst function of neutrophils and alter the status of inflammatory and antioxidant indicators such as IL-6 and CuZn-SOD.
Collapse
Affiliation(s)
- Weiqi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qijun Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuai Lian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
14
|
Innate immune activation and modulatory factors of Helicobacter pylori towards phagocytic and nonphagocytic cells. Curr Opin Immunol 2023; 82:102301. [PMID: 36933362 DOI: 10.1016/j.coi.2023.102301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Helicobacter pylori is an intriguing obligate host-associated human pathogen with a specific host interaction biology, which has been shaped by thousands of years of host-pathogen coevolution. Molecular mechanisms of interaction of H. pylori with the local immune cells in the human system are less well defined than epithelial cell interactions, although various myeloid cells, including neutrophils and other phagocytes, are locally present or attracted to the sites of infection and interact with H. pylori. We have recently addressed the question of novel bacterial innate immune stimuli, including bacterial cell envelope metabolites, that can activate and modulate cell responses via the H. pylori Cag type IV secretion system. This review article gives an overview of what is currently known about the interaction modes and mechanisms of H. pylori with diverse human cell types, with a focus on bacterial metabolites and cells of the myeloid lineage including phagocytic and antigen-presenting cells.
Collapse
|
15
|
Abstract
Neutrophils or polymorphonuclear neutrophils (PMNs) are an important component of innate host defense. These phagocytic leukocytes are recruited to infected tissues and kill invading microbes. There are several general characteristics of neutrophils that make them highly effective as antimicrobial cells. First, there is tremendous daily production and turnover of granulocytes in healthy adults-typically 1011 per day. The vast majority (~95%) of these cells are neutrophils. In addition, neutrophils are mobilized rapidly in response to chemotactic factors and are among the first leukocytes recruited to infected tissues. Most notably, neutrophils contain and/or produce an abundance of antimicrobial molecules. Many of these antimicrobial molecules are toxic to host cells and can destroy host tissues. Thus, neutrophil activation and turnover are highly regulated processes. To that end, aged neutrophils undergo apoptosis constitutively, a process that contains antimicrobial function and proinflammatory capacity. Importantly, apoptosis facilitates nonphlogistic turnover of neutrophils and removal by macrophages. This homeostatic process is altered by interaction with microbes and their products, as well as host proinflammatory molecules. Microbial pathogens can delay neutrophil apoptosis, accelerate apoptosis following phagocytosis, or cause neutrophil cytolysis. Here, we review these processes and provide perspective on recent studies that have potential to impact this paradigm.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mark T Quinn
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
16
|
COVID-19 Pathology Sheds Further Light on Balance between Neutrophil Proteases and Their Inhibitors. Biomolecules 2022; 13:biom13010082. [PMID: 36671467 PMCID: PMC9855895 DOI: 10.3390/biom13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Excessive neutrophil influx and activation in lungs during infections, such as manifest during the ongoing SARS CoV-2 pandemic, have brought neutrophil extracellular traps (NETs) and the concomitant release of granule contents that damage surrounding tissues into sharp focus. Neutrophil proteases, which are known to participate in NET release, also enable the binding of the viral spike protein to cellular receptors and assist in the spread of infection. Blood and tissue fluids normally also contain liver-derived protease inhibitors that balance the activity of proteases. Interestingly, neutrophils themselves also express the protease inhibitor alpha-1-antitrypsin (AAT), the product of the SERPINA-1 gene, and store it in neutrophil cytoplasmic granules. The absence of AAT or mutations in the SERPINA-1 gene promotes lung remodeling and fibrosis in diseases such as chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS) and increases the risk of allergic responses. Recent observations point to the fact that reduced activity of AAT presents a major susceptibility factor for severe COVID-19. Here, we focus attention on the mechanism of neutrophil elastase (NE) in NET release and its inhibition by AAT as an additional factor that may determine the severity of COVID-19.
Collapse
|
17
|
Bissenova S, Ellis D, Mathieu C, Gysemans C. Neutrophils in autoimmunity: when the hero becomes the villain. Clin Exp Immunol 2022; 210:128-140. [PMID: 36208466 PMCID: PMC9750832 DOI: 10.1093/cei/uxac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils were long considered to be a short-lived homogenous cell population, limited to their role as first responders in anti-bacterial and -fungal immunity. While it is true that neutrophils are first to infiltrate the site of infection to eliminate pathogens, growing evidence suggests their functions could extend beyond those of basic innate immune cells. Along with their well-established role in pathogen elimination, utilizing effector functions such as phagocytosis, degranulation, and the deployment of neutrophil extracellular traps (NETs), neutrophils have recently been shown to possess antigen-presenting capabilities. Moreover, the identification of different subtypes of neutrophils points to a multifactorial heterogeneous cell population with great plasticity in which some subsets have enhanced pro-inflammatory characteristics, while others seem to behave as immunosuppressors. Interestingly, the aberrant presence of activated neutrophils with a pro-inflammatory profile in several systemic and organ-specific autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), multiple sclerosis (MS), and type 1 diabetes (T1D) could potentially be exploited in novel therapeutic strategies. The full extent of the involvement of neutrophils, and more specifically that of their various subtypes, in the pathophysiology of autoimmune diseases is yet to be elucidated.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Zhu D, Lu Y, Wang Y, Wang Y. PAD4 and Its Inhibitors in Cancer Progression and Prognosis. Pharmaceutics 2022; 14:2414. [PMID: 36365233 PMCID: PMC9699117 DOI: 10.3390/pharmaceutics14112414] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 07/24/2023] Open
Abstract
The systemic spread of malignancies and the risk of cancer-associated thrombosis are major clinical challenges in cancer therapy worldwide. As an important post-translational modification enzyme, peptidyl arginine deiminase 4 (PAD4) could mediate the citrullination of protein in different components (including nucleus and cytoplasm, etc.) of a variety of cells (tumor cells, neutrophils, macrophages, etc.), thus participating in gene regulation, neutrophil extracellular trap (NET) and macrophage extracellular trap (MET). Thereby, PAD4 plays an important role in enhancing the growth of primary tumors and facilitating the distant metastasis of cancer cells. In addition, it is related to the formation of cancer-associated thrombosis. Therefore, the development of PAD4-specific inhibitors may be a promising strategy for treating cancer, and it may improve patient prognosis. In this review, we describe PAD4 involvement in gene regulation, protein citrullination, and NET formation. We also discuss its potential role in cancer and cancer-associated thrombosis, and we summarize the development and application of PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
19
|
High Neutrophil-to-Lymphocyte Ratio Facilitates Cancer Growth-Currently Marketed Drugs Tadalafil, Isotretinoin, Colchicine, and Omega-3 to Reduce It: The TICO Regimen. Cancers (Basel) 2022; 14:cancers14194965. [PMID: 36230888 PMCID: PMC9564173 DOI: 10.3390/cancers14194965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Several elements that are composed of, or related to, neutrophils, have been shown to inhibit strong immune responses to cancer and promote cancers’ growth. This paper presents the collected data showing these elements and how their coordinated actions as an ensemble facilitate growth in the common cancers. The paper goes on to present a drug regimen, TICO, designed to reduce the cancer growth enhancing effects of the neutrophil related elements. TICO uses four already marketed, readily available generic drugs, repurposed to inhibit neutrophil centered growth facilitation of cancer. Abstract This paper presents remarkably uniform data showing that higher NLR is a robust prognostic indicator of shorter overall survival across the common metastatic cancers. Myeloid derived suppressor cells, the NLRP3 inflammasome, neutrophil extracellular traps, and absolute neutrophil count tend to all be directly related to the NLR. They, individually and as an ensemble, contribute to cancer growth and metastasis. The multidrug regimen presented in this paper, TICO, was designed to decrease the NLR with potential to also reduce the other neutrophil related elements favoring malignant growth. TICO is comprised of already marketed generic drugs: the phosphodiesterase 5 inhibitor tadalafil, used to treat inadequate erections; isotretinoin, the retinoid used for acne treatment; colchicine, a standard gout (podagra) treatment; and the common fish oil supplement omega-3 polyunsaturated fatty acids. These individually impose low side effect burdens. The drugs of TICO are old, cheap, well known, and available worldwide. They all have evidence of lowering the NLR or the growth contributing elements related to the NLR when clinically used in general medicine as reviewed in this paper.
Collapse
|
20
|
Jiang Y, Xu X, Xiao L, Wang L, Qiang S. The Role of microRNA in the Inflammatory Response of Wound Healing. Front Immunol 2022; 13:852419. [PMID: 35386721 PMCID: PMC8977525 DOI: 10.3389/fimmu.2022.852419] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Wound healing, a highly complex pathophysiological response to injury, includes four overlapping phases of hemostasis, inflammation, proliferation, and remodeling. Initiation and resolution of the inflammatory response are the primary requirements for wound healing, and are also key events that determines wound quality and healing time. Currently, the number of patients with persistent chronic wounds has generally increased, which imposes health and economic burden on patients and society. Recent studies have found that microRNA(miRNA) plays an essential role in the inflammation involved in wound healing and may provide a new therapeutic direction for wound treatment. Therefore, this review focused on the role and significance of miRNA in the inflammation phase of wound healing.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Xiang Xu
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Long Xiao
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lihong Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Sheng Qiang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
21
|
Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives. Cell Mol Life Sci 2022; 79:94. [PMID: 35079870 PMCID: PMC8788905 DOI: 10.1007/s00018-022-04126-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
Numerous
post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.
Collapse
|
22
|
Holliday ZM, Earhart AP, Alnijoumi MM, Krvavac A, Allen LAH, Schrum AG. Non-Randomized Trial of Dornase Alfa for Acute Respiratory Distress Syndrome Secondary to Covid-19. Front Immunol 2021; 12:714833. [PMID: 34745093 PMCID: PMC8564175 DOI: 10.3389/fimmu.2021.714833] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background The most severe cases of Coronavirus-Disease-2019 (COVID-19) develop into Acute Respiratory Distress Syndrome (ARDS). It has been proposed that oxygenation may be inhibited by extracellular deoxyribonucleic acid (DNA) in the form of neutrophil extracellular traps (NETs). Dornase alfa (Pulmozyme, Genentech) is recombinant human deoxyribonuclease I that acts as a mucolytic by cleaving and degrading extracellular DNA. We performed a pilot study to evaluate the effects of dornase alfa in patients with ARDS secondary to COVID-19. Methods We performed a pilot, non-randomized, case-controlled clinical trial of inhaled dornase for patients who developed ARDS secondary to COVID-19 pneumonia. Results Improvement in arterial oxygen saturation to inhaled fraction of oxygen ratio (PaO2/FiO2) was noted in the treatment group compared to control at day 2 (95% CI, 2.96 to 95.66, P-value = 0.038), as well as in static lung compliance at days 3 through 5 (95% CI, 4.8 to 19.1 mL/cmH2O, 2.7 to 16.5 mL/cmH2O, and 5.3 to 19.2 mL/cmH2O, respectively). These effects were not sustained at 14 days. A reduction in bronchoalveolar lavage fluid (BALF) myeloperoxidase-DNA (DNA : MPO) complexes (95% CI, -14.7 to -1.32, P-value = 0.01) was observed after therapy with dornase alfa. Conclusion Treatment with dornase alfa was associated with improved oxygenation and decreased DNA : MPO complexes in BALF. The positive effects, however, were limited to the time of drug delivery. These data suggest that degradation of extracellular DNA associated with NETs or other structures by inhaled dornase alfa can be beneficial. We propose a more extensive clinical trial is warranted. Clinical Trial Registration ClinicalTrials.gov, Identifier: NCT04402970.
Collapse
Affiliation(s)
- Zachary M Holliday
- Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Alexander P Earhart
- Molecular Pathogenesis and Therapeutics Program, University of Missouri, Columbia, MO, United States
| | | | - Armin Krvavac
- Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Lee-Ann H Allen
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Adam G Schrum
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States.,Department of Surgery, University of Missouri, Columbia, MO, United States.,School of Medicine, Biomedical Biological, and Chemical Engineering, University of Missouri, Columbia, MO, United States
| |
Collapse
|
23
|
Hasankhani A, Bahrami A, Sheybani N, Fatehi F, Abadeh R, Ghaem Maghami Farahani H, Bahreini Behzadi MR, Javanmard G, Isapour S, Khadem H, Barkema HW. Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Front Genet 2021; 12:753839. [PMID: 34733317 PMCID: PMC8559434 DOI: 10.3389/fgene.2021.753839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Bovine respiratory disease (BRD) is the most common disease in the beef and dairy cattle industry. BRD is a multifactorial disease resulting from the interaction between environmental stressors and infectious agents. However, the molecular mechanisms underlying BRD are not fully understood yet. Therefore, this study aimed to use a systems biology approach to systematically evaluate this disorder to better understand the molecular mechanisms responsible for BRD. Methods: Previously published RNA-seq data from whole blood of 18 healthy and 25 BRD samples were downloaded from the Gene Expression Omnibus (GEO) and then analyzed. Next, two distinct methods of weighted gene coexpression network analysis (WGCNA), i.e., module-trait relationships (MTRs) and module preservation (MP) analysis were used to identify significant highly correlated modules with clinical traits of BRD and non-preserved modules between healthy and BRD samples, respectively. After identifying respective modules by the two mentioned methods of WGCNA, functional enrichment analysis was performed to extract the modules that are biologically related to BRD. Gene coexpression networks based on the hub genes from the candidate modules were then integrated with protein-protein interaction (PPI) networks to identify hub-hub genes and potential transcription factors (TFs). Results: Four significant highly correlated modules with clinical traits of BRD as well as 29 non-preserved modules were identified by MTRs and MP methods, respectively. Among them, two significant highly correlated modules (identified by MTRs) and six nonpreserved modules (identified by MP) were biologically associated with immune response, pulmonary inflammation, and pathogenesis of BRD. After aggregation of gene coexpression networks based on the hub genes with PPI networks, a total of 307 hub-hub genes were identified in the eight candidate modules. Interestingly, most of these hub-hub genes were reported to play an important role in the immune response and BRD pathogenesis. Among the eight candidate modules, the turquoise (identified by MTRs) and purple (identified by MP) modules were highly biologically enriched in BRD. Moreover, STAT1, STAT2, STAT3, IRF7, and IRF9 TFs were suggested to play an important role in the immune system during BRD by regulating the coexpressed genes of these modules. Additionally, a gene set containing several hub-hub genes was identified in the eight candidate modules, such as TLR2, TLR4, IL10, SOCS3, GZMB, ANXA1, ANXA5, PTEN, SGK1, IFI6, ISG15, MX1, MX2, OAS2, IFIH1, DDX58, DHX58, RSAD2, IFI44, IFI44L, EIF2AK2, ISG20, IFIT5, IFITM3, OAS1Y, HERC5, and PRF1, which are potentially critical during infection with agents of bovine respiratory disease complex (BRDC). Conclusion: This study not only helps us to better understand the molecular mechanisms responsible for BRD but also suggested eight candidate modules along with several promising hub-hub genes as diagnosis biomarkers and therapeutic targets for BRD.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roxana Abadeh
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sadegh Isapour
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Keane C, Coalter M, Martin-Loeches I. Immune System Disequilibrium-Neutrophils, Their Extracellular Traps, and COVID-19-Induced Sepsis. Front Med (Lausanne) 2021; 8:711397. [PMID: 34485339 PMCID: PMC8416266 DOI: 10.3389/fmed.2021.711397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Equilibrium within the immune system can often determine the fate of its host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Immune dysregulation remains one of the main pathophysiological components of SARS-CoV-2-associated organ injury, with over-activation of the innate immune system, and induced apoptosis of adaptive immune cells. Here, we provide an overview of the innate immune system, both in general and relating to COVID-19. We specifically discuss "NETosis," the process of neutrophil release of their extracellular traps, which may be a more recently described form of cell death that is different from apoptosis, and how this may propagate organ dysfunction in COVID-19. We complete this review by discussing Stem Cell Therapies in COVID-19 and emerging COVID-19 phenotypes, which may allow for more targeted therapy in the future. Finally, we consider the array of potential therapeutic targets in COVID-19, and associated therapeutics.
Collapse
Affiliation(s)
- Colm Keane
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
- Multidisciplinary Intensive Care Research Organization (MICRO), Trinity College Dublin, Dublin, Ireland
| | - Matthew Coalter
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
- Multidisciplinary Intensive Care Research Organization (MICRO), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|