1
|
Tsuda S, Iida M, Samoto M, Adachi N, Nakamura A. A high molecular mass emulsifier derived from lentil seeds: The role of polysaccharide and protein in its stabilization behavior. Int J Biol Macromol 2025; 304:140880. [PMID: 39938351 DOI: 10.1016/j.ijbiomac.2025.140880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
A water-soluble lentil polysaccharide (SLPS) extract was obtained from lentil fiber, at pH 10, after heating at 120 °C for 90 min, with a recovery as high as 16.5 %. SLPS had a weight average molecular mass of 1975 kg/mol, and contained 47 % glucose, 42 % arabinose, and 7 % uronic acid. Objective of this work was to evaluate the potential of SLPS to be employed as a natural emulsifier, by measuring its interfacial properties, as well as emulsifying capacity on a model emulsion system. Acidic emulsions were prepared with 5 % oil and 5 % SLPS and their particle size distribution was evaluated by light scattering and complementary microscopy, to determine their stability. SLPS showed the ability to reduce interfacial tension at oil/water interfaces, and the emulsions were stable under acidic conditions. Two different molecular weight fractions (SLPS-H and -L were investigated), and while the high molecular weight fraction (SLPS-H; 1567 kg/mol) was effective at stabilizing interfaces, emulsions prepared with low molecular weight fraction (SLPS-L; 2.3 kg/mol) showed aggregation and coalescence of oil droplets. Addition of pectinase caused aggregation of the droplets as measured by dynamic light scattering, demonstrating that adsorbs on the surface of oil droplets, and prevents aggregation of the oil droplets.
Collapse
Affiliation(s)
- Soichiro Tsuda
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Minori Iida
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Masahiko Samoto
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan; Fuji Oil Holdings Inc., Tsukuba R&D Center, 4-3 Kinunodai, Tsukubamirai, Ibaraki 300-2497, Japan
| | - Norifumi Adachi
- Fuji Oil Holdings Inc., Tsukuba R&D Center, 4-3 Kinunodai, Tsukubamirai, Ibaraki 300-2497, Japan
| | - Akihiro Nakamura
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan; Fuji Oil Holdings Inc., Tsukuba R&D Center, 4-3 Kinunodai, Tsukubamirai, Ibaraki 300-2497, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
2
|
Yüksel E, Kort R, Voragen AGJ. Structure and degradation dynamics of dietary pectin. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39681562 DOI: 10.1080/10408398.2024.2437573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Pectin, a complex dietary fiber, constitutes a key structural component of the cell walls of numerous edible plant products. It is resistant to digestion by human enzymes and undergoes depolymerization and saccharification in the gastrointestinal tract through the action of carbohydrate-active enzymes (CAZymes) produced by gut microbiota. This enzymatic breakdown generates intermediate structural fragments, which are subsequently converted into pectin oligosaccharides (POS) and monosaccharides. POS exhibit prebiotic properties and have demonstrated potential health benefits, including anti-carcinogenic effects, mucoadhesive capabilities, and the promotion of beneficial gut bacterial growth. However, the current understanding of the molecular structure of pectin and its degradation dynamics remains fragmented within the literature, impeding progress in dietary fiber intervention research and the development of personalized nutrition approaches. This review aims to provide a comprehensive overview of the structural features of pectin and the intricate breakdown mechanisms orchestrated by CAZymes. It underscores the complex architecture of pectin that influences its breakdown dynamics and specifies the enzymatic requirements for the cleavage of its diverse structural components. These insights complement our accompanying review on the structure-function relationships between pectin and the human gut microbiota, previously published in this journal.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije University Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
- Keep Food Simple, Driebergen, The Netherlands
| |
Collapse
|
3
|
Iida M, Tsuda S, Kikuchi M, Samoto M, Adachi N, Nakamura A. Extraction of water-soluble polysaccharides from lupin beans and their function of protein dispersion and stabilization under acidic conditions. Int J Biol Macromol 2024; 278:134664. [PMID: 39134203 DOI: 10.1016/j.ijbiomac.2024.134664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 08/25/2024]
Abstract
In the current environment whereby new sources of proteins are extracted from plant material, it is also important to study the potential use of the resulting side streams. Although a number of studies have been conducted on various polysaccharides extracted from plant raw material, a polysaccharide fraction extracted from lupin bean is yet to be explored, in spite of the emerging interest in this crop as a source of food ingredients. In this work lupin soluble polysaccharide (LuPS) was obtained with a recovery as high as 46 % by extraction at pH 8, 120 °C, for 90 min. This fraction, named LuPS-8, was composed of a mostly linear pectic polysaccharide with a weight average molecular mass of 6608 kg/mol, and containing 71.0 % galactose, with minor amounts of arabinose (16.0 %), glucuronic acid 4.6 %, and galacturonic acid 4.1 %. When added to an acid milk dispersion, LuPS-8 improved its dispersibility, providing storage stability against sedimentation over a wider pH range than a HM-pectin reference, between 3.6-4.4. This research demonstrated the potential for upcycling of a side stream of lupin protein production, by the creation of value-added novel functional polysaccharide.
Collapse
Affiliation(s)
- Minori Iida
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Soichiro Tsuda
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Mayu Kikuchi
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Masahiko Samoto
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan; Fuji Oil Holdings Inc., Tsukuba R&D Center, 4-3 Kinunodai, Tsukubamirai, Ibaraki 300-2497, Japan
| | - Norifumi Adachi
- Fuji Oil Holdings Inc., Tsukuba R&D Center, 4-3 Kinunodai, Tsukubamirai, Ibaraki 300-2497, Japan
| | - Akihiro Nakamura
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan; Fuji Oil Holdings Inc., Tsukuba R&D Center, 4-3 Kinunodai, Tsukubamirai, Ibaraki 300-2497, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Eid M, Zhu J, Ismail MA, Li B. Dual encapsulation and sequential release of cisplatin and vitamin E from soy polysaccharides and β-cyclodextrin bioadhesive hydrogel nanoparticles. Int J Biol Macromol 2024; 273:133240. [PMID: 38897521 DOI: 10.1016/j.ijbiomac.2024.133240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Chemically cross-linked hydrogel nanoparticles (HGNPs) offer enhanced properties over their physical counterparts, particularly in drug delivery and cell encapsulation. This study applied pH-thermal dual responsive bio-adhesive HGNPs for dual complexation and enhanced the controlled release and bioavailability of cisplatin (CDDP) and Vitamin E (VE) drugs. The CDDP was loaded into the HGNPs via chemical conjugation with the carboxyl groups in the HGNPs surface by soy polysaccharides (SSPS). At the same time, the host-guest interaction complexed the VE through the β-cyclodextrin (β-CD). The HGNPs showed a uniform HGNPs size distribution of 90.77 ± 14.77 nm and 81.425 ± 13.21 nm before and after complexation, respectively. The FTIR, XRD, XPS, and zeta potential confirmed the conjugation. The cumulative release percent of CDDP reached 98 % at pH 1.2, while <45 % was released at pH 7.4. Our HGNPs enhance the incorporation of CDDP by substituting its chlorides with carboxyl groups of the SSPS; the loading of CDDP and VE was 15 ± 0.33 and 11.32 ± 0.25 wt%, respectively. Moreover, the CDDP and VE also released slower from the HGNPs at 25 °C than at 37 °C and 42 °C. The (VE/CDDP)-loaded HGNPs exhibited longer circulation time in vivo than free CDDP and free VE suspension.
Collapse
Affiliation(s)
- Mohamed Eid
- College of Food Science and Technology, Huazhong Agricultural University, 1st Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 1st Shizishan Road, Wuhan, Hubei 430070, China; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, 13736 Qaliuobia, Egypt.
| | - Jingsong Zhu
- College of Food Science and Technology, Huazhong Agricultural University, 1st Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 1st Shizishan Road, Wuhan, Hubei 430070, China; College of Biological Science and Technology, Yili Normal University, Yining 835000, China
| | - Muhammad Asif Ismail
- College of Food Science and Technology, Huazhong Agricultural University, 1st Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 1st Shizishan Road, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, 1st Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 1st Shizishan Road, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Kotani Y, Shibata N, Lin MI, Nakazawa M, Ueda M, Sakamoto T. Fractionation of cassava pectins and their detailed structural analyses using various pectinolytic enzymes. Int J Biol Macromol 2024; 269:132054. [PMID: 38704063 DOI: 10.1016/j.ijbiomac.2024.132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In this study, we analyzed the pectin structure within the pulp of cassava. Cassava pectin, derived from cassava pulp treatment at 120 °C for 90 min, was separated into four fractions (CP-P, CP-SD1, CP-SD2F, and CP-SD2R) based on variations in water solubility, electrical properties, and molecular weights. Sugar composition analysis demonstrated an abundance of homogalacturonan (HG) in CP-P and CP-SD2F, rhamnogalacturonan I (RG-I) in CP-SD2R, and neutral sugars in CP-SD1. Because RG-I possesses a complex structure, we analyzed CP-SD2R using various pectinolytic enzymes. Galactose was the major sugar in CP-SD2R accounting for 49 %, of which 65 % originated from arabinogalactan I, 9 % from galactose and galactooligosaccharides, 5 % from arabinogalactan II, and 11 % from galactoarabinan. Seventy-four percent of arabinose in CP-SD2R was present as galactoarabinan. The methylation (DM) and acetylation (DAc) degrees of cassava pectin were 11 and 15 %, respectively. The HG and RG-I regions exhibited DAc values of 5 and 44 %, respectively, signifying the high DAc of RG-I compared to HG. Information derived from the structural analysis of cassava pectin will enable efficient degradation of pectin and cellulose, leading to the use of cassava pulp as a raw material for biorefineries.
Collapse
Affiliation(s)
- Yuka Kotani
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Nozomu Shibata
- Biological Science Research, Kao Corporation, Wakayama, Wakayama 640-8580, Japan
| | - Meng-I Lin
- Biological Science Research, Kao Corporation, Wakayama, Wakayama 640-8580, Japan
| | - Masami Nakazawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Mitsuhiro Ueda
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Tatsuji Sakamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
6
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Wang H, Qiu J, Wu Y, Ouyang J. Impact of soluble soybean polysaccharide on the gelatinization and retrogradation of corn starches with different amylose content. Food Res Int 2024; 184:114254. [PMID: 38609232 DOI: 10.1016/j.foodres.2024.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Polysaccharides have a significant impact on the physicochemical properties of starch, and the objective of this study was to examine the effect of incorporating soluble soybean polysaccharide (SSPS) on the gelatinization and retrogradation of corn starches (CS) with varying amylose content. In contrast to high-amylose corn starch (HACS), the degree of gelatinization of waxy corn starch (WCS) and normal corn starch (NCS) decreased with the addition of SSPS. The inclusion of SSPS resulted in reduced swelling power in all CS, and led to a decrease in gel hardness of the starches. The intermolecular forces between SSPS and CS were primarily hydrogen bonding, and a gel network structure was formed, thereby retarding the short-term and long-term retrogradation of CS. Scanning electron microscopy results revealed that the addition of SSPS in starches led to a loose network structure with larger poles and a reduced ordered structure after retrogradation, as observed from the cross-section of formed gels. These findings suggested that SSPS has great potential for applications in starchy foods, as it can effectively retard both gelatinization and retrogradation of starches.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junjie Qiu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Li L, Liu X, Yang C, Li T, Wang W, Guo H, Lei Z. Synthesis of soybean soluble polysaccharide-based eco-friendly emulsions for soil erosion prevention and control. Int J Biol Macromol 2024; 262:130042. [PMID: 38342266 DOI: 10.1016/j.ijbiomac.2024.130042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
This paper introduces the synthesis of an environmentally friendly emulsion that can be used as a soil anti-water erosion material. SSPS-g-P(BA-co-MMA-co-AA) emulsions were prepared using free radical copolymerization with soybean soluble polysaccharide (SSPS), acrylic acid (AA), butyl acrylate (BA), and methyl methacrylate (MMA). The structure, thermal stability, and morphology were characterized using FT-IR,TG,SEM, and particle diameter analysis. The resistance to water erosion, compressive strength and water retention of emulsion-treated loess/laterite was studied and germination tests were conducted. The results demonstrated that the duration of washout resistance of loess with 0.50 wt% emulsion exceeded 99 h, and the water erosion rate was 56.0 % after 72 h, while the water erosion rate of pure loess is 100.0 % after 4 min;the duration of washout resistance of laterite with 0.50 wt% emulsion exceeded 2 h, which was 8 times longer than pure laterite;The compressive strengths of 0.5 wt% emulsion-treated loess/laterite were 3.5 Mpa and 5.8 MPa, respectively, which were 7 and 9 times higher than that of pure soil. The plant seeds germinated normally half a month after planting. These findings suggest that emulsions can be used to control soil erosion without affecting the germination of plant seeds.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaomei Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cailing Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tingli Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Weiqiang Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haonian Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
9
|
Yao L, Wang Y, He Y, Wei P, Li C, Xiong X. Pickering Emulsions Stabilized by Conjugated Zein-Soybean Polysaccharides Nanoparticles: Fabrication, Characterization and Functional Performance. Polymers (Basel) 2023; 15:4474. [PMID: 38231891 PMCID: PMC10708203 DOI: 10.3390/polym15234474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study aims to fabricate zein-based colloidal nanoparticles, which were used to stabilize Pickering emulsions, by conjugation with soybean polysaccharide (SSPS) through the Maillard reaction. The physicochemical properties of the conjugated particles as well as the physical and oxidative stability of the fabricated Pickering emulsion that utilized conjugated colloidal particles with the volumetric ratio of water and oil at 50:50 were investigated. The grafting degree of zein and SSPS was verified through examination of FT-IR and fluorescence. Moreover, the conjugated Zein/SSPS nanoparticles (ZSP) that were prepared after dry heating for 48-72 h exhibit excellent colloidal stability across a range of pH values (4.0-10.0). Further, the wettability of ZSP decreased based on a contact angle analysis of θ~87°. Confocal laser scanning microscopy (CLSM) images indicated that ZSP particles were located around the oil droplets. Additionally, the ZSP effectively improved the oxidative stability of the Pickering emulsions, as demonstrated by a significant decrease in both peroxide value (PV) and thiobarbituric acid reactive substances (TBARS). The results of this study demonstrate that ZSP represents a promising food-grade Pickering emulsifier, capable of not only stabilizing emulsions but also inhibiting their oil oxidation.
Collapse
Affiliation(s)
- Lili Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Ying Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Yangyang He
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| |
Collapse
|
10
|
Yu T, Wu Q, Wang J, Lang B, Wang X, Shang X. Physicochemical properties of tiger nut ( Cyperus esculentus L) polysaccharides and their interaction with proteins in beverages. Food Chem X 2023; 19:100776. [PMID: 37780238 PMCID: PMC10534121 DOI: 10.1016/j.fochx.2023.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023] Open
Abstract
This study aimed to extract tiger nut polysaccharides (TNPs) by the cellulase method which were graded using the DEAE-cellulose ion exchange method to obtain neutral (TNP-N) and acidic (TNP-A) polysaccharide classes. Analysis of the physical structures and monosaccharide compositions of TNP-A (3.458 KDa) and TNP-N (10.640 KDa) revealed lamellar and dense flocculent structures, with both primarily containing the monosaccharides glucose, galactose, and arabinose (Glc, Gal, and Ara). Single-factor and orthogonal tests were used to select three hydrocolloids, and the optimal ratio of the composite hydrocolloids was determined. Peanut protein drinks with a centrifugal sedimentation rate of 9.71% and a stability factor of 69.28% were obtained by adding 2.78% polysaccharide extract, 0.1% monoglyceride, and peanut pulp at a ratio of 1:15.5 g/mL. Polysaccharide protein drinks are more stable than commercially available protein drinks, with nutritional parameters either comparable to or better than those of the non-polysaccharide protein drinks.
Collapse
Affiliation(s)
- Te Yu
- Department of Food Science and Engineering, College of Food Science and Engineering, Changchun University, No.6543, Satellite Road, Changchun 130022, China
| | - Qiong Wu
- Department of Food Science and Engineering, College of Food Science and Engineering, Changchun University, No.6543, Satellite Road, Changchun 130022, China
| | - Jiaming Wang
- Department of Food Science and Engineering, College of Food Science and Engineering, Changchun University, No.6543, Satellite Road, Changchun 130022, China
| | - Bin Lang
- Department of Food Science and Engineering, College of Food Science and Engineering, Changchun University, No.6543, Satellite Road, Changchun 130022, China
| | - Xusheng Wang
- Department of Food Science and Engineering, College of Food Science and Engineering, Changchun University, No.6543, Satellite Road, Changchun 130022, China
| | - Xinzhu Shang
- Department of Food Science and Engineering, College of Food Science and Engineering, Changchun University, No.6543, Satellite Road, Changchun 130022, China
| |
Collapse
|
11
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
12
|
Dong Y, Li Y, Ma Z, Rao Z, Zheng X, Tang K, Liu J. Effect of polyol plasticizers on properties and microstructure of soluble soybean polysaccharide edible films. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Nakamura A, Naeki R, Kikuchi M, Corredig M, Shima Y, Fujii N. Molecular structures of high- and low-methoxy water-soluble polysaccharides derived from peas and their functions for stabilizing milk proteins under acidic conditions. Food Res Int 2023; 165:112390. [PMID: 36869463 DOI: 10.1016/j.foodres.2022.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
The structural and functional properties of two different pea water-soluble polysaccharides, a high methyl-esterified (HM-SPPS; degree of methyl esterification (DMe): 71.0 %) and low methyl-esterified SPPS (LM-SPPS; DMe: 25.2 %) were investigated. The two extracts did not vary in composition and showed a weight average molecular mass of about 1,000 kDa, as measured by size exclusion chromatography equipped with a multi-angle light scattering detector. Both HM-SPPS and LM-SPPS had similar sugar compositions, with arabinose 42.2-47.1 %, glucose 26.6-31.0 %, and galacturonic acid 17.5-18.0 %, as their main sugars. Their charge varied as a function of pH. The molecular structure was observed by a scanning probe microscope and showed a straight chain structure with small branches. The structure was similar to that already reported for polysaccharides from kidney bean. SPPS molecules interact with acidified milk protein particles at pH < 4.4. There were differences between the two SPPS. LM-SPPS could stabilize a model acidified milk dispersion with minimal aggregation between pH 3.6-4.4, while HM-SPPS showed the presence of bridging flocculation caused by polysaccharide's entanglements. It was concluded that SPPS stabilizes acidified protein by steric and electrostatic repulsion.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan.
| | - Rion Naeki
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Mayu Kikuchi
- Ibaraki University, College of Agriculture, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park, 48, DK-8200 Aarhus N, Denmark
| | - Yugo Shima
- FUJI EUROPE AFRICA B.V. Global Innovation Center Europe, Plus Ultra, Ⅱ, Bronland 10, 6708 WH, Wageningen, the Netherlands
| | - Nanae Fujii
- Fuji Oil Co., Ltd. Soy Ingredients R&D Department, 1, Sumiyoshi-cho, Izumisano-shi, Osaka 598-8540, Japan
| |
Collapse
|
14
|
Funami T, Nakauma M. Cation-responsive food polysaccharides and their usage in food and pharmaceutical products for improved quality of life. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Ahmed J, Kumar K, Goyal A. A thermotolerant and pH stable rhamnogalacturonan acetylesterase (CtPae12B), a family 12 carbohydrate esterase from Clostridium thermocellum with broad substrate specificity. Int J Biol Macromol 2023; 226:1560-1569. [PMID: 36455821 DOI: 10.1016/j.ijbiomac.2022.11.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The gene encoding rhamnogalacturonan acetylesterase, CtPae12B from Clostridium thermocellum was cloned, expressed, purified and biochemically characterized. Purified CtPae12B was soluble and exhibited homogenous single band. Phylogenetically it was most closely related to an RGAE, YesT from B. subtilis. CtPae12B production was maximum with LB medium. CtPae12B showed optimal temperature, 65 °C and thermostability with half-life, 5.1 h at 80 °C. CtPae12B was alkaliphilic with optimal pH, 8.0, while it displayed stability at both acidic and alkaline pH ranges. Inhibition of CtPae12B activity by PMSF showed the importance of nucleophilic serine in the catalytic triad. The metal ions, chemical or chelating agents used, did not enhance CtPae12B activity, which was also corroborated by protein melting study. The enzymatic activity of CtPae12B remained unaffected by 5 M urea. CtPae12B showed broad substrate specificity as it displayed activity against a range of synthetic substrates showing highest Vmax, 770 U/mg and Km, 1.2 mM with β-D-gluco pentaacetate. CtPae12B could deacetylate both pectic and xylan substrates showing highest Vmax, 770 U/mg and Km, 13.4 mg/mL with potato rhamnogalacturonan and Vmax, 105 U/mg and Km, 7.1 mg/mL with acetylated birchwood xylan. The thermostability, pH stability and broad substrate specificity of CtPae12B makes it a versatile enzyme for industrial applications.
Collapse
Affiliation(s)
- Jebin Ahmed
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Krishan Kumar
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
16
|
Shahin L, Zhang L, Mohnen D, Urbanowicz BR. Insights into pectin O-acetylation in the plant cell wall: structure, synthesis, and modification. CELL SURFACE (AMSTERDAM, NETHERLANDS) 2023; 9:100099. [PMID: 36793376 PMCID: PMC9922974 DOI: 10.1016/j.tcsw.2023.100099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
O-Acetyl esterification is an important structural and functional feature of pectins present in the cell walls of all land plants. The amount and positions of pectin acetyl substituents varies across plant tissues and stages of development. Plant growth and response to biotic and abiotic stress are known to be significantly influenced by pectin O-acetylation. Gel formation is a key characteristic of pectins, and many studies have shown that gel formation is dependent upon the degree of acetylation. Previous studies have indicated that members of the TRICHOME BIREFRINGENCE-LIKE (TBL) family may play a role in the O-acetylation of pectin, however, biochemical evidence for acceptor specific pectin acetyltransferase activity remains to be confirmed and the exact mechanism(s) for catalysis must be determined. Pectin acetylesterases (PAEs) affect pectin acetylation as they hydrolyze acetylester bonds and have a role in the amount and distribution of O-acetylation. Several mutant studies suggest the critical role of pectin O-acetylation; however, additional research is required to fully understand this. This review aims to discuss the importance, role, and putative mechanism of pectin O-acetylation.
Collapse
Key Words
- AXY9, ALTERED XYLOGLUCAN 9
- DA, degree of acetyl-esterification
- DE, degree of esterification
- DM, degree of methyl-esterification
- GalA, galacturonic acid
- HG, homogalacturonan
- NMR, nuclear magnetic resonance
- O-acetylation
- O-acetyltransferase
- PAEs, pectin acetylesterases
- Pectin
- Pectin acetylesterase
- Plant cell wall
- RG-I, rhamnogalacturonan-I
- RWA, REDUCED WALL O-ACETYLATION
- TBL, TRICHOME BIREFRINGENCE-LIKE
- XGA, xylogalacturonan
Collapse
Affiliation(s)
- Lubana Shahin
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Liang Zhang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Corresponding author at: Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
17
|
Kumar P, Sharma N, Ahmed MA, Verma AK, Umaraw P, Mehta N, Abubakar AA, Hayat MN, Kaka U, Lee SJ, Sazili AQ. Technological interventions in improving the functionality of proteins during processing of meat analogs. Front Nutr 2022; 9:1044024. [PMID: 36601080 PMCID: PMC9807037 DOI: 10.3389/fnut.2022.1044024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Meat analogs have opened a new horizon of opportunities for developing a sustainable alternative for meat and meat products. Proteins are an integral part of meat analogs and their functionalities have been extensively studied to mimic meat-like appearance and texture. Proteins have a vital role in imparting texture, nutritive value, and organoleptic attributes to meat analogs. Processing of suitable proteins from vegetable, mycoproteins, algal, and single-cell protein sources remains a challenge and several technological interventions ranging from the isolation of proteins to the processing of products are required. The present paper reviews and discusses in detail various proteins (soy proteins, wheat gluten, zein, algal proteins, mycoproteins, pulses, potato, oilseeds, pseudo-cereals, and grass) and their suitability for meat analog production. The review also discusses other associated aspects such as processing interventions that can be adapted to improve the functional and textural attributes of proteins in the processing of meat analogs (extrusion, spinning, Couette shear cell, additive manufacturing/3D printing, and freeze structuring). '.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Akhilesh K. Verma
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Pramila Umaraw
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ahmed Abubakar Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
18
|
Son SU, Kim HW, Shin KS. Structural identification of active moiety in anti-tumor metastatic polysaccharide purified from fermented barley by sequential enzymatic hydrolysis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Guan X, Wang Q, Lin B, Sun M, Zheng Q, Huang J, Lai G. Structural characterization of a soluble polysaccharide SSPS1 from soy whey and its immunoregulatory activity in macrophages. Int J Biol Macromol 2022; 217:131-141. [PMID: 35835298 DOI: 10.1016/j.ijbiomac.2022.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
A soluble soybean polysaccharide SSPS1 with a molecular weight of 2737 kDa was extracted and purified from soy whey. SSPS1 was composed of glucose (97.3 %) and a small amount of mannose (2.7 %). Structural analysis results suggested that SSPS1 had a → 6)-α-d-Glcp-(1 → glucan structure, with a trace amount of α-d-Glcp-(1 → connected to the main chain via O-3. In vitro immunological experiments suggested that SSPS1 enhanced the growth rate and phagocytic activity of RAW 264.7 macrophages. In addition, SSPS1 stimulated the secretion of cytokines (TNF-α, INF-β, IL-6 and IL-1β) as well as nitric oxide (NO) production through upregulating the expression of the related genes and proteins in RAW 264.7 cells. This study provided a new method for efficient utilization of soy whey, and the results indicate that SSPS1 extracted from soy whey could be used as a novel immunomodulator.
Collapse
Affiliation(s)
- Xuefang Guan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China
| | - Qi Wang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China.
| | - Bin Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Meiling Sun
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Qi Zheng
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Juqing Huang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China
| | - Gongti Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| |
Collapse
|
20
|
Zhou X, Wu Y, Zhou X, Huang Z, Zhao L, Liu C. Elaboration of Cationic Soluble Soybean Polysaccharides-Epigallocatechin Gallate Nanoparticles with Sustained Antioxidant and Antimicrobial Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11353-11366. [PMID: 36044725 DOI: 10.1021/acs.jafc.2c03510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epigallocatechin gallate (EGCG) is easily oxidized by environmental stress elements, including light, heat, and oxygen; thus, its biological activities can be reduced or even lost when exposed to a natural environment. Here, soluble soybean polysaccharide (SSPS) was successfully etherized by 3-chloro-2-hydroxypropyl trimethylammonium chloride (CHPTAC), positively charged to extract cationic SSPS (CSSPS). Nanoparticles based on CSSPS can improve the encapsulation efficiency (EE) and sustained bioactivity of EGCG. The EE of EGCG by CSSPS was improved significantly as compared with that of SSPS due to the electrostatic interactions. Furthermore, the protective and sustained-release effects of CSSPS on EGCG in the EGCG-CSSPS nanoparticles (EGCG-CSSPS-NPs) markedly improved the sustained antioxidant and antimicrobial activities of EGCG, which was confirmed by the results of a salmon-preservation experiment. In addition, cytotoxicity tests showed that EGCG-CSSPS-NPs could effectively inhibit the proliferation of tumor cells but had no obvious toxicity to normal cells.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422099, China
| | - Ying Wu
- National Engineering Research Center for Rice and By-Product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaojie Zhou
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422099, China
| | - Zhanrui Huang
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422099, China
| | - Liangzhong Zhao
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422099, China
| | - Chun Liu
- National Engineering Research Center for Rice and By-Product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
21
|
Long X, Xie J, Xue B, Li X, Sun T. Effect of oxidative modification on physicochemical and functional properties of soybean polysaccharides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
23
|
Son SU, Lee SJ, Choi EH, Shin KS. Clarification of the structural features of Rhamnogalacturonan-I type polysaccharide purified from radish leaves. Int J Biol Macromol 2022; 209:923-934. [PMID: 35447261 DOI: 10.1016/j.ijbiomac.2022.04.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Determining the structure of REPI, an immunostimulatory polysaccharide fraction from radish leaves, is an important health objective. Herein, we show that REP-I contains nine different monosaccharides, including GalA (22.2%), Gal (32.6%), Ara (27.5%), and Rha (10.2%) as main sugars. REP-I was also reacted with β-glucosyl Yariv reagent (29.8%), suggesting the presence of the arabino-β-3,6-galactan. Furthermore, methylated-product analysis revealed that REP-I contains 13 different glycosyl linkages, including 4-linked GalpA (21.0%), 2,4-linked Rhap (7.0%), 4-linked Galp (5.8%), 5-linked Araf (10.1%), and 3,6-linked Galp (7.9%), which are characteristic of RG-I. Microstructural information was obtained by sequential degradation using four linkage-specific glycosylases and β-elimination, with fragments analyzed on the basis of sugar composition, methylation, and MS/MS spectra. The results show that the immunostimulatory activity of REP-I is possibly due to the structure of RG-I, which is composed of a main chain with repeating [→2)-Rhap-(1 → 4)-GalpA-(1→] linkage units and three side-chains: a branched α(1 → 5)arabinan, a β(1 → 4)galactan, and arabino-β-3,6-galactan, which are branched at the C(O)4 position of each Rha residue in the REP-I main chain.
Collapse
Affiliation(s)
- Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea; Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Sue Jung Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Eun Hye Choi
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
24
|
Soluble soybean polysaccharide films containing in-situ generated silver nanoparticles for antibacterial food packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Engle KA, Amos RA, Yang JY, Glushka J, Atmodjo M, Tan L, Huang C, Moremen KW, Mohnen D. Multiple Arabidopsis galacturonosyltransferases synthesize polymeric homogalacturonan by oligosaccharide acceptor-dependent or de novo synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1441-1456. [PMID: 34908202 PMCID: PMC8976717 DOI: 10.1111/tpj.15640] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/31/2023]
Abstract
Homogalacturonan (HG), the most abundant pectic glycan, functions as a cell wall structural and signaling molecule essential for plant growth, development and response to pathogens. HG exists as a component of pectic homoglycans, heteroglycans and glycoconjugates. HG is synthesized by members of the GALACTURONOSYLTRANSFERASE (GAUT) family. UDP-GalA-dependent homogalacturonan:galacturonosyltransferase (HG:GalAT) activity has previously been demonstrated for GAUTs 1, 4 and 11, as well as the GAUT1:GAUT7 complex. Here, we show that GAUTs 10, 13 and 14 are also HG:GalATs and that GAUTs 1, 10, 11, 13, 14 and 1:7 synthesize polymeric HG in vitro. Comparison of the in vitro HG:GalAT specific activities of the heterologously-expressed proteins demonstrates GAUTs 10 and 11 with the lowest, GAUT1 and GAUT13 with moderate, and GAUT14 and the GAUT1:GAUT7 complex with the highest HG:GalAT activity. GAUT13 and GAUT14 are also shown to de novo synthesize (initiate) HG synthesis in the absence of exogenous HG acceptors, an activity previously demonstrated for GAUT1:GAUT7. The rate of de novo HG synthesis by GAUT13 and GAUT14 is similar to their acceptor dependent HG synthesis, in contrast to GAUT1:GAUT7 for which de novo synthesis occurred at much lower rates than acceptor-dependent synthesis. The results suggest a unique role for de novo HG synthesis by GAUTs 13 and 14. The reducing end of GAUT13-de novo-synthesized HG has covalently attached UDP, indicating that UDP-GalA serves as both a donor and acceptor substrate during de novo HG synthesis. The functional significance of unique GAUT HG:GalAT catalytic properties in the synthesis of different pectin glycan or glycoconjugate structures is discussed.
Collapse
Affiliation(s)
- Kristen A. Engle
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Melani Atmodjo
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Chin Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
26
|
Halahlah A, Piironen V, Mikkonen KS, Ho TM. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit Rev Food Sci Nutr 2022; 63:6983-7015. [PMID: 35213281 DOI: 10.1080/10408398.2022.2038080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural bioactive compounds (BCs) are types of chemicals found in plants and certain foods that promote good health, however they are sensitive to processing and environmental conditions. Microencapsulation by spray drying is a widely used and cost-effective approach to create a coating layer to surround and protect BCs and control their release, enabling the production of high functional products/ingredients with extended shelf life. In this process, wall materials determine protection efficiency, and physical properties, bioavailability, and storage stability of microencapsulated products. Therefore, an understanding of physicochemical properties of wall materials is essential for the successful and effective spray-dried microencapsulation process. Typically, polysaccharide-based wall materials are generated from more sustainable sources and have a wider range of physicochemical properties and applications compared to their protein-based counterparts. In this review, we highlight the essential physicochemical properties of polysaccharide-based wall materials for spray-dried microencapsulation of BCs including solubility, thermal stability, and emulsifying properties, rheological and film forming properties. We provide further insight into possibilities for the chemical structure modification of native wall materials and their controlled release behaviors. Finally, we summarize the most recent studies involving polysaccharide biopolymers as wall materials and/or emulsifiers in spray-dried microencapsulation of BCs.
Collapse
Affiliation(s)
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|
27
|
Hu Y, Wang S, Shi Z, Zhai L, Fu J, Zhao J. Purification, characterization, and antioxidant activity of polysaccharides from Okara. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Siqi Wang
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Zenghui Shi
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Liyuan Zhai
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Jingyi Fu
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| | - Jun Zhao
- School of Food Sciences and Engineering Chang Chun University Changchun P.R. China
| |
Collapse
|
28
|
Zhu H, Liu H, Tang K, Liu J, Zheng X, Pei Y, Zhong J. Optimization of dialdehyde soluble soybean polysaccharide: preparation by response surface methodology for cleaner leather tanning. RSC Adv 2022; 12:7506-7515. [PMID: 35424668 PMCID: PMC8982348 DOI: 10.1039/d2ra00222a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Leather is widely used in daily necessities, such as shoes and bags. Traditional chrome tanning might produce leathers with excellent mechanical and thermal properties but gives rise to problems, such as environmental pollution. To find an ecological alternative for chrome-tanning agents, soluble soybean polysaccharide (SSPS) was oxidized by sodium periodate to yield dialdehyde soluble soybean polysaccharide (DPA). By the response surface methodology (RSM)-based optimization of the preparation process, DPA was obtained at the optimized condition at the mass ratio of 1 : 1.9, oxidation time of 0.53 h, and oxidation temperature of 20 °C, and the hydrothermal shrinkage temperature of the DPA-tanned leather reached 79 °C. The Fourier transform infrared (FT-IR) spectra and gel permeation chromatography (GPC) showed that the aldehyde group was successfully introduced, and the molecular weight was significantly reduced. The DPA-tanned leather has good collagen fiber dispersion and mechanical properties and thus is suggested to be a green tanning agent for leather making. Leather is widely used in daily necessities, such as shoes and bags.![]()
Collapse
Affiliation(s)
- Haolin Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hui Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jide Zhong
- Henan Prosper Skins & Leather Enterprise Co., Ltd, Mengzhou 454750, PR China
| |
Collapse
|
29
|
Ramirez CSV, Temelli F, Saldaña MD. Production of pea hull soluble fiber-derived oligosaccharides using subcritical water with carboxylic acids. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Monomeric sugars from enzymatic processing of soy flour. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Moon H, Lertpatipanpong P, Hong Y, Kim CT, Baek SJ. Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
32
|
Shao F, Xu J, Zhang J, Wei L, Zhao C, Cheng X, Lu C, Fu Y. Study on the influencing factors of natural pectin's flocculation: Their sources, modification, and optimization. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2261-2273. [PMID: 34129712 DOI: 10.1002/wer.1598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Natural pectin, derived from fruit residue, presented a certain flocculation performance in previous studies. However, the process of extraction and treatment affected the flocculation performance considering the uncontrollable chemical composition and the molecule structure. In this study, degree of esterification (DE), degree of amidation (DA) were used as the internal factors affecting flocculation performance. The DE/DA values of pectin were obtained through FTIR, elemental analyses, H-NMR, and titration measurements. The kaolin suspension was employed for the coagulation jar tests, and the removal of NTU (Nephelometric Turbidity Unit) was used as the index of the flocculation performance. Results showed that the flocculation performance of pectin arising from different fruits was different, which was associated with the various preparation processes. By introducing polar groups into pectin, the flocculation was found to be related to bridging, adsorption, and charge neutralization. Based on the trends of three-dimensional response surfaces, the flocculation effect was improved with the decreased DE and the increased DA. The optimized amidated pectin was obtained by the amidation experiment, the turbidity reduction in wastewater was 99.63%. PRACTITIONER POINTS: The internal influencing factors of pectin as a flocculant were investigated. Different sources of pectin show different flocculation ability. Amidation modification can improve the flocculation performance of pectin. Response surface method to study the interaction of different influencing factors. Pectin may replace synthetic flocculants in water treatment.
Collapse
Affiliation(s)
- Fulin Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jinyong Zhang
- Shandong Academy of Environmental Sciences Co., Ltd, Jinan, China
| | - Luyao Wei
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Congcong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Chongxiao Lu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yanzhao Fu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
33
|
Ramirez CSV, Temelli F, Saldaña MD. Carboxylic acid-catalyzed hydrolysis of rhamnogalacturonan in subcritical water media. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Nomura K, Sakai M, Ohboshi H, Nakamura A. Extraction of a water-soluble polysaccharide fraction from lentils and its potential application in acidified protein dispersions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Liu H, Xu J, Xu X, Yuan Z, Song H, Yang L, Zhu D. Structure/function relationships of bean polysaccharides: A review. Crit Rev Food Sci Nutr 2021; 63:330-344. [PMID: 34256630 DOI: 10.1080/10408398.2021.1946480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Beans are a rich source of high quality protein and oil, and have attracted increasing interest from both nutrition researchers and health-conscious consumers. This review aims to provide a foundation for the future research and development of bean polysaccharides, by summarizing the sources, structure, and functions of bioactive bean polysaccharides. Structure/function relationships are described, for biological activities, such as immunological, antioxidant and anti-diabetes. This will provide useful guidance for further optimization of polysaccharide structure and the development of bean polysaccharides as a novel functional material.
Collapse
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
36
|
Lee SJ, In G, Lee JW, Shin KS. Elucidation of the microstructure of an immuno-stimulatory polysaccharide purified from Korean red ginseng using sequential hydrolysis. Int J Biol Macromol 2021; 186:13-22. [PMID: 34242646 DOI: 10.1016/j.ijbiomac.2021.06.202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The elucidation of the structural characteristics of polysaccharides from natural sources is generally difficult owing to their structural complexity and heterogeneity. In our previous study, an immuno-stimulatory polysaccharide (RGP-AP-I) was isolated from Korean red ginseng (Panax ginseng C.A. Meyer). The present study aims to elucidate the structural characteristics of RGP-AP-I. Sequential enzyme hydrolysis was performed using four specific glycosylases, and chemical cleavage via β-elimination was carried out to determine the fine structure of RGP-AP-I. The degraded fragments were chemically identified using various chromatographic and spectrometric analyses, including HPLC-UVD, GC-MS, and tandem mass spectrometry. The results indicated that RGP-AP-I comprises a rhamnogalacturonan I (RG-I) backbone with repeating disaccharide units [→2)-Rhap-(1 → 4)-GalAp-(1→] and three side chains substituted at the C(O)4 position of the rhamnose residue in the backbone. The three side chains were identified as a highly branched α-(1 → 5)-arabinan, a branched β-(1 → 4)-galactan, and an arabino-β-3,6-galactan. Our results represent the first findings regarding the fine structure of the immuno-stimulatory polysaccharide RG-AP-I isolated from red ginseng.
Collapse
Affiliation(s)
- Sue Jung Lee
- Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwanggyosan-ro, Youngtong-gu, Suwon, Gyeonggi 16227, Republic of Korea; Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Gyo In
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34128, Republic of Korea
| | - Jong-Won Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34128, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwanggyosan-ro, Youngtong-gu, Suwon, Gyeonggi 16227, Republic of Korea.
| |
Collapse
|
37
|
Nakamura A, Ohboshi H, Sakai M, Nomura K, Nishiyama S, Ashida H. Extraction of water-soluble polysaccharides from kidney beans and examination of their protein dispersion and stabilization properties under acidic conditions. Food Res Int 2021; 144:110357. [DOI: 10.1016/j.foodres.2021.110357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
|
38
|
Sun W, Zheng Y, Chen S, Chen J, Zhang H, Fang H, Ye X, Tian J. Applications of Polysaccharides as Stabilizers in Acidified Milks. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Weixuan Sun
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
- Zhejiang University, Hangzhou, China
| | | | - Shiguo Chen
- Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Jianle Chen
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Huiling Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Xingqian Ye
- Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
39
|
The Secretomes of Aspergillus japonicus and Aspergillus terreus Supplement the Rovabio ® Enzyme Cocktail for the Degradation of Soybean Meal for Animal Feed. J Fungi (Basel) 2021; 7:jof7040278. [PMID: 33917144 PMCID: PMC8067802 DOI: 10.3390/jof7040278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
One of the challenges of the 21st century will be to feed more than 10 billion people by 2050. In animal feed, one of the promising approaches is to use agriculture by-products such as soybean meal as it represents a rich source of proteins. However, soybean meal proteins are embedded in a complex plant cell wall matrix, mostly composed of pectic polysaccharides, which are recalcitrant to digestion for animals and can cause digestive disorders in poultry breeding. In this study, we explored fungal diversity to find enzymes acting on soybean meal components. An exploration of almost 50 fungal strains enabled the identification of two strains (Aspergillus terreus and Aspergillus japonicus), which improved the solubilization of soybean meal in terms of polysaccharides and proteins. The two Aspergilli strains identified in the frame of this study offer a promising solution to process industrial food coproducts into suitable animal feed solutions.
Collapse
|
40
|
Selective capture and separation of cationic/anionic guest dyes using crosslinked soy polysaccharide-based hydrogel nanostructure. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
van de Meene A, McAloney L, Wilson SM, Zhou J, Zeng W, McMillan P, Bacic A, Doblin MS. Interactions between Cellulose and (1,3;1,4)-β-glucans and Arabinoxylans in the Regenerating Wall of Suspension Culture Cells of the Ryegrass Lolium multiflorum. Cells 2021; 10:cells10010127. [PMID: 33440743 PMCID: PMC7828102 DOI: 10.3390/cells10010127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Plant cell walls (PCWs) form the outer barrier of cells that give the plant strength and directly interact with the environment and other cells in the plant. PCWs are composed of several polysaccharides, of which cellulose forms the main fibrillar network. Enmeshed between these fibrils of cellulose are non-cellulosic polysaccharides (NCPs), pectins, and proteins. This study investigates the sequence, timing, patterning, and architecture of cell wall polysaccharide regeneration in suspension culture cells (SCC) of the grass species Lolium multiflorum (Lolium). Confocal, superresolution, and electron microscopies were used in combination with cytochemical labeling to investigate polysaccharide deposition in SCC after protoplasting. Cellulose was the first polysaccharide observed, followed shortly thereafter by (1,3;1,4)-β-glucan, which is also known as mixed-linkage glucan (MLG), arabinoxylan (AX), and callose. Cellulose formed fibrils with AX and produced a filamentous-like network, whereas MLG formed punctate patches. Using colocalization analysis, cellulose and AX were shown to interact during early stages of wall generation, but this interaction reduced over time as the wall matured. AX and MLG interactions increased slightly over time, but cellulose and MLG were not seen to interact. Callose initially formed patches that were randomly positioned on the protoplast surface. There was no consistency in size or location over time. The architecture observed via superresolution microscopy showed similarities to the biophysical maps produced using atomic force microscopy and can give insight into the role of polysaccharides in PCWs.
Collapse
Affiliation(s)
- Allison van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.v.d.M.); (L.M.); (S.M.W.); (J.Z.); (W.Z.); (A.B.)
| | - Lauren McAloney
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.v.d.M.); (L.M.); (S.M.W.); (J.Z.); (W.Z.); (A.B.)
| | - Sarah M. Wilson
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.v.d.M.); (L.M.); (S.M.W.); (J.Z.); (W.Z.); (A.B.)
| | - JiZhi Zhou
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.v.d.M.); (L.M.); (S.M.W.); (J.Z.); (W.Z.); (A.B.)
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.v.d.M.); (L.M.); (S.M.W.); (J.Z.); (W.Z.); (A.B.)
- Sino-Australia Plant Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an 311300, China
| | - Paul McMillan
- Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.v.d.M.); (L.M.); (S.M.W.); (J.Z.); (W.Z.); (A.B.)
- Sino-Australia Plant Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an 311300, China
- Department of Animal, Plant & Soil Sciences, Latrobe Institute for Agriculture & Food (LIAF), Latrobe University, Melbourne, VIC 3086, Australia
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.v.d.M.); (L.M.); (S.M.W.); (J.Z.); (W.Z.); (A.B.)
- Sino-Australia Plant Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an 311300, China
- Department of Animal, Plant & Soil Sciences, Latrobe Institute for Agriculture & Food (LIAF), Latrobe University, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
42
|
Ma Z, Liu J, Liu Y, Zheng X, Tang K. Green synthesis of silver nanoparticles using soluble soybean polysaccharide and their application in antibacterial coatings. Int J Biol Macromol 2021; 166:567-577. [PMID: 33144252 DOI: 10.1016/j.ijbiomac.2020.10.214] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
In the present work, a facile and green synthesis approach for the production of monodispersed, small-sized (2.9 ± 0.7 nm) and stable silver nanoparticles (AgNPs) using soluble soybean polysaccharide (SSPS) was reported. SSPS was used as the reducing and stabilizing agent. The obtained SSPS-stabilized AgNPs (SA) were characterized by UV-vis absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. The antimicrobial activity of the SA colloidal dispersion (SACD) was evaluated based on the growth kinetics of bacteria E. coli and S. aureus. Afterwards, the colloidal dispersion was applied as a coating material to Kraft paper. The SACD-coated Kraft paper exhibited excellent antimicrobial activity against above bacteria strains and P. aeruginosa. The effects of SACD coating on surface wettability, barrier property and microstructure of the Kraft paper were also studied. The results suggested that the SSPS-stabilized AgNPs have great potential in antibacterial applications.
Collapse
Affiliation(s)
- Zhengxin Ma
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanchun Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
43
|
Influence of the degree of esterification of soluble soybean polysaccharide on the stability of acidified milk drinks. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Liu J, Liu C, Zheng X, Chen M, Tang K. Soluble soybean polysaccharide/nano zinc oxide antimicrobial nanocomposite films reinforced with microfibrillated cellulose. Int J Biol Macromol 2020; 159:793-803. [PMID: 32422257 DOI: 10.1016/j.ijbiomac.2020.05.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Nanocomposite films of soluble soybean polysaccharide (SSPS)/nano zinc oxide (nZnO) reinforced with microfibrillated cellulose (MFC) were developed by solvent casting method. The structure, optical, barrier, thermal, surface wettability, mechanical properties and antimicrobial activity of the SSPS/MFC, SSPS/nZnO and SSPS/nZnO/MFC nanocomposite films were evaluated. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra indicated interactions between SSPS and the nano-fillers. The nanocomposite films containing MFC showed improved tensile strength, stiffness, ultraviolet (UV) light barrier property, thermal stability and water resistance when compared with the neat SSPS film. The nZnO-incorporated nanocomposite films exhibited good antimicrobial activity against E. coli and B. subtlis. Overall, the MFC-reinforced SSPS/nZnO nanocomposite films possessed desirable characteristics to be considered as potential candidates for antimicrobial packaging and biomedical applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Chang Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Miao Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
45
|
Takeuchi Y, Asano T, Tsuzaki K, Wada K, Kurata H. Asymmetric Amination of meso-Epoxide with Vegetable Powder as a Low-Toxicity Catalyst. Molecules 2020; 25:E3197. [PMID: 32668749 PMCID: PMC7397229 DOI: 10.3390/molecules25143197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
This paper describes the scope and limitation of substrates subjected to asymmetric amination with epoxides catalyzed by a soluble soybean polysaccharide (Soyafibe S-DN), which we recently discovered from the reaction of 1,2-epoxycyclohexane with cyclopropylamine. Various meso-epoxides reacted with various amines afforded the corresponding products with good enantiomeric selectivity. Since it was found that pectin was found to have a catalytic ability after screening commercially available polysaccharides, we studied 33 different vegetable powders having pectic substances, and we found that many vegetable powders showed catalytic ability. These results should guide in using vegetable components as low-toxic catalysts for the production of pharmaceuticals.
Collapse
Affiliation(s)
- Yuki Takeuchi
- Kyowa Pharma Chemical Co., Ltd., Chokeiji, Takaoka, Toyama 933-8511, Japan; (T.A.); (K.T.); (K.W.)
- Graduate School of Engineering, Fukui University of Technology, Fukui 910-8505, Japan
| | - Tatsuhiro Asano
- Kyowa Pharma Chemical Co., Ltd., Chokeiji, Takaoka, Toyama 933-8511, Japan; (T.A.); (K.T.); (K.W.)
| | - Kazuya Tsuzaki
- Kyowa Pharma Chemical Co., Ltd., Chokeiji, Takaoka, Toyama 933-8511, Japan; (T.A.); (K.T.); (K.W.)
| | - Koichi Wada
- Kyowa Pharma Chemical Co., Ltd., Chokeiji, Takaoka, Toyama 933-8511, Japan; (T.A.); (K.T.); (K.W.)
| | - Hiroyuki Kurata
- Organization for Fundamental Education, Fukui University of Technology, Fukui 910-8505, Japan;
| |
Collapse
|
46
|
Eid M, Sobhy R, Zhou P, Wei X, Wu D, Li B. β-cyclodextrin- soy soluble polysaccharide based core-shell bionanocomposites hydrogel for vitamin E swelling controlled delivery. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Cai B, Ikeda S. Resistance of Soybean Pectin–Protein Conjugate Pre-Adsorbed to the Air–Water Interface to Displacement by the Competitive Adsorption of Surfactant. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09639-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100485] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Cicchillo RM, Beeson WT, McCaskill DG, Shan G, Herman RA, Walsh TA. Identification of iron-chelating phenolics contributing to seed coat coloration in soybeans (Glycine max (L.) Merr.) expressing aryloxyalkanoate dioxygenase-12. PHYTOCHEMISTRY 2020; 172:112279. [PMID: 31999963 DOI: 10.1016/j.phytochem.2020.112279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Soybeans (Glycine max (L.) Merr.) genetically modified to express aryloxyalkanoate dioxygenase-12 (AAD-12), an enzyme that confers resistance to the herbicide 2,4-D, can sometimes exhibit a darker seed coat coloration than equivalent unmodified soybeans. The biochemical basis for this coloration was investigated in a non-commercial transgenic event, DAS-411Ø4-7 that exhibited more pronounced AAD-12-associated seed coat coloration than the commercial event, DAS-444Ø6-6. Analysis of color-enriched seed coat fractions from DAS-411Ø4-7 showed that the color was due to localized accumulation of iron-chelating phenolics, particularly the isoflavone genistin, that are associated with seed coat pectic polysaccharide and produce a brown chromophore. The association between genistin, iron, and pectic polysaccharide was characterized using a variety of analytical methods. Darker seeds from commercial soybean event DAS-444Ø6-6 also show higher genistin content localized to the darker colored portions of the seed coat (with no increase in whole seed genistin levels).
Collapse
Affiliation(s)
| | | | | | - Guomin Shan
- Corteva Agriscience, Indianapolis, IN, 46268, United States
| | - Rod A Herman
- Corteva Agriscience, Indianapolis, IN, 46268, United States
| | | |
Collapse
|
50
|
Noguchi M, Hasegawa Y, Suzuki S, Nakazawa M, Ueda M, Sakamoto T. Determination of chemical structure of pea pectin by using pectinolytic enzymes. Carbohydr Polym 2020; 231:115738. [PMID: 31888846 DOI: 10.1016/j.carbpol.2019.115738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
The chemical structure of pea pectin was delineated using pectin-degrading enzymes and biochemical methods. The molecular weight of the pea pectin preparation was 488,000, with 50 % arabinose content, and neutral sugar side chains attached to approximately 60 % of the rhamnose residues in rhamnogalacturonan-I (RG-I). Arabinan, an RG-I side chain, was highly branched, and the main chain was comprised of α-1,5-l-arabinan. Galactose and galactooligosaccharides were attached to approximately 35 % of the rhamnose residues in RG-I. Long chain β-1,4-galactan was also present. The xylose substitution rate in xylogalacturonan (XGA) was 63 %. The molar ratio of RG-I/homogalacturonan (HG)/XGA in the backbone of the pea pectin was approximately 3:3:4. When considering neutral sugar side chain content (arabinose, galactose, and xylose), the molar ratio of RG-I/HG/XGA regions in the pea pectin was 7:1:2. These data will help understand the properties of pea pectin.
Collapse
Affiliation(s)
- Misaki Noguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | - Shiho Suzuki
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.
| | - Masami Nakazawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Mitsuhiro Ueda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|