1
|
Mathov Y, Nissim-Rafinia M, Leibson C, Galun N, Marques-Bonet T, Kandel A, Liebergal M, Meshorer E, Carmel L. Inferring DNA methylation in non-skeletal tissues of ancient specimens. Nat Ecol Evol 2025; 9:153-165. [PMID: 39567757 PMCID: PMC11726462 DOI: 10.1038/s41559-024-02571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Genome-wide premortem DNA methylation patterns can be computationally reconstructed from high-coverage DNA sequences of ancient samples. Because DNA methylation is more conserved across species than across tissues, and ancient DNA is typically extracted from bones and teeth, previous works utilizing ancient DNA methylation maps focused on studying evolutionary changes in the skeletal system. Here we suggest that DNA methylation patterns in one tissue may, under certain conditions, be informative on DNA methylation patterns in other tissues of the same individual. Using the fact that tissue-specific DNA methylation builds up during embryonic development, we identified the conditions that allow for such cross-tissue inference and devised an algorithm that carries it out. We trained the algorithm on methylation data from extant species and reached high precisions of up to 0.92 for validation datasets. We then used the algorithm on archaic humans, and identified more than 1,850 positions for which we were able to observe differential DNA methylation in prefrontal cortex neurons. These positions are linked to hundreds of genes, many of which are involved in neural functions such as structural and developmental processes. Six positions are located in the neuroblastoma breaking point family (NBPF) gene family, which probably played a role in human brain evolution. The algorithm we present here allows for the examination of epigenetic changes in tissues and cell types that are absent from the palaeontological record, and therefore provides new ways to study the evolutionary impacts of epigenetic changes.
Collapse
Affiliation(s)
- Yoav Mathov
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chen Leibson
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Galun
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arye Kandel
- Orthopedic Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Meir Liebergal
- Orthopedic Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
3
|
Xu P, Liu B, Chen H, Wang H, Guo X, Yuan J. PAHs as environmental pollutants and their neurotoxic effects. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109975. [PMID: 38972621 DOI: 10.1016/j.cbpc.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are widely present in incompletely combusted air particulate matter <2.5 μm (PM2.5), tobacco and other organic materials, can enter the human body through various routes and are a class of environmental pollutants with neurotoxic effects. PAHs exposure can lead to abnormal development of the nervous system and neurobehavioral abnormalities in animals, including adverse effects on the nervous system of children and adults, such as a reduced learning ability, intellectual decline, and neural tube defects. After PAHs enter cells of the nervous system, they eventually lead to nervous system damage through mechanisms such as oxidative stress, DNA methylation and demethylation, and mitochondrial autophagy, potentially leading to a series of nervous system diseases, such as Alzheimer's disease. Therefore, preventing and treating neurological diseases caused by PAHs exposure are particularly important. From the perspective of the in vitro and in vivo effects of PAHs exposure, as well as its effects on human neurodevelopment, this paper reviews the toxic mechanisms of action of PAHs and the corresponding prevention and treatment methods to provide a relevant theoretical basis for preventing the neurotoxicity caused by PAHs, thereby reducing the incidence of diseases related to the nervous system and protecting human health.
Collapse
Affiliation(s)
- Peixin Xu
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bingchun Liu
- Stem Cell Laboratory / Central Laboratory Of Organ Transplantation / Inner Mongolia Autonomous Region Engineering Laboratory For Genetic Test And Research Of Tumor Cells, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong Chen
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huizeng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Guo
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jianlong Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
4
|
Kühne BA, Gutierrez-Vázquez L, Sánchez Lamelas E, Guardia-Escote L, Pla L, Loreiro C, Gratacós E, Barenys M, Illa M. Lactoferrin/sialic acid prevents adverse effects of intrauterine growth restriction on neurite length: investigations in an in vitro rabbit neurosphere model. Front Cell Neurosci 2023; 17:1116405. [PMID: 37180944 PMCID: PMC10169722 DOI: 10.3389/fncel.2023.1116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Intrauterine growth restriction (IUGR) is a well-known cause of impaired neurodevelopment during life. In this study, we aimed to characterize alterations in neuronal development underlying IUGR and discover strategies to ameliorate adverse neurodevelopment effects by using a recently established rabbit in vitro neurosphere culture. Methods IUGR was surgically induced in pregnant rabbits by ligation of placental vessels in one uterine horn, while the contralateral horn remained unaffected for normal growth (control). At this time point, rabbits were randomly assigned to receive either no treatment, docosahexaenoic acid (DHA), melatonin (MEL), or lactoferrin (LF) until c-section. Neurospheres consisting of neural progenitor cells were obtained from control and IUGR pup's whole brain and comparatively analyzed for the ability to differentiate into neurons, extend neurite length, and form dendritic branching or pre-synapses. We established for the very first time a protocol to cultivate control and IUGR rabbit neurospheres not only for 5 days but under long-term conditions up to 14 days under differentiation conditions. Additionally, an in vitro evaluation of these therapies was evaluated by exposing neurospheres from non-treated rabbits to DHA, MEL, and SA (sialic acid, which is the major lactoferrin compound) and by assessing the ability to differentiate neurons, extend neurite length, and form dendritic branching or pre-synapses. Results We revealed that IUGR significantly increased the neurite length after 5 days of cultivation in vitro, a result in good agreement with previous in vivo findings in IUGR rabbits presenting more complex dendritic arborization of neurons in the frontal cortex. MEL, DHA, and SA decreased the IUGR-induced length of primary dendrites in vitro, however, only SA was able to reduce the total neurite length to control level in IUGR neurospheres. After prenatal in vivo administration of SAs parent compound LF with subsequent evaluation in vitro, LF was able to prevent abnormal neurite extension. Discussion We established for the first time the maintenance of the rabbit neurosphere culture for 14 days under differentiation conditions with increasing complexity of neuronal length and branching up to pre-synaptic formation. From the therapies tested, LF or its major compound, SA, prevents abnormal neurite extension and was therefore identified as the most promising therapy against IUGR-induced changes in neuronal development.
Collapse
Affiliation(s)
- Britta Anna Kühne
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Lara Gutierrez-Vázquez
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Estela Sánchez Lamelas
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laia Guardia-Escote
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laura Pla
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Carla Loreiro
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Marta Barenys
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Miriam Illa
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
5
|
Hawash MBF, El-Deeb MA, Gaber R, Morsy KS. The buried gems of disease tolerance in animals: Evolutionary and interspecies comparative approaches: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals. Bioessays 2022; 44:e2200080. [PMID: 36050881 DOI: 10.1002/bies.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
Host defense mechanisms are categorized into different strategies, namely, avoidance, resistance and tolerance. Resistance encompasses mechanisms that directly kill the pathogen while tolerance is mainly concerned with alleviating the harsh consequences of the infection regardless of the pathogen burden. Resistance is well-known strategy in immunology while tolerance is relatively new. Studies addressed tolerance mainly using mouse models revealing a wide range of interesting tolerance mechanisms. Herein, we aim to emphasize on the interspecies comparative approaches to explore potential new mechanisms of disease tolerance. We will discuss mechanisms of tolerance with focus on those that were revealed using comparative study designs of mammals followed by summarizing the reasons for adopting comparative approaches on disease tolerance studies. Disease tolerance is a relatively new concept in immunology, we believe combining comparative studies with model organism study designs will enhance our understanding to tolerance and unveil new mechanisms of tolerance.
Collapse
Affiliation(s)
- Mohamed B F Hawash
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biochemistry and Molecular Biomedicine Department, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Mohamed A El-Deeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rahma Gaber
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Kareem S Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Ma Q, Liu Y, Yang X, Guo Y, Xiang T, Wang Y, Yan Y, Li D, Nie T, Li Z, Qu G, Jiang G. Effect-directed analysis for revealing aryl hydrocarbon receptor agonists in sediment samples from an electronic waste recycling town in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119659. [PMID: 35738515 DOI: 10.1016/j.envpol.2022.119659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Exposure to electronic and electrical waste (e-waste) has been related to a few adverse health effects. In this study, sediment samples from an e-waste recycling town in China were collected, and aryl hydrocarbon receptor (AhR) agonists in the samples were identified using an effect-directed analysis (EDA) strategy. The CBG2.8D cell line reporter gene bioassay was used as a toxicity test, while suspect screening against chemical databases was performed for potential AhR agonist identification where both gas chromatography- and liquid chromatography-high resolution mass spectrometry analyses were run. When the original sample extract showed high AhR-mediated activity, sample fractionation was performed, and fractions exhibiting high bioactivity were chemically analyzed again to reveal the corresponding AhR agonists. In total, 23 AhR agonists were identified, including 14 commonly known ones and 9 new ones. Benzo [k]fluoranthene and 6-nitrochrysene were the dominant AhR agonists, covering 16-71% and 2.7-12%, respectively, of the AhR activation effects measured in the parent extracts. The newly identified AhR-active chemicals combined explained 0.13-0.20% of the parent extracts' effects, with 7,12-dimethylbenz [a]anthracene and 8,9,11-trimethylbenz [a]anthracene being the major contributors. A diagnostic isomer ratio analysis of polycyclic aromatic hydrocarbons suggested that the major source of AhR agonists identified in these e-waste related sediment samples were probably petroleum product combustion and biomass combustion. In the future, for a more comprehensive AhR agonist investigation, in-house chemical synthesis and purification, and, when necessary, a secondary sample fractionation, would be beneficial.
Collapse
Affiliation(s)
- Qianchi Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Science, Zhejiang University, 310058, Hangzhou, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhao Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Nie
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Science, Zhejiang University, 310058, Hangzhou, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
7
|
Imran SJ, Vagaska B, Kriska J, Anderova M, Bortolozzi M, Gerosa G, Ferretti P, Vrzal R. Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons. Pharmaceuticals (Basel) 2022; 15:ph15070828. [PMID: 35890127 PMCID: PMC9321538 DOI: 10.3390/ph15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.
Collapse
Affiliation(s)
- Saima Jalil Imran
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| | - Barbora Vagaska
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy;
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| |
Collapse
|
8
|
Kuang H, Zhou W, Zeng Y, Xu D, Zhu W, Lin S, Fan R. Dose makes poison: Insights into the neurotoxicity of perinatal and juvenile exposure to environmental doses of 16 priority-controlled PAHs. CHEMOSPHERE 2022; 298:134201. [PMID: 35257710 DOI: 10.1016/j.chemosphere.2022.134201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Whether chronic exposure to environmental doses of polycyclic aromatic hydrocarbons (PAHs) can lead to neurotoxic effects is still unclear. Hence, the neurotoxic effects of perinatal and juvenile exposure to 16 priority-controlled PAHs were investigated. The mice were treated with 0, 0.5, 18.75, 50, 1875 μg/kg/day of PAHs corresponding to various population exposure concentrations from gestation to postnatal day 60. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hippocampal and cortical neurotransmitter levels were determined using liquid chromatography-tandem mass spectrometry. Typical indicators or outcome of neurotoxicity, including, spatial learning and memory ability, hippocampal long-term potentiation (LTP) and dendritic spine density were evaluated via Morris water maze tests, electrophysiological experiments and Golgi-Cox assays, respectively. The results showed that exposure to different levels of PAH could not increase oxidative DNA damage level. Mice exposed to 0.5, 50 and 1875 μg/kg/day PAHs had significantly longer escape latency than the control group only on the 1st day (p < 0.05). The number of platform crossings and the time spent in target quadrant were similar between the control and the PAHs-exposed mice. Compared with the control mice, only those exposed to 50 μg/kg/day PAHs had significantly lower LTP in hippocampal CA1 region and dendritic spine density in hippocampal DG region (p < 0.05). Except for serotonin, no significant difference in hippocampal and cortical neurotransmitter concentrations was observed between the control and PAHs-exposed groups. Taken together, perinatal and juvenile exposure to environmental doses of PAHs had no profound effect on spatial learning and memory abilities, hippocampal LTP, dendritic spines density, and neurotransmitter levels. These unexpected findings were quite different from previous in vivo studies which commonly used 2-3 orders of magnitude higher PAHs doses to treat animals. Thus, the environmental dose is a crucial reference for future toxicological research to reveal the actual toxic mechanisms and human health effects of PAHs exposure.
Collapse
Affiliation(s)
- Hongxuan Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Wenji Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yingwei Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Da Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wanqi Zhu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shengjie Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
9
|
Djidrovski I, Georgiou M, Tasinato E, Leonard MO, Van den Bor J, Lako M, Armstrong L. Direct transcriptomic comparison of xenobiotic metabolism and toxicity pathway induction of airway epithelium models at an air-liquid interface generated from induced pluripotent stem cells and primary bronchial epithelial cells. Cell Biol Toxicol 2022; 39:1-18. [PMID: 35641671 PMCID: PMC10042770 DOI: 10.1007/s10565-022-09726-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
The airway epithelium represents the main barrier between inhaled air and the tissues of the respiratory tract and is therefore an important point of contact with xenobiotic substances into the human body. Several studies have recently shown that in vitro models of the airway grown at an air-liquid interface (ALI) can be particularly useful to obtain mechanistic information about the toxicity of chemical compounds. However, such methods are not very amenable to high throughput since the primary cells cannot be expanded indefinitely in culture to obtain a sustainable number of cells. Induced pluripotent stem cells (iPSCs) have become a popular option in the recent years for modelling the airways of the lung, but despite progress in the field, such models have so far not been assessed for their ability to metabolise xenobiotic compounds and how they compare to the primary bronchial airway model (pBAE). Here, we report a comparative analysis by TempoSeq (oligo-directed sequencing) of an iPSC-derived airway model (iBAE) with a primary bronchial airway model (pBAE). The iBAE and pBAE were differentiated at an ALI and then evaluated in a 5-compound screen with exposure to a sub-lethal concentration of each compound for 24 h. We found that despite lower expression of xenobiotic metabolism genes, the iBAE similarly predicted the toxic pathways when compared to the pBAE model. Our results show that iPSC airway models at ALI show promise for inhalation toxicity assessments with further development.
Collapse
Affiliation(s)
- Ivo Djidrovski
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK.,Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Maria Georgiou
- Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Elena Tasinato
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Martin O Leonard
- Toxicology Department, Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Campus, Chilton, OX11 0RQ, UK
| | - Jelle Van den Bor
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Majlinda Lako
- Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lyle Armstrong
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK. .,Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
10
|
Li S, Yuan J, Che S, Zhang L, Ruan Z, Sun X. Decabromodiphenyl ether induces ROS-mediated intestinal toxicity through the Keap1-Nrf2 pathway. J Biochem Mol Toxicol 2022; 36:e22995. [PMID: 35266255 DOI: 10.1002/jbt.22995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants as commercial products. PBDEs have been demonstrated to induce hepatic, reproductive, neural, and thyroid toxicity effects. This study aimed to clarify the potential intestinal toxicity effects of decabrominated diphenyl ether (PBDE-209) in vivo and in vitro. First, we investigated the change of PBDE-209 on oxidative stress in the intestine of mice. Subsequently, the potential toxicity mechanism of PBDE-209 in vitro was investigated. Caco-2 cells were treated with different concentrations of PBDE-209 (1, 5, and 25 μmol/L) for 24 and 48 h. We determined the cell viability, reactive oxygen species (ROS) level, multiple cellular parameters, and relative mRNA expressions. The results showed that PBDE-209 significantly injured the colon of mice, increased the intestinal levels of malondialdehyde (MDA), and changed the antioxidant enzyme activities. PBDE-209 inhibited the proliferation and induced cytotoxicity of Caco-2 cells. The change in ROS production and mitochondrial membrane potential (MMP) revealed that PBDE-209 caused oxidative stress in Caco-2 cells. The real-time PCR assays revealed that PBDE-209 inhibited the mRNA expression level of antioxidative defense factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, the FAS and Cytochrome P450 1A1 (CYP1A1) mRNA expression levels were increased in Caco-2 cells. These results suggested that PBDE-209 exerts intestinal toxicity effects in vivo and in vitro and inhibits the antioxidative defense gene expression in Caco-2 cells. This study provides an opportunity to advance the understanding of toxicity by the persistent environmental pollutant PBDE-209 to the intestine.
Collapse
Affiliation(s)
- Shiqi Li
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. FRONTIERS IN TOXICOLOGY 2022; 4:816370. [PMID: 35295221 PMCID: PMC8915868 DOI: 10.3389/ftox.2022.816370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.
Collapse
Affiliation(s)
- Katharina Koch
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kristina Bartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Hartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Jördis Klose
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Eliška Kuchovská
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Melanie Pahl
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kevin Schlüppmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
12
|
The Role of AhR in the Hallmarks of Brain Aging: Friend and Foe. Cells 2021; 10:cells10102729. [PMID: 34685709 PMCID: PMC8534784 DOI: 10.3390/cells10102729] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered to be involved in aging phenotypes across several species. This receptor is a highly conserved biosensor that is activated by numerous exogenous and endogenous molecules, including microbiota metabolites, to mediate several physiological and toxicological functions. Brain aging hallmarks, which include glial cell activation and inflammation, increased oxidative stress, mitochondrial dysfunction, and cellular senescence, increase the vulnerability of humans to various neurodegenerative diseases. Interestingly, many studies have implicated AhR signaling pathways in the aging process and longevity across several species. This review provides an overview of the impact of AhR pathways on various aging hallmarks in the brain and the implications for AhR signaling as a mechanism in regulating aging-related diseases of the brain. We also explore how the nature of AhR ligands determines the outcomes of several signaling pathways in brain aging processes.
Collapse
|
13
|
Chesnut M, Hartung T, Hogberg H, Pamies D. Human Oligodendrocytes and Myelin In Vitro to Evaluate Developmental Neurotoxicity. Int J Mol Sci 2021; 22:7929. [PMID: 34360696 PMCID: PMC8347131 DOI: 10.3390/ijms22157929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Center for Alternatives to Animal Testing (CAAT-Europe), University of Konstanz, 78464 Konstanz, Germany
| | - Helena Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
14
|
Saavedra L, Wallace K, Freudenrich TF, Mall M, Mundy WR, Davila J, Shafer TJ, Wernig M, Haag D. Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicol Sci 2021; 180:295-312. [PMID: 33537736 PMCID: PMC11811916 DOI: 10.1093/toxsci/kfab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.
Collapse
Affiliation(s)
- Lorena Saavedra
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathleen Wallace
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Theresa F. Freudenrich
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Moritz Mall
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - William R. Mundy
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jorge Davila
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Timothy J. Shafer
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Haag
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
15
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
16
|
Davidsen N, Lauvås AJ, Myhre O, Ropstad E, Carpi D, Gyves EMD, Berntsen HF, Dirven H, Paulsen RE, Bal-Price A, Pistollato F. Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reprod Toxicol 2021; 100:17-34. [PMID: 33333158 PMCID: PMC7992035 DOI: 10.1016/j.reprotox.2020.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Halogenated persistent organic pollutants (POPs) like perfluorinated alkylated substances (PFASs), brominated flame retardants (BFRs), organochlorine pesticides and polychlorinated biphenyls (PCBs) are known to cause cancer, immunotoxicity, neurotoxicity and interfere with reproduction and development. Concerns have been raised about the impact of POPs upon brain development and possibly neurodevelopmental disorders. The developing brain is a particularly vulnerable organ due to dynamic and complex neurodevelopmental processes occurring early in life. However, very few studies have reported on the effects of POP mixtures at human relevant exposures, and their impact on key neurodevelopmental processes using human in vitro test systems. Aiming to reduce this knowledge gap, we exposed mixed neuronal/glial cultures differentiated from neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) to reconstructed mixtures of 29 different POPs using concentrations comparable to Scandinavian human blood levels. Effects of the POP mixtures on neuronal proliferation, differentiation and synaptogenesis were evaluated using in vitro assays anchored to common key events identified in the existing developmental neurotoxicity (DNT) adverse outcome pathways (AOPs). The present study showed that mixtures of POPs (in particular brominated and chlorinated compounds) at human relevant concentrations increased proliferation of NSCs and decreased synapse number. Based on a mathematical modelling, synaptogenesis and neurite outgrowth seem to be the most sensitive DNT in vitro endpoints. Our results indicate that prenatal exposure to POPs may affect human brain development, potentially contributing to recently observed learning and memory deficits in children.
Collapse
Affiliation(s)
- Nichlas Davidsen
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Jacobsen Lauvås
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Oddvar Myhre
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway; National Institute of Occupational Health, Oslo, Norway
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
17
|
Kwon YJ, Shin S, Chun YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch Pharm Res 2021; 44:63-83. [PMID: 33484438 DOI: 10.1007/s12272-021-01306-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
18
|
Barenys M, Illa M, Hofrichter M, Loreiro C, Pla L, Klose J, Kühne BA, Gómez-Catalán J, Braun JM, Crispi F, Gratacós E, Fritsche E. Rabbit neurospheres as a novel in vitro tool for studying neurodevelopmental effects induced by intrauterine growth restriction. Stem Cells Transl Med 2020; 10:209-221. [PMID: 33034168 PMCID: PMC7848321 DOI: 10.1002/sctm.20-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to develop a rabbit neurosphere culture to characterize differences in basic processes of neurogenesis induced by intrauterine growth restriction (IUGR). A novel in vitro neurosphere culture has been established using fresh or frozen neural progenitor cells from newborn (PND0) rabbit brains. After surgical IUGR induction in pregnant rabbits and cesarean section 5 days later, neural progenitor cells from both control and IUGR groups were isolated and directly cultured or frozen at −80°C. These neural progenitor cells spontaneously formed neurospheres after 7 days in culture. The ability of control and IUGR neurospheres to migrate, proliferate, differentiate to neurons, astrocytes, or oligodendrocytes was compared and the possibility to modulate their responses was tested by exposure to several positive and negative controls. Neurospheres obtained from IUGR brains have a significant impairment in oligodendrocyte differentiation, whereas no significant differences are observed in other basic processes of neurogenesis. This impairment can be reverted by in vitro exposure of IUGR neurospheres to thyroid hormone, which is known to play an essential role in white matter maturation in vivo. Our new rabbit neurosphere model and the results of this study open the possibility to test several substances in vitro as neuroprotective candidates against IUGR induced neurodevelopmental damage while decreasing the number of animals and resources and allowing a more mechanistic approach at a cellular functional level.
Collapse
Affiliation(s)
- Marta Barenys
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Miriam Illa
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Maxi Hofrichter
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Carla Loreiro
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Laura Pla
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Jördis Klose
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Britta Anna Kühne
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.,BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Jesús Gómez-Catalán
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jan Matthias Braun
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Fatima Crispi
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
19
|
Paparella M, Bennekou SH, Bal-Price A. An analysis of the limitations and uncertainties of in vivo developmental neurotoxicity testing and assessment to identify the potential for alternative approaches. Reprod Toxicol 2020; 96:327-336. [PMID: 32781019 DOI: 10.1016/j.reprotox.2020.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Limitations of regulatory in vivo developmental neurotoxicity (DNT) testing and assessment are well known, such as the 3Rs conflict, low throughput, high costs, high specific expertise needed and the lack of deeper mechanistic information. Moreover, the standard in vivo DNT data variability and in the experimental animal to human real life extrapolation is uncertain. Here, knowledge about these limitations and uncertainties is systematically summarized using a tabular OECD format. We also outline a hypothesis how alternative, fit-for-purpose Integrated Approaches to Testing and Assessment (IATAs) for DNT could improve current standard animal testing: Relative gains in 3Rs compliance, reduced costs, higher throughput, improved basic study design, higher standardization of testing and assessment and validation without 3Rs conflict, increasing the availability and reliability of DNT data. This could allow a more reliable comparative toxicity assessment over a larger proportion of chemicals within our global environment. The use of early, mechanistic, sensitive indicators for potential DNT could better support human safety assessment and mixture extrapolation. Using kinetic modelling ideally these could provide - eventually context dependent - at least the same level of human health protection. Such new approaches could also lead to a new mechanistic understanding for chemical safety, permitting determination of a dose that is likely not to trigger defined toxicity traits or pathways, rather than a dose not causing the current apical organism endpoints. The manuscript shall motivate and guide the development of new alternative methods for IATAs with diverse applications and support decision-making for their regulatory acceptance.
Collapse
Affiliation(s)
- Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
20
|
Saha S, Mahapatra KK, Mishra SR, Mallick S, Negi VD, Sarangi I, Patil S, Patra SK, Bhutia SK. Bacopa monnieri inhibits apoptosis and senescence through mitophagy in human astrocytes. Food Chem Toxicol 2020; 141:111367. [PMID: 32335210 DOI: 10.1016/j.fct.2020.111367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a potent neurotoxic agent that is responsible for impaired neuronal development and is associated with aging. Here, it was demonstrated that extracts of Bacopa monnieri (BM), a traditional Ayurvedic medicine, diminished the B[a]P-induced apoptosis and senescence in human astrocytes. BM was demonstrated to protect the immortalized primary fetal astrocytes (IMPHFA) from B[a]P-induced apoptosis and senescence by reducing the damaged mitochondria that produced reactive oxygen species (ROS). Furthermore, it was shown that B[a]P-triggered G2 arrest could be altered by BM, thus indicating that BM could reverse the cell cycle arrest and mediate a normal cell cycle in IMPHFA cells. In addition, the lifespan of Caenorhabditis elegans was assessed, which confirmed these effects in the presence of BM, compared to the B[a]P-treated group. Furthermore, the anti-senescence and anti-apoptotic activities of BM were observed to be mediated through the protective effect of mitophagy, and inhibition of mitophagy could not protect the astrocytes from mitochondrial ROS-induced apoptosis and senescence in BM-treated cells. Moreover, it was revealed that BM induced Parkin-dependent mitophagy to exert its cytoprotective activity in IMPHFA cells. In conclusion, the anti-senescence and anti-apoptotic effects of BM in astrocytes could combat pollution and aging-related neurological disorders.
Collapse
Affiliation(s)
- Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, India
| | | | | | - Swarupa Mallick
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Vidya Devi Negi
- Department of Life Science, National Institute of Technology Rourkela, India
| | | | - Sankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Samir Kumar Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| |
Collapse
|
21
|
Characterization and application of electrically active neuronal networks established from human induced pluripotent stem cell-derived neural progenitor cells for neurotoxicity evaluation. Stem Cell Res 2020; 45:101761. [PMID: 32244191 DOI: 10.1016/j.scr.2020.101761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurotoxicity is mediated by a variety of modes-of-actions leading to disturbance of neuronal function. In order to screen larger numbers of compounds for their neurotoxic potential, in vitro functional neuronal networks (NN) might be helpful tools. We established and characterized human NN (hNN) from hiPSC-derived neural progenitor cells by comparing hNN formation with two different differentiation media: in presence (CINDA) and absence (neural differentiation medium (NDM)) of maturation-supporting factors. As a NN control we included differentiating rat NN (rNN) in the study. Gene/protein expression and electrical activity from in vitro developing NN were assessed at multiple time points. Transcriptomes of 5, 14 and 28 days in vitro CINDA-grown hNN were compared to gene expression profiles of in vivo human developing brains. Molecular expression analyses as well as measures of electrical activity indicate that NN mature into neurons of different subtypes and astrocytes over time. In contrast to rNN, hNN are less electrically active within the same period of differentiation time, yet hNN grown in CINDA medium develop higher firing rates than hNN without supplements. Challenge of NN with neuronal receptor stimulators and inhibitors demonstrate presence of inhibitory, GABAergic neurons, whereas glutamatergic responses are limited. hiPSC-derived GABAergic hNN grown in CINDA medium might be a useful tool as part of an in vitro battery for assessing neurotoxicity.
Collapse
|
22
|
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicol Sci 2019; 165:21-30. [PMID: 29982830 DOI: 10.1093/toxsci/kfy178] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is evidence that chemical exposure during development can cause irreversible impairments of the human developing nervous system. Therefore, testing compounds for their developmentally neurotoxic potential has high priority for different stakeholders: academia, industry, and regulatory bodies. Due to the resource-intensity of current developmental neurotoxicity (DNT) in vivo guidelines, alternative methods that are scientifically valid and have a high predictivity for humans are especially desired by regulators. Here, we review availability of stem-/progenitor cell-based in vitro methods for DNT evaluation that is based on the concept of neurodevelopmental process assessment. These test methods are assembled into a DNT in vitro testing battery. Gaps in this testing battery addressing research needs are also pointed out.
Collapse
Affiliation(s)
| | - Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Laura Nimtz
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Saskia Wuttke
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| |
Collapse
|
23
|
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. Development of the Concept for Stem Cell-Based Developmental Neurotoxicity Evaluation. Toxicol Sci 2019; 165:14-20. [PMID: 29982725 DOI: 10.1093/toxsci/kfy175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human brain development consists of a series of complex spatiotemporal processes that if disturbed by chemical exposure causes irreversible impairments of the nervous system. To evaluate a chemical disturbance in an alternative assay, the concept evolved that the complex procedure of brain development can be disassembled into several neurodevelopmental endpoints which can be represented by a combination of different alternative assays. In this review article, we provide a scientific rationale for the neurodevelopmental endpoints that are currently chosen to establish assays with human stem/and progenitor cells. Assays covering these major neurodevelopmental endpoints are thought to assemble as building blocks of a DNT testing battery.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.,Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Laura Nimtz
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Saskia Wuttke
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Feutz AC, De Geyter C. Accuracy, discriminative properties and reliability of a human ESC-based in vitro toxicity assay to distinguish teratogens responsible for neural tube defects. Arch Toxicol 2019; 93:2375-2384. [PMID: 31401662 DOI: 10.1007/s00204-019-02512-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022]
Abstract
The poor correlation of developmental toxicity studies in animals with human outcome data has emphasized the need for complementary assays based on human cells and tissues. As neural tube defects represent an important proportion of congenital malformations, we evaluated here the accuracy of a human embryonic stem cell (hESC)-based assay to predict chemically induced disruption of neural tube formation. As teratogenic compounds, we used cyclopamine (CPA), valproic acid (VPA), ochratoxin A (OTA) and mycophenolic acid (MMF), all suspected or known inducers of human neural tube defects, as well as theophylline and saccharin as negative control compounds. We analyzed their effects on the ability of hES cells to give rise to neural precursors (expressing specific marker Nestin), to form neural tube-like structures (rosettes), and to express specific markers (Sox1, Otx2, Lix1, EvI1, Rspo3) during rosette formation. The results showed that various effects of the selected compounds on early neural development could be specifically revealed in vitro through related alterations of neurogenic differentiation of hESC. Furthermore, it was possible to discriminate toxicants acting at different time points during embryonic development and, therefore, responsible for distinct adverse effects on neural tube formation. By comparing four different hESC lines, we observed a significant (up to fivefold) variability of the line-dependent response to toxicants. We highlight at least two sources of variability: one related to the heterogeneity of hESC lines in culture (stemness/commitment profiles); the second to possible genetically determined differences in individual sensitivity to teratogens.
Collapse
Affiliation(s)
- Anne-Catherine Feutz
- Reproductive Medicine and Gynaecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse 134, 4031, Basel, Switzerland.,Department of Biomedicine (DBM), University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,SCAHT-Swiss Centre for Applied Human Toxicology, University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland
| | - Christian De Geyter
- Reproductive Medicine and Gynaecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse 134, 4031, Basel, Switzerland. .,SCAHT-Swiss Centre for Applied Human Toxicology, University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland.
| |
Collapse
|
25
|
Zhang Z, He J, Shi T, Tang N, Zhang S, Wen S, Liu X, Zhao M, Wang D, Chen W. Associations between polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans exposure and oxidatively generated damage to DNA and lipid. CHEMOSPHERE 2019; 227:237-246. [PMID: 30991198 DOI: 10.1016/j.chemosphere.2019.04.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans (PCDD/Fs) have been reported to induce reactive oxygen species and oxidative stress, but the dose-response relationships have not been explored in molecular epidemiological studies. In this study, a total of 602 participants were recruited, comprising of 215 foundry workers, 171 incineration workers and 216 residents living more than 5 km away from the plants as the reference group. Individual PCDD/Fs exposures were estimated according to PCDD/Fs levels of working and living ambient air and daily foods. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-iso-prostaglandin-F2α (8-isoPGF2α) were determined to reflect oxidatively generated damage to DNA and lipid. Generalized linear models were used to access the associations between PCDD/Fs exposure and oxidative stress biomarkers. We found that PCDD/Fs exposure and urinary oxidative stress biomarkers of workers were all higher than those of the reference group. Significantly positive exposure-response relationships between individual PCDD/Fs exposures and urinary 8-oxodG and 8-iso-PGF2α were found. Each 1-unit increase in ln-transformed levels of PCDD/Fs exposure generated a 0.78 nmol/mmol creatinine increase in ln-transformed 8-oxodG and a 0.50 ng/mmol creatinine increase in ln-transformed 8-isoPGF2α in foundry workers, a 0.49 nmol/mmol creatinine increase in ln-transformed 8-oxodG and a 0.26 ng/mmol creatinine increase in ln-transformed 8-isoPGF2α in incineration workers, compared with the reference group. And such associations were not modified by tobacco use. Our findings could help to understand the dose-response relationships between PCDD/Fs and oxidatively generated damage to DNA and lipid, and provide an epidemiologic basis for conducting research on the carcinogenesis and other toxicity mechanisms of PCDD/Fs.
Collapse
Affiliation(s)
- Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jintong He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Zhuhai Center for Chronic Disease Control, Zhuhai, Guangdong, 519060, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Sukun Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection (MEP), Guangzhou, 510655, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Ming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
26
|
Sarma SN, Nagano R, Ohsako S. Tyroxine Hydroxylase-Positive Neuronal Cell Population is Increased by Temporal Dioxin Exposure at Early Stage of Differentiation from Human Embryonic Stem Cells. Int J Mol Sci 2019; 20:ijms20112687. [PMID: 31159217 PMCID: PMC6600215 DOI: 10.3390/ijms20112687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The neurological effects of short-term dioxin exposure during the fetal period is an important health risk in humans. Here, we investigated the effects of dioxin on neural differentiation using human embryonic stem cells (hESCs) to evaluate human susceptibility to dioxin. Methods: Using an enzymatic bulk passage, neural differentiation from human ESCs was carried out. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was added to various stages of culture. The expression levels of the neuronal markers microtubule-associated protein 2 (MAP2) and thyroxine hydroxylase (TH) were measured by RT-qPCR and image analysis of immunostaining. Results: Although early-stage neuronal cells are quite resistant to TCDD, the numbers of neural rosettes and increases in mRNA expression levels and the number of cells positive for MAP2 and TH were significant by temporal exposure at embryoid body stage (Day9-exposure group). In contrast, the TCDD exposures against ESCs (Day0-exposure group) and differentiated neural cells (Day35-exposure group) were not affected at all. The increment was similarly observed by continuous exposure of TCDD from Day9 through Day60. Conclusions: These results indicated that dioxin exposure during the early stage of differentiation from hESCs increases the contents of neuronal cells, especially TH-positive neuronal cells. Regulations of aryl hydrocarbon receptor (AHR) signaling in an early stage of embryogenesis should be investigated extensively to understand the mechanism underlying the increase in neuronal cell populations and to apply the knowledge to regenerative medicine.
Collapse
Affiliation(s)
- Sailendra Nath Sarma
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Nagano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
27
|
Nyce JW. Detection of a novel, primate-specific 'kill switch' tumor suppression mechanism that may fundamentally control cancer risk in humans: an unexpected twist in the basic biology of TP53. Endocr Relat Cancer 2018; 25:R497-R517. [PMID: 29941676 PMCID: PMC6106910 DOI: 10.1530/erc-18-0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
The activation of TP53 is well known to exert tumor suppressive effects. We have detected a primate-specific adrenal androgen-mediated tumor suppression system in which circulating DHEAS is converted to DHEA specifically in cells in which TP53 has been inactivated DHEA is an uncompetitive inhibitor of glucose-6-phosphate dehydrogenase (G6PD), an enzyme indispensable for maintaining reactive oxygen species within limits survivable by the cell. Uncompetitive inhibition is otherwise unknown in natural systems because it becomes irreversible in the presence of high concentrations of substrate and inhibitor. In addition to primate-specific circulating DHEAS, a unique, primate-specific sequence motif that disables an activating regulatory site in the glucose-6-phosphatase (G6PC) promoter was also required to enable function of this previously unrecognized tumor suppression system. In human somatic cells, loss of TP53 thus triggers activation of DHEAS transport proteins and steroid sulfatase, which converts circulating DHEAS into intracellular DHEA, and hexokinase which increases glucose-6-phosphate substrate concentration. The triggering of these enzymes in the TP53-affected cell combines with the primate-specific G6PC promoter sequence motif that enables G6P substrate accumulation, driving uncompetitive inhibition of G6PD to irreversibility and ROS-mediated cell death. By this catastrophic 'kill switch' mechanism, TP53 mutations are effectively prevented from initiating tumorigenesis in the somatic cells of humans, the primate with the highest peak levels of circulating DHEAS. TP53 mutations in human tumors therefore represent fossils of kill switch failure resulting from an age-related decline in circulating DHEAS, a potentially reversible artifact of hominid evolution.
Collapse
|
28
|
Bal-Price A, Pistollato F, Sachana M, Bopp SK, Munn S, Worth A. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol Appl Pharmacol 2018; 354:7-18. [PMID: 29476865 PMCID: PMC6095942 DOI: 10.1016/j.taap.2018.02.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 01/23/2023]
Abstract
Currently, the identification of chemicals that have the potential to induce developmental neurotoxicity (DNT) is based on animal testing. Since at the regulatory level, systematic testing of DNT is not a standard requirement within the EU or USA chemical legislation safety assessment, DNT testing is only performed in higher tiered testing triggered based on chemical structure activity relationships or evidence of neurotoxicity in systemic acute or repeated dose toxicity studies. However, these triggers are rarely used and, in addition, do not always serve as reliable indicators of DNT, as they are generally based on observations in adult rodents. Therefore, there is a pressing need for developing alternative methodologies that can reliably support identification of DNT triggers, and more rapidly and cost-effectively support the identification and characterization of chemicals with DNT potential. We propose to incorporate mechanistic knowledge and data derived from in vitro studies to support various regulatory applications including: (a) the identification of potential DNT triggers, (b) initial chemical screening and prioritization, (c) hazard identification and characterization, (d) chemical biological grouping, and (e) assessment of exposure to chemical mixtures. Ideally, currently available cellular neuronal/glial models derived from human induced pluripotent stem cells (hiPSCs) should be used as they allow evaluation of chemical impacts on key neurodevelopmental processes, by reproducing different windows of exposure during human brain development. A battery of DNT in vitro test methods derived from hiPSCs could generate valuable mechanistic data, speeding up the evaluation of thousands of compounds present in industrial, agricultural and consumer products that lack safety data on DNT potential.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | | | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), 2 rue André Pascal, 75775 Paris, Cedex 16, France
| | | | - Sharon Munn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
29
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
30
|
Culture of human neurospheres in 3D scaffolds for developmental neurotoxicity testing. Toxicol In Vitro 2018; 52:106-115. [PMID: 29883730 DOI: 10.1016/j.tiv.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 11/24/2022]
Abstract
Human neural progenitor cells cultured as neurospheres are a promising tool for developmental neurotoxicity testing in vitro. In order to obtain a human cell-based tissue culture system as close to the organ as possible, it is desirable to improve the spatial organization of the "Neurosphere Assay" and use 3D scaffolds to better mimic the in vivo three dimensional cell microenvironment. For this reason we have established the conditions for short-term culture (up to 6 days) in matrigel or in IKVAV-3 peptide-functionalized hydrogels, and for long-term culture (>25 days) in IKVAV-3 peptide-functionalized hydrogels showing that these conditions support human neural progenitor cells' migration, differentiation to neurons and formation of neuronal networks. Moreover, we assessed if neurospheres grown in 3D scaffolds allow for developmental neurotoxicity compound testing. At concentrations not affecting cell viability the known developmental neurotoxic compound MeHgCl inhibits migration of human neural progenitor cells grown in 3D scaffolds with a higher potency than when the same cells are cultured on a laminin-coated surface as secondary 3D structures. Thus, this work opens the door to functional assessment of compound effects on short- and long-term cultured human neurospheres embedded in 3D scaffolds for developmental neurotoxicity testing.
Collapse
|
31
|
Masjosthusmann S, Becker D, Petzuch B, Klose J, Siebert C, Deenen R, Barenys M, Baumann J, Dach K, Tigges J, Hübenthal U, Köhrer K, Fritsche E. A transcriptome comparison of time-matched developing human, mouse and rat neural progenitor cells reveals human uniqueness. Toxicol Appl Pharmacol 2018; 354:40-55. [PMID: 29753005 DOI: 10.1016/j.taap.2018.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
It is widely accepted that human brain development has unique features that cannot be represented by rodents. Obvious reasons are the evolutionary distance and divergent physiology. This might lead to false predictions when rodents are used for safety or pharmacological efficacy studies. For a better translation of animal-based research to the human situation, human in vitro systems might be useful. In this study, we characterize developing neural progenitor cells from prenatal human and time-matched rat and mouse brains by analyzing the changes in their transcriptome profile during neural differentiation. Moreover, we identify hub molecules that regulate neurodevelopmental processes like migration and differentiation. Consequences of modulation of three of those hubs on these processes were studied in a species-specific context. We found that although the gene expression profiles of the three species largely differ qualitatively and quantitatively, they cluster in similar GO terms like cell migration, gliogenesis, neurogenesis or development of multicellular organism. Pharmacological modulation of the identified hub molecules triggered species-specific cellular responses. This study underlines the importance of understanding species differences on the molecular level and advocates the use of human based in vitro models for pharmacological and toxicological research.
Collapse
Affiliation(s)
- Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Daniel Becker
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany
| | - Barbara Petzuch
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Clara Siebert
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Rene Deenen
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Duesseldorf, NRW, Germany.
| | - Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Jenny Baumann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany
| | - Katharina Dach
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany; Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Ulrike Hübenthal
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Duesseldorf, NRW, Germany.
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany; Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Duesseldorf, NRW, Germany.
| |
Collapse
|
32
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
33
|
Fritsche E, Grandjean P, Crofton KM, Aschner M, Goldberg A, Heinonen T, Hessel EVS, Hogberg HT, Bennekou SH, Lein PJ, Leist M, Mundy WR, Paparella M, Piersma AH, Sachana M, Schmuck G, Solecki R, Terron A, Monnet-Tschudi F, Wilks MF, Witters H, Zurich MG, Bal-Price A. Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicol Appl Pharmacol 2018; 354:3-6. [PMID: 29447839 PMCID: PMC6097873 DOI: 10.1016/j.taap.2018.02.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/15/2023]
Abstract
This consensus statement voices the agreement of scientific stakeholders from regulatory agencies, academia and industry that a new framework needs adopting for assessment of chemicals with the potential to disrupt brain development. An increased prevalence of neurodevelopmental disorders in children has been observed that cannot solely be explained by genetics and recently pre- and postnatal exposure to environmental chemicals has been suspected as a causal factor. There is only very limited information on neurodevelopmental toxicity, leaving thousands of chemicals, that are present in the environment, with high uncertainty concerning their developmental neurotoxicity (DNT) potential. Closing this data gap with the current test guideline approach is not feasible, because the in vivo bioassays are far too resource-intensive concerning time, money and number of animals. A variety of in vitro methods are now available, that have the potential to close this data gap by permitting mode-of-action-based DNT testing employing human stem cells-derived neuronal/glial models. In vitro DNT data together with in silico approaches will in the future allow development of predictive models for DNT effects. The ultimate application goals of these new approach methods for DNT testing are their usage for different regulatory purposes. An increased prevalence of neurodevelopmental disorders in children is observed. There is very limited information on neurodevelopmental toxicity (DNT) induced by environmental chemicals. A new framework is required for assessment of chemicals with the potential to disrupt brain development. In vitro DNT data together with in silico approaches should be used for regulatory purposes.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Philippe Grandjean
- University of Southern Denmark, Harvard T.H. Chan School of Public Health, USA
| | | | | | - Alan Goldberg
- Bloomberg School of Public Health, Founding Director (Emeritus) of Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, USA; Global Food Ethics, Johns Hopkins University, Baltimore, USA
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | - Ellen V S Hessel
- National Institute for Public Health and the Environment, RIVM Center for Health Protection, Bilthoven, Netherlands
| | - Helena T Hogberg
- Centre for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, USA
| | | | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, USA
| | - Marcel Leist
- CAAT - Centre for Alternatives to Animal Testing, University of Konstanz, Konstanz, Germany
| | | | | | - Aldert H Piersma
- RIVM Center for Health Protection, Bilthoven and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | | | - Roland Solecki
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | - Martin F Wilks
- SCAHT - Swiss Centre for Applied Human Toxicology, University of Basel, Basel, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Belgium
| | | | - Anna Bal-Price
- European Commission -DG Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
34
|
Hofrichter M, Nimtz L, Tigges J, Kabiri Y, Schröter F, Royer-Pokora B, Hildebrandt B, Schmuck M, Epanchintsev A, Theiss S, Adjaye J, Egly JM, Krutmann J, Fritsche E. Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro. Stem Cell Res 2017; 25:72-82. [PMID: 29112887 DOI: 10.1016/j.scr.2017.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Developmental neurotoxicity (DNT) testing performed in rats is resource-intensive (costs, time, animals) and bears the issue of species extrapolation. Thus, reliable alternative human-based approaches are needed for predicting neurodevelopmental toxicity. Human induced pluripotent stem cells (hiPSCs) represent a basis for an alternative method possibly being part of an alternative DNT testing strategy. Here, we compared two hiPSC neural induction protocols resulting in 3D neurospheres: one using noggin and one cultivating cells in neural induction medium (NIM protocol). Performance of Nestin+/SOX2+ hiPSC-derived neural progenitor cells (NPCs) was compared to primary human NPCs. Generally, primary hNPCs first differentiate into Nestin+ and/or GFAP+ radial glia-like cells, while the hiPSC-derived NPCs (hiPSC-NPC) first differentiate into βIII-Tubulin+ neurons suggesting an earlier developmental stage of hiPSC-NPC. In the 'Neurosphere Assay', NIM generated hiPSC-NPC produced neurons with higher performance than with the noggin protocol. After long-term differentiation, hiPSC-NPC form neuronal networks, which become electrically active on microelectrode arrays after 85days. Finally, methylmercury chloride inhibits hiPSC-NPC and hNPC migration with similar potencies. hiPSC-NPCs-derived neurospheres seem to be useful for DNT evaluation representing early neural development in vitro. More system characterization by compound testing is needed to gain higher confidence in this method.
Collapse
Affiliation(s)
- Maxi Hofrichter
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Laura Nimtz
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Tigges
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Yaschar Kabiri
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Friederike Schröter
- Institute for Stem Cell Research & Regenerative Medicine, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Brigitte Royer-Pokora
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Martin Schmuck
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alexey Epanchintsev
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire: IGBMC, Centre National de la Recherche Scientifique, INSERUM, Université de Strasbourg, Strasbourg, France
| | - Stephan Theiss
- Institute of clinical neuroscience and medical psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research & Regenerative Medicine, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire: IGBMC, Centre National de la Recherche Scientifique, INSERUM, Université de Strasbourg, Strasbourg, France
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
35
|
Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, Limonciel A, Vinken M, Schildknecht S, Waldmann T, Danen E, van Ravenzwaay B, Kamp H, Gardner I, Godoy P, Bois FY, Braeuning A, Reif R, Oesch F, Drasdo D, Höhme S, Schwarz M, Hartung T, Braunbeck T, Beltman J, Vrieling H, Sanz F, Forsby A, Gadaleta D, Fisher C, Kelm J, Fluri D, Ecker G, Zdrazil B, Terron A, Jennings P, van der Burg B, Dooley S, Meijer AH, Willighagen E, Martens M, Evelo C, Mombelli E, Taboureau O, Mantovani A, Hardy B, Koch B, Escher S, van Thriel C, Cadenas C, Kroese D, van de Water B, Hengstler JG. Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 2017; 91:3477-3505. [DOI: 10.1007/s00204-017-2045-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
|
36
|
Xu EG, Khursigara AJ, Magnuson J, Hazard ES, Hardiman G, Esbaugh AJ, Roberts AP, Schlenk D. Larval Red Drum (Sciaenops ocellatus) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10162-10172. [PMID: 28768411 DOI: 10.1021/acs.est.7b02037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 μg/L ∑PAH50) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Alex J Khursigara
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Jason Magnuson
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Gary Hardiman
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Aaron P Roberts
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
37
|
In vitro modulatory effects of functionalized pyrimidines and piperidine derivatives on Aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR) activities. Bioorg Chem 2017; 71:285-293. [PMID: 28267985 DOI: 10.1016/j.bioorg.2017.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 02/06/2017] [Accepted: 02/18/2017] [Indexed: 11/21/2022]
Abstract
The development of biologically active molecules based on molecular recognition is an attractive and challenging task in medicinal chemistry and the molecules that can activate/deactivate certain receptors are of great medical interest. In this contribution, selected pyrimidine/piperidine derivatives were synthesized and tested for the ability to activate/deactivate Aryl hydrocarbon receptor (AhR) and Glucocorticoid receptor (GR). Tested compounds are shown to activate the receptors but to much lesser extent than positive controls, dioxin and dexamethasone for Ahr and GR, respectively. However, some of them antagonized the positive controls action. Although further in vivo studies are needed to fully characterize the bioactivities of these compounds, the reported in vitro evidences demonstrate that they might be used as the modulators of AhR and GR activities.
Collapse
|
38
|
Slotkin TA, Skavicus S, Card J, Giulio RTD, Seidler FJ. In vitro models reveal differences in the developmental neurotoxicity of an environmental polycylic aromatic hydrocarbon mixture compared to benzo[a]pyrene: Neuronotypic PC12 Cells and embryonic neural stem cells. Toxicology 2016; 377:49-56. [PMID: 28049045 DOI: 10.1016/j.tox.2016.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/14/2016] [Accepted: 12/31/2016] [Indexed: 12/27/2022]
Abstract
In addition to their carcinogenic activity, polycyclic aromatic hydrocarbons (PAHs) are suspected to be developmental neurotoxicants. We evaluated the effects of PAHs with two in vitro models that assess distinct "decision nodes" in neurodifferentiation: neuronotypic PC12 cells, which characterize the transition from cell replication to neurodifferentiation, neurite outgrowth and neurotransmitter specification; and embryonic neural stem cells (NSCs), which evaluate the origination of neurons and glia from precursors. We compared an environmentally-derived PAH mixture from a Superfund contamination site (Elizabeth River Sediment Extract, ERSE) to those of a single PAH, benzo[a]pyrene (BaP). In PC12 cells, BaP impaired the transition from cell replication to neurodifferentiation, resulting in higher numbers of cells, but with reduced cell size and deficits in all indices of neuronal features (neurite formation, development of dopamine and acetylcholine phenotypes). ERSE was far less effective, causing only modest changes in cell numbers and size and no impairment of neurite formation or neurotransmitter specification; in fact, ERSE evoked a slight increase in emergence of the acetylcholine phenotype. In the NSC model, this relationship was entirely reversed, with far greater sensitivity to ERSE than to BaP. Furthermore, ERSE, but not BaP, enhanced NSC differentiation into neurons, whereas both ERSE and BaP suppressed the glial phenotype. Our studies provide a cause-and-effect relationship for the observed association of developmental PAH exposure to behavioral deficits. Further, PAH sensitivity occurs over developmental stages corresponding to rudimentary brain formation through terminal neurodifferentiation, suggesting that vulnerability likely extends throughout fetal brain development and into early childhood.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jennifer Card
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
39
|
Schmuck MR, Temme T, Dach K, de Boer D, Barenys M, Bendt F, Mosig A, Fritsche E. Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Arch Toxicol 2016; 91:2017-2028. [DOI: 10.1007/s00204-016-1852-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023]
|
40
|
Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing. Toxicol In Vitro 2016; 38:124-135. [PMID: 27729293 DOI: 10.1016/j.tiv.2016.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023]
Abstract
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells, the possibility of generating human in vitro models has gained interest, as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues, using neural progenitor cells derived from human embryonic stem cells. These 3D neural tissues can be maintained for two months and undergo progressive differentiation. We showed a gradual decreased expression of early neural lineage markers, paralleled by an increase in markers specific for mature neurons, astrocytes and oligodendrocytes. At the end of the two-month culture period the neural tissues not only displayed synapses and immature myelin sheaths around axons, but electrophysiological measurements also showed spontaneous activity. Neurotoxicity testing - comparing non-neurotoxic to known neurotoxic model compounds - showed an expected increase in the marker of astroglial reactivity after exposure to known neurotoxicants methylmercury and trimethyltin. Although further characterization and refinement of the model is required, these results indicate its potential usefulness for in vitro neurotoxicity testing.
Collapse
|
41
|
Aschner M, Ceccatelli S, Daneshian M, Fritsche E, Hasiwa N, Hartung T, Hogberg HT, Leist M, Li A, Mundi WR, Padilla S, Piersma AH, Bal-Price A, Seiler A, Westerink RH, Zimmer B, Lein PJ. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 34:49-74. [PMID: 27452664 PMCID: PMC5250586 DOI: 10.14573/altex.1604201] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/09/2016] [Indexed: 11/23/2022]
Abstract
There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e. alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of >50 endpoint-specific control compounds was identified. For further test development, an additional “test” set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the >100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems.
Collapse
Affiliation(s)
| | | | - Mardas Daneshian
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Nina Hasiwa
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany.,Center for Alternatives to Animal Testing (CAAT), The Johns Hopkins University, Baltimore, MD, USA
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), The Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany.,In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation at the University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz University
| | - Abby Li
- Exponent Inc.,San Francisco, USA
| | - William R Mundi
- United States Environmental Protection Agency (USEPA), NHEERL, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- United States Environmental Protection Agency (USEPA), NHEERL, Research Triangle Park, NC, USA
| | - Aldert H Piersma
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Andrea Seiler
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Remco H Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | | - Pamela J Lein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, USA.,Department of Molecular Biosciences, University of California, Davis, USA
| |
Collapse
|
42
|
Jin X, Lee HK, Badejo AC, Lee SY, Shen A, Lee S, Jeong Y, Choi M, Moon HB. Decline in sediment contamination by persistent toxic substances from the outfall of wastewater treatment plant: Effectiveness of legislative actions in Korea. CHEMOSPHERE 2016; 153:426-435. [PMID: 27031806 DOI: 10.1016/j.chemosphere.2016.03.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Legacy and new persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) were measured in sediments near a wastewater treatment plant (WWTP) outfall in a semi-enclosed bay, to investigate the current contamination and temporal changes in these contaminants associated with regulation activities in Korea. The concentrations of most of the POPs showed clear decreasing trends with an increase in the distance from the WWTP outfall, indicating that the WWTP discharges greatly contributed to the sediment contamination by POPs. Highly significant correlations were found for most of the POPs, indicating a common source for sediment contamination. Significant declines were found in the concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), polybrominated diphenyl ethers (PBDEs), and PAHs in the sediments collected between 2005 and 2013. This result suggested that legislative actions (regulation of the PCDD/Fs in flue gas, total pollution load management, and whole effluent toxicity for WWTP discharges) and change of fuels, were likely to be effective at reducing the POP and PAH levels in sediments during the past several years. The different compositional profiles of the PCDD/Fs and PAHs between 2005 and 2013 implied changes in and/or additional sources of these contaminants. Despite a decline in the PCDD/Fs over time, the present levels of PCDD/Fs in the sediment exceeded some of the sediment quality guidelines suggested by the National Oceanic and Atmospheric Administration.
Collapse
Affiliation(s)
- Xiangzi Jin
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Hyun-Kyung Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Abimbola C Badejo
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Sang-Yoon Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Aihua Shen
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Yunsun Jeong
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Minkyu Choi
- Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan 619-705, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea.
| |
Collapse
|
43
|
Barenys M, Gassmann K, Baksmeier C, Heinz S, Reverte I, Schmuck M, Temme T, Bendt F, Zschauer TC, Rockel TD, Unfried K, Wätjen W, Sundaram SM, Heuer H, Colomina MT, Fritsche E. Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Arch Toxicol 2016; 91:827-837. [PMID: 27116294 DOI: 10.1007/s00204-016-1709-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/06/2016] [Indexed: 01/18/2023]
Abstract
Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to β1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.
Collapse
Affiliation(s)
- Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Kathrin Gassmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Christine Baksmeier
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Sabrina Heinz
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Ingrid Reverte
- Laboratory of Toxicology and Environmental Health/NEUROLAB, Department of Psychology, Universitat Rovira i Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Thomas Temme
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Tim-Christian Zschauer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Thomas Dino Rockel
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Sivaraj Mohana Sundaram
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Heike Heuer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Maria Teresa Colomina
- Laboratory of Toxicology and Environmental Health/NEUROLAB, Department of Psychology, Universitat Rovira i Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
44
|
Imran S, Ferretti P, Vrzal R. Different regulation of aryl hydrocarbon receptor-regulated genes in response to dioxin in undifferentiated and neuronally differentiated human neuroblastoma SH-SY5Y cells. Toxicol Mech Methods 2015; 25:689-97. [DOI: 10.3109/15376516.2015.1070227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Saima Imran
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic and
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, London, UK
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic and
| |
Collapse
|
45
|
Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1568-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Druwe I, Freudenrich TM, Wallace K, Shafer TJ, Mundy WR. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening. Toxicology 2015; 333:14-24. [DOI: 10.1016/j.tox.2015.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 12/13/2022]
|
47
|
An Overview on Human Umbilical Cord Blood Stem Cell-Based Alternative In Vitro Models for Developmental Neurotoxicity Assessment. Mol Neurobiol 2015; 53:3216-3226. [PMID: 26041658 DOI: 10.1007/s12035-015-9202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
The developing brain is found highly vulnerable towards the exposure of different environmental chemicals/drugs, even at concentrations, those are generally considered safe in mature brain. The brain development is a very complex phenomenon which involves several processes running in parallel such as cell proliferation, migration, differentiation, maturation and synaptogenesis. If any step of these cellular processes hampered due to exposure of any xenobiotic/drug, there is almost no chance of recovery which could finally result in a life-long disability. Therefore, the developmental neurotoxicity (DNT) assessment of newly discovered drugs/molecules is a very serious concern among the neurologists. Animal-based DNT models have their own limitations such as ethical concerns and lower sensitivity with less predictive values in humans. Furthermore, non-availability of human foetal brain tissues/cells makes job more difficult to understand about mechanisms involve in DNT in human beings. Although, the use of cell culture have been proven as a powerful tool for DNT assessment, but many in vitro models are currently utilizing genetically unstable cell lines. The interpretation of data generated using such terminally differentiated cells is hard to extrapolate with in vivo situations. However, human umbilical cord blood stem cells (hUCBSCs) have been proposed as an excellent tool for alternative DNT testing because neuronal development from undifferentiated state could exactly mimic the original pattern of neuronal development in foetus when hUCBSCs differentiated into neuronal cells. Additionally, less ethical concern, easy availability and high plasticity make them an attractive source for establishing in vitro model of DNT assessment. In this review, we are focusing towards recent advancements on hUCBSCs-based in vitro model to understand DNTs.
Collapse
|
48
|
Fritsche E, Alm H, Baumann J, Geerts L, Håkansson H, Masjosthusmann S, Witters H. Literature review on in vitro and alternative Developmental Neurotoxicity (DNT) testing methods. ACTA ACUST UNITED AC 2015. [DOI: 10.2903/sp.efsa.2015.en-778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Henrik Alm
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Jenny Baumann
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Lieve Geerts
- Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B‐2400 Mol, Belgium
| | - Helen Håkansson
- Karolinska Institute (KI), Institute of Environmental Medicine (IMM), Unit of Environmental Health Risk Assessment, SE‐171 77 Stockholm, Sweden
| | - Stefan Masjosthusmann
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Hilda Witters
- Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B‐2400 Mol, Belgium
| |
Collapse
|
49
|
Chepelev NL, Moffat ID, Bowers WJ, Yauk CL. Neurotoxicity may be an overlooked consequence of benzo[a]pyrene exposure that is relevant to human health risk assessment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:64-89. [DOI: 10.1016/j.mrrev.2015.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 02/05/2023]
|
50
|
Smith I, Silveirinha V, Stein JL, de la Torre-Ubieta L, Farrimond JA, Williamson EM, Whalley BJ. Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks. J Tissue Eng Regen Med 2015; 11:1022-1033. [PMID: 25712225 DOI: 10.1002/term.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 12/12/2022]
Abstract
Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Imogen Smith
- Cellular and Molecular Neuroscience Group, Department of Pharmacy, University of Reading, UK
| | - Vasco Silveirinha
- Cellular and Molecular Neuroscience Group, Department of Pharmacy, University of Reading, UK
| | - Jason L Stein
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Luis de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Elizabeth M Williamson
- Cellular and Molecular Neuroscience Group, Department of Pharmacy, University of Reading, UK
| | - Benjamin J Whalley
- Cellular and Molecular Neuroscience Group, Department of Pharmacy, University of Reading, UK
| |
Collapse
|