1
|
Bhattacharya B, Toor D, Chatterjee M. Connecting the dots: environmental pollution and Autism Spectrum Disorder. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0123. [PMID: 40271992 DOI: 10.1515/reveh-2024-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in social communication and repetitive behavior. While the exact etiology of ASD remains elusive, researchers have increasingly turned their attention to the role of environmental factors in its development. Among these factors, environmental pollution has emerged as a potential contributor to the rising prevalence of ASD cases worldwide. This review delves into the growing body of scientific evidence suggesting a significant association between environmental pollution and the risk of ASD. It explores the environmental pollution that have been implicated, including air pollution, water contaminants, heavy metals, pesticides, and endocrine-disrupting chemicals. The detrimental impact of these pollutants on the developing brain, particularly during critical periods of gestation and early childhood has been discussed. This will provide insights into the possible mechanisms by which the various pollutants may influence the neurodevelopmental pathways underlying ASD. Additionally, the potential interplay between genetic susceptibility and environmental exposure is explored to better understand the multifactorial nature of ASD causation. Considering the alarming increase in ASD prevalence and the ubiquity of environmental pollutants, this review emphasizes the urgent need for further investigation and the adoption of comprehensive preventive measures.
Collapse
Affiliation(s)
- Bidisha Bhattacharya
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Israel
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Devinder Toor
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mallika Chatterjee
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Xiang AH, Lin JC, Chow T, Yu X, Martinez MP, Chen Z, Eckel SP, Schwartz J, Lurmann FW, Kleeman MJ, McConnell R, Rahman MM. Discordant sibling analysis of autism risk associated with prenatal exposure to tailpipe and non-tailpipe particulate matter pollution. ENVIRONMENTAL RESEARCH 2025; 275:121449. [PMID: 40120739 DOI: 10.1016/j.envres.2025.121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND We previously assessed associations of prenatal exposure to fine particulate matter (PM2.5) tracers reflecting tailpipe (elemental carbon [EC] and organic carbon [OC]) and non-tailpipe emissions (copper [Cu], iron [Fe] and manganese [Mn]) with risk of autism spectrum disorder (ASD) in a large pregnancy cohort. To address genetic and family environment confounding, we conducted an ASD-discordant sibling study. METHODS Data included 4024 children (1837 with and 2187 siblings without ASD) born to 1801 unique mothers who had at least one child diagnosed with ASD by age 5, and one child without ASD. Prenatal exposures to total PM2.5, trace elements Cu, Fe, Mn, EC, and OC and dispersion-modeled near-roadway-air-pollution (NRAP) from freeway and non-freeway source were obtained using maternal addresses during pregnancy. Conditional logistic regression was used to assess ASD risk associated with exposures adjusting for covariates. Results were reported as odds ratio (OR, 95 % CI) per inter-quartile increment of each exposure. RESULTS In single-pollutant models, child ASD risk (OR; 95 % CI) was associated with gestational exposures to non-tailpipe source Cu (1.17; 1.03-1.33), Fe (1.26; 1.07-1.48), Mn (1.29; 1.11-1.50); but not likewise associated with tailpipe source EC (1.10; 0.92-1.32) and OC (1.10; 0.91-1.32). Total PM2.5 and non-freeway NRAP were both associated with ASD risk. Adjusting for total PM2.5 or NRAP attenuated the ASD associations with Cu, Fe, and Mn but they remained largely statistically significant. By trimester analysis showed the associations with Cu, Fe, and Mn were significant in the first two trimesters. CONCLUSION This ASD-discordant sibling study confirmed previously reported ASD risk associated with prenatal exposure to PM2.5, NRAP and non-tailpipe particulate trace-element Cu, Fe, and Mn, particularly in the first two trimesters, thus, increasing evidence of causality.
Collapse
Affiliation(s)
- Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Md Mostafijur Rahman
- Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Giammona A, Terribile G, Rainone P, Pellizzer C, Porro D, Cerasa A, Sancini G, Rashid AU, Belloli S, Valtorta S, Lo Dico A, Bertoli G. Effects of particulate air pollution exposure on lung-brain axis and related miRNAs modulation in mouse models. Front Cell Dev Biol 2025; 13:1526424. [PMID: 40248351 PMCID: PMC12003928 DOI: 10.3389/fcell.2025.1526424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/27/2025] [Indexed: 04/19/2025] Open
Abstract
Particulate matter exposure is linked to numerous health issues, including respiratory, cardiovascular, and neurodegenerative diseases. This review focuses on the biological mechanisms through which air pollution influences the lung-brain axis, highlighting the role of miRNAs in regulating gene pathways affected by PM. Some microRNAs (miRNAs) are identified as key modulators of cellular processes, including inflammation, epithelial-to-mesenchymal transition (EMT), and blood-brain barrier integrity. Using mice models to study these effects allows for controlled experimentation on the systemic distribution of PM across biological barriers. Among the imaging technologies, Positron Emission Tomography is the best approach to monitor the distribution and effects of PM in vivo. The research underscores the importance of miRNA profiles as potential markers for the health effects of PM exposure, suggesting that specific miRNAs could serve as early indicators of damage to the lung-brain axis.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giulia Terribile
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Earth and Environmental Sciences, POLARIS Research Centre, University of Milano-Bicocca, Milano, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Paolo Rainone
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Chiara Pellizzer
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
| | - Danilo Porro
- PhD Program, Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milano, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
| | - Giulio Sancini
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Earth and Environmental Sciences, POLARIS Research Centre, University of Milano-Bicocca, Milano, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Ameen-Ur Rashid
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
- PhD Program, Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milano, Italy
| | - Sara Belloli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Silvia Valtorta
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
4
|
Lane M, Oyster E, Luo Y, Wang H. The Effects of Air Pollution on Neurological Diseases: A Narrative Review on Causes and Mechanisms. TOXICS 2025; 13:207. [PMID: 40137534 PMCID: PMC11946816 DOI: 10.3390/toxics13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Air pollution has well-documented adverse effects on human health; however, its impact on neurological diseases remains underrecognized. The mechanisms by which various components of air pollutants contribute to neurological disorders are not yet fully understood. This review focuses on key air pollutants, including particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and diesel exhaust particles (DEPs). This paper summarizes key findings on the effects of air pollution on neurological disorders, including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), and Parkinson's disease (PD). Although the precise biological mechanisms remain to be fully elucidated, evidence suggests that multiple pathways are involved, including blood-brain barrier disruption, oxidative stress, inflammation, and the activation of microglia and astrocytes. This review underscores the role of environmental pollutants as significant risk factors for various neurological diseases and explores their mechanisms of action. By advancing our understanding of these interactions, this work aims to inform new insights for mitigating the adverse effects of air pollution on neurological diseases, ultimately contributing to the establishment of a cleaner and healthier environment for future generations.
Collapse
Affiliation(s)
| | | | - Yali Luo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| | - Hao Wang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| |
Collapse
|
5
|
Green JE, Wrobel A, Todd E, Marx W, Berk M, Lotfaliany M, Castle D, Cryan JF, Athan E, Hair C, Nierenberg AA, Jacka FN, Dawson S. Early antibiotic exposure and risk of psychiatric and neurocognitive outcomes: systematic review and meta-analysis. Br J Psychiatry 2025; 226:171-183. [PMID: 39658347 DOI: 10.1192/bjp.2024.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND The prenatal and early-life periods pose a crucial neurodevelopmental window whereby disruptions to the intestinal microbiota and the developing brain may have adverse impacts. As antibiotics affect the human intestinal microbiome, it follows that early-life antibiotic exposure may be associated with later-life psychiatric or neurocognitive outcomes. AIMS To explore the association between early-life (in utero and early childhood (age 0-2 years)) antibiotic exposure and the subsequent risk of psychiatric and neurocognitive outcomes. METHOD A search was conducted using Medline, PsychINFO and Excerpta Medica databases on 20 November 2023. Risk of bias was assessed using the Newcastle-Ottawa scale, and certainty was assessed using the grading of recommendations, assessment, development and evaluation (GRADE) certainty assessment. RESULTS Thirty studies were included (n = 7 047 853 participants). Associations were observed between in utero antibiotic exposure and later development of autism spectrum disorder (ASD) (odds ratio 1.09, 95% CI: 1.02-1.16) and attention-deficit hyperactivity disorder (ADHD) (odds ratio 1.19, 95% CI: 1.11-1.27) and early-childhood exposure and later development of ASD (odds ratio 1.19, 95% CI: 1.01-1.40), ADHD (odds ratio 1.33, 95% CI: 1.20-1.48) and major depressive disorder (MDD) (odds ratio 1.29, 95% CI: 1.04-1.60). However, studies that used sibling control groups showed no significant association between early-life exposure and ASD or ADHD. No studies in MDD used sibling controls. Using the GRADE certainty assessment, all meta-analyses but one were rated very low certainty, largely owing to methodological and statistical heterogeneity. CONCLUSIONS While there was weak evidence for associations between antibiotic use in early-life and later neurodevelopmental outcomes, these were attenuated in sibling-controlled subgroup analyses. Thus, associations may be explained by genetic and familial confounding, and studies failing to utilise sibling-control groups must be interpreted with caution. PROSPERO ID: CRD42022304128.
Collapse
Affiliation(s)
- Jessica Emily Green
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Prahran, Australia
- Department of Psychiatry, Peninsula Health, Frankston, Australia
| | - Anna Wrobel
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Emma Todd
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Michael Berk
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Melbourne, Australia
- The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Department of Mental Health Drug and Alcohol Services, Barwon Health, Geelong, Australia
| | - Mojtaba Lotfaliany
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - David Castle
- School of Psychological Sciences, University of Tasmania, Hobart, Tasmania
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork and APC Microbiome, Cork, Ireland
| | - Eugene Athan
- Department of Mental Health Drug and Alcohol Services, Barwon Health, Geelong, Australia
| | - Christopher Hair
- Department of Mental Health Drug and Alcohol Services, Barwon Health, Geelong, Australia
| | - Andrew A Nierenberg
- Dauten Family Center for Bipolar Treatment Innovation, Department of Psychiatry, Massachusetts General Hospital, Boston, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Felice N Jacka
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- Department of Immunology, Therapeutics, and Vaccines, James Cook University, Townsville, Australia
| | - Samantha Dawson
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| |
Collapse
|
6
|
Doi H, Furui A, Ueda R, Shimatani K, Yamamoto M, Eguchi A, Sagara N, Sakurai K, Mori C, Tsuji T. Risk of autism spectrum disorder at 18 months of age is associated with prenatal level of polychlorinated biphenyls exposure in a Japanese birth cohort. Sci Rep 2024; 14:31872. [PMID: 39738397 PMCID: PMC11686058 DOI: 10.1038/s41598-024-82908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
Prenatal exposure to polychlorinated biphenyls (PCBs) has a detrimental effect on early cognitive development. Based on these observations, some researchers suggested that prenatal exposure to PCB may be an environmental cause of autism spectrum disorder (ASD). To investigate the potential link between prenatal exposure to PCB, we analyzed the link between the level of prenatal PCB exposure and ASD risk evaluated at 18 months of age and behavioral problems at 5 years old based on longitudinal birth cohort data collected in urban areas in Japan based on the data from 115 mother-infant pairs. Logistic regression analysis revealed a significant association between ASD risk at 18 months of age and the factor scores of the principal components (PCB PCs) obtained by compressing the exposure level to PCB congeners. There was no reliable relationship between PCB PCs and problematic behaviors at 5 years of age. Furthermore, machine learning-based analysis showed the possibility that, when the information of the pattern of infants' spontaneous bodily motion, a potential marker of ASD risk, was used as the predictors together, prenatal PCB exposure levels predict ASD risk at 18 months of age. Together, these findings support the view that prenatal exposure to PCBs is associated with the later emergence of autistic behaviors and indicate the predictability of ASD risk based on the information available at the neonatal stage.
Collapse
Affiliation(s)
- Hirokazu Doi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Akira Furui
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| | - Rena Ueda
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| | - Koji Shimatani
- Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1, Gakuen-machi, Mihara, Hiroshima, 723-0053, Japan
| | - Midori Yamamoto
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Naoya Sagara
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshio Tsuji
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
7
|
Xiao Y, Xiang W, Ma X, Zheng A, Rong D, Zhang N, Yang N, Bayram H, Lorimer GH, Wang J. Research Progress on the Correlation Between Atmospheric Particulate Matter and Autism. J Appl Toxicol 2024. [PMID: 39701085 DOI: 10.1002/jat.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by the interaction of genetic and complex environmental factors. The prevalence of autism has dramatically increased in countries and regions undergoing rapid industrialization and urbanization. Recent studies have shown that particulate matter (PM) in air pollution affects the development of neurons and disrupts the function of the nervous system, leading to behavioral and cognitive problems and increasing the risk of ASD. However, research on the mechanism of environmental factors and ASD is still in its infancy. On this basis, we conducted a literature search and analysis to review epidemiological studies on the correlation between fine particulate matter (PM2.5) and inhalable particulate matter (PM10) and ASD. The signaling pathways and pathogenic mechanisms of PM in synaptic injury and neuroinflammation are presented, and the mechanism of the ASD candidate gene SHANK3 was reviewed. Additionally, the different sites of action of different particles in animal models and humans were highlighted, and the differences of their effects on the pathogenesis of ASD were explained. We summarized the aetiology and mechanisms of PM-induced autism and look forward to future research breakthroughs in improved assessment methods, multidisciplinary alliances and high-tech innovations.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Aijia Zheng
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Dechang Rong
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Nimeng Zhang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Ning Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, Maryland, USA
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Gao M, Yang Z, Zhang Z, Chen L, Xu B. Nervous system exposure of different classes of nanoparticles: A review on potential toxicity and mechanistic studies. ENVIRONMENTAL RESEARCH 2024; 259:119473. [PMID: 38908667 DOI: 10.1016/j.envres.2024.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nanoparticles (NPs) are generally defined as very small particles in the size range of 1-100 nm. Due to the rapid development of modern society, many new materials have been developed. The widespread use of NPs in medical applications, the food industry and the textile industry has led to an increase in NPs in the environment and the possibility of human contact, which poses a serious threat to human health. The nervous system plays a leading role in maintaining the integrity and unity of the body and maintaining a harmonious balance with the external environment. Therefore, based on two categories of organic and inorganic NPs, this paper systematically summarizes the toxic effects and mechanisms of NPs released into the nervous system. The results showed that exposure to NPs may damage the nervous system, decrease learning and cognitive ability, and affect embryonic development. Finally, a remediation scheme for NPs entering the body via the environment is also introduced. This scheme aims to reduce the neurotoxicity caused by NPs by supplementing NPs with a combination of antioxidant and anti-inflammatory compounds. The results provide a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
9
|
Love C, Sominsky L, O'Hely M, Berk M, Vuillermin P, Dawson SL. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med 2024; 22:393. [PMID: 39278907 PMCID: PMC11404034 DOI: 10.1186/s12916-024-03617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is globally increasing in prevalence. The rise of ASD can be partially attributed to diagnostic expansion and advocacy efforts; however, the interplay between genetic predisposition and modern environmental exposures is likely driving a true increase in incidence. A range of evidence indicates that prenatal exposures are critical. Infection during pregnancy, gestational diabetes, and maternal obesity are established risk factors for ASD. Emerging areas of research include the effects of maternal use of selective serotonin reuptake inhibitors, antibiotics, and exposure to toxicants during pregnancy on brain development and subsequent ASD. The underlying pathways of these risk factors remain uncertain, with varying levels of evidence implicating immune dysregulation, mitochondrial dysfunction, oxidative stress, gut microbiome alterations, and hormonal disruptions. This narrative review assesses the evidence of contributing prenatal environmental factors for ASD and associated mechanisms as potential targets for novel prevention strategies.
Collapse
Affiliation(s)
- Chloe Love
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Luba Sominsky
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Martin O'Hely
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Samantha L Dawson
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia.
- Murdoch Children's Research Institute, Parkville, Australia.
- Food and Mood Centre, Deakin University, Geelong, Australia.
| |
Collapse
|
10
|
Duque-Cartagena T, Dalla MDB, Mundstock E, Neto FK, Espinoza SAR, de Moura SK, Zanirati G, Padoin AV, Jimenez JGP, Stein AT, Cañon-Montañez W, Mattiello R. Environmental pollutants as risk factors for autism spectrum disorders: a systematic review and meta-analysis of cohort studies. BMC Public Health 2024; 24:2388. [PMID: 39223561 PMCID: PMC11370099 DOI: 10.1186/s12889-024-19742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental condition affecting communication, social interaction, and behavior. Evidence suggests that environmental pollutants are associated with ASD incidence. This review aimed to analyze the effect of environmental pollutants on ASD. METHODS Systematic review and meta-analysis of cohort studies evaluated the association between exposure to environmental pollutants and ASD. We searched COCHRANE CENTRAL, MEDLINE, CINAHL, LILACS, EMBASE, PsycINFO, Web of Science, SciELO, and gray literature from inception to January 2023. The model used for meta-analysis was inverse variance heterogeneity (IVhet). The effect measures were the beta coefficient (β) and the relative risk (RR) with their 95% confidence intervals (95% CI). Sensitivity analyses were carried out using an instrument to screen or diagnose autism. RESULTS A total of 5,780 studies were identified; 27 were included in the systematic review, and 22 were included in the meta-analysis. These studies included 1,289,183 participants and 129 environmental pollutants. Individual meta-analyses found a significant association between nitrogen dioxide RR = 1.20 (95% CI: 1.03 to 1.38; I2: 91%), copper RR = 1.08 (95% CI: 1.03 to 1.13; I2: 0%), mono-3-carboxy propyl phthalate β = 0.45 (95% CI: 0.20 to 0.70; I2: 0%), monobutyl phthalate β = 0.43 (95% CI: 0.13 to 0.73; I2: 0%) and polychlorinated biphenyl (PCB) 138 RR = 1.84 (95% CI: 1.14 to 2.96; I2:0%) with ASD. Subgroup meta-analyses found a significant association with carbon monoxide RR = 1.57 (95% CI: 1.25 to 1.97; I2: 0%), nitrogen oxides RR = 1.09 (95% CI: 1.04 to 1.15; I2: 34%) and metals RR = 1.13 (95% CI: 1.01 to 1.27; I2:24%). CONCLUSION This study found positive associations nitrogen dioxide, copper, mono-3-carboxypropyl phthalate, monobutyl phthalate, and PCB 138, and the development of ASD, likewise, with subgroups of pollutants carbon monoxide, nitrogen oxides, and metals. Therefore, it is important to identify these risk factors in children and adolescents to contribute to ASD and identify prevention strategies effectively.
Collapse
Affiliation(s)
- Tatiana Duque-Cartagena
- School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcello Dala Bernardina Dalla
- Cassiano Antônio de Moraes University Hospital, Universidade Federal do Espírito Santo (HUCAM/UFES), Vitória, ES, Brazil
- Capixaba Institute for Teaching Research and Innovation of the State Health Department of Espirito Santo (ICEPI-SESA), Vitória, ES, Brazil
- Espirito Santense College - FAESA, Cariacica, ES, Brazil
| | - Eduardo Mundstock
- Universidade Leonardo da Vinci, Polo Canela, RS, Brazil
- Secretaria da Educação Esporte e Lazer de Canela-Escola Zeferino José Lopes, Canela, RS, Brazil
| | - Felipe Kalil Neto
- School of Medicine, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | | | - Gabriele Zanirati
- School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre, RS, Brazil
| | - Alexandre Vontobel Padoin
- School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Airton Tetelbom Stein
- Departamento de Saúde Pública, Universidade Federal de Ciências da Saúde de Porto Alegre, and Hospital Conceição, Porto Alegre, RS, Brazil
| | | | - Rita Mattiello
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Al-Salihy AARS. Longitudinal trends and correlation between autism spectrum disorder prevalence and sperm quality parameters (2000-2024): a comprehensive statistical analysis. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1438049. [PMID: 39239154 PMCID: PMC11374721 DOI: 10.3389/frph.2024.1438049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Over the past few decades, there has been growing concern about the concurrent trends of increasing Autism Spectrum Disorder (ASD) prevalence and declining sperm quality. These trends represent significant public health challenges that warrant thorough investigation of their underlying causes and implications. Objectives The primary objectives of this study are to analyze trends in ASD prevalence and sperm quality parameters from 2000 to 2024, assess the statistical significance and effect size of these trends, explore potential correlations between ASD prevalence and sperm quality parameters, and identify significant predictors among sperm quality parameters that influence ASD prevalence. Methods This study employed a longitudinal approach using multiple regression, time series analysis, ANOVA, Principal Component Analysis (PCA), hierarchical clustering, logistic regression, and cross-correlation analysis. Data on ASD prevalence were sourced from the CDC Autism and Developmental Disabilities Monitoring Network, while sperm quality data were collected from various published studies. Results The findings reveal significant negative associations between ASD prevalence and sperm quality parameters such as sperm concentration and motility, suggesting that better sperm quality is linked to lower ASD rates. Conversely, parameters like sperm DNA fragmentation (SDF), volume of ejaculate, pH level, and semen viscosity show positive associations with ASD prevalence, indicating higher values in these parameters correlate with higher ASD rates. Conclusion The study highlights the importance of maintaining reproductive health to potentially mitigate ASD risk and calls for further research to elucidate the underlying mechanisms driving these trends. These findings support the hypothesis that reproductive health factors play a crucial role in ASD etiology and suggest potential biological markers for assessing ASD risk.
Collapse
|
12
|
Sotelo-Orozco J, Calafat AM, Cook Botelho J, Schmidt RJ, Hertz-Picciotto I, Bennett DH. Exposure to endocrine disrupting chemicals including phthalates, phenols, and parabens in infancy: Associations with neurodevelopmental outcomes in the MARBLES study. Int J Hyg Environ Health 2024; 261:114425. [PMID: 39047380 PMCID: PMC11484599 DOI: 10.1016/j.ijheh.2024.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are widely used compounds with the potential to affect child neurodevelopmental outcomes including autism spectrum disorders (ASD). We aimed to examine the urinary concentrations of biomarkers of EDCs, including phthalates, phenols, and parabens, and investigate whether exposure during early infancy was associated with increased risk of later ASD or other non-typical development (Non-TD) or adverse cognitive development. METHODS This analysis included infants from the Markers of Autism Risks in Babies-Learning Early Signs (MARBLES) study, a high-risk ASD cohort (n = 148; corresponding to 188 urine samples). Thirty-two EDC biomarkers were quantified in urine among infants 3 and/or 6 months of age. Trends in EDC biomarker concentrations were calculated using least square geometric means. At 36 months of age, children were clinically classified as having ASD (n = 36), nontypical development (Non-TD; n = 18), or typical development (TD; n = 81) through a clinical evaluation. Trinomial logistic regression analysis was used to test the associations between biomarkers with ASD, or Non-TD, as compared to children with TD. In single analyte analysis, generalized estimating equations were used to investigate the association between each EDC biomarkers and longitudinal changes in cognitive development using the Mullen Scales of Early Learning (MSEL) over the four assessment time points (6, 12, 24, and 36 months of age). Additionally, quantile g-computation was used to test for a mixture effect. RESULTS EDC biomarker concentrations generally decreased over the study period, except for mono-2-ethyl-5-carboxypentyl terephthalate. Overall, EDC biomarkers at 3 and/or 6 months of age were not associated with an increased risk of ASD or Non-TD, and a few showed significant inverse associations. However, when assessing longitudinal changes in MSEL scores over the four assessment time points, elevated monoethyl phthalate (MEP) was significantly associated with reduced scores in the composite score (β = -0.16, 95% CI: 0.31, -0.02) and subscales of fine motor skills (β = -0.09, 95%CI: 0.17, 0.00), and visual reception (β = -0.11, 95% CI: 0.23, 0.01). Additionally, the sum of metabolites of di (2-ethylhexyl) terephthalate (ƩDEHTP) was associated with poorer visual reception (β = -0.09, 95% CI: 0.16, -0.02), and decreased composite scores (β = -0.11, 95% CI: 0.21, -0.01). Mixtures analyses using quantile g-computation analysis did not show a significant association between mixtures of EDC biomarkers and MSEL subscales or composite scores. CONCLUSION These findings highlight the potential importance of infant exposures on cognitive development. Future research can help further investigate whether early infant exposures are associated with longer-term deficits and place special attention on EDCs with increasing temporal trends and whether they may adversely affect neurodevelopment.
Collapse
Affiliation(s)
- Jennie Sotelo-Orozco
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
13
|
Carey ME, Kivumbi A, Rando J, Mesaros AC, Melnyk S, James SJ, Croen LA, Volk H, Lyall K. The association between prenatal oxidative stress levels measured by isoprostanes and offspring neurodevelopmental outcomes at 36 months. Brain Behav Immun Health 2024; 38:100775. [PMID: 38706573 PMCID: PMC11067487 DOI: 10.1016/j.bbih.2024.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Oxidative stress during pregnancy has been a mechanistic pathway implicated in autism development, yet few studies have examined this association directly. Here, we examined the association of prenatal levels of 8-iso-PGF2α, a widely used measure of oxidative stress, and several neurodevelopmental outcomes related to autism in children. Participants included 169 mother-child pairs from the Early Autism Risk Longitudinal Investigation (EARLI), which enrolled mothers who had an autistic child from a previous pregnancy and followed them through a subsequent pregnancy and until that child reached age 3 years. Maternal urine samples were collected during the second trimester of pregnancy and were later measured for levels of isoprostanes. Child neurodevelopmental assessments included the Mullen Scales of Early Learning (MSEL), the Social Responsiveness Scale (SRS), and the Vineland Adaptive Behavior Scale (VABS), and were conducted around 36 months of age. Primary analyses examined associations between interquartile range (IQR) increases in 8-iso-PGF2α levels, and total composite scores from each assessment using quantile regression. In adjusted analyses, we did not observe statistically significant associations, though estimates suggested modestly lower cognitive scores (β for MSEL = -3.68, 95% CI: -10.09, 2.70), and minor increases in autism-related trait scores (β for SRS T score = 1.68, 95% CI: -0.24, 3.60) with increasing 8-iso-PGF2α. These suggestive associations between decreased cognitive scores and increased autism-related traits with increasing prenatal oxidative stress point to the need for continued investigation in larger samples of the role of oxidative stress as a mechanistic pathway in autism and related neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Meghan E. Carey
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
| | - Apollo Kivumbi
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
| | - Juliette Rando
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
| | - A. Clementina Mesaros
- Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, 17104, USA
| | - Stepan Melnyk
- Arkansas Children’s Hospital Research Institute, 13 Childrens Way, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - S. Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Lisa A. Croen
- Division of Research Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Heather Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
| | - the Early Autism Risk Longitudinal Investigation (EARLI) team
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, 17104, USA
- Arkansas Children’s Hospital Research Institute, 13 Childrens Way, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
- Division of Research Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD, 21205, USA
| |
Collapse
|
14
|
Lavigne É, Abdulaziz KE, Murphy MS, Stanescu C, Dingwall-Harvey AL, Stieb DM, Walker MC, Wen SW, Shin HH. Associations of neighborhood greenspace, and active living environments with autism spectrum disorders: A matched case-control study in Ontario, Canada. ENVIRONMENTAL RESEARCH 2024; 252:118828. [PMID: 38583657 DOI: 10.1016/j.envres.2024.118828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Increasing evidence links early life residential exposure to natural urban environmental attributes and positive health outcomes in children. However, few studies have focused on their protective effects on the risk of autism spectrum disorder (ASD). The aim of this study was to investigate the associations of neighborhood greenspace, and active living environments during pregnancy with ASD in young children (≤6 years). METHODS We conducted a population-based matched case-control study of singleton term births in Ontario, Canada for 2012-2016. The ASD and environmental data was generated using the Ontario Autism Spectrum Profile, the Better Outcomes Registry & Network Ontario, and Canadian Urban Environmental Health Research Consortium. We employed conditional logistic regressions to estimate the odds ratio (OR) between ASD and environmental factors characterizing selected greenspace metrics and neighborhoods conducive to active living (i.e., green view index (GVI), normalized difference vegetation index (NDVI), tree canopy, park proximity and active living environments index (ALE)). RESULTS We linked 8643 mother-child pairs, including 1554 cases (18%). NDVI (OR 1.034, 0.944-1.024, per Inter Quartile Range [IQR] = 0.08), GVI (OR 1.025, 95% CI 0.953-1.087, per IQR = 9.45%), tree canopy (OR 0.992, 95% CI 0.903-1.089, per IQR = 6.24%) and the different categories of ALE were not associated with ASD in adjusted models for air pollution. In contrast, living closer to a park was protective (OR 0.888, 0.833-0.948, per 0.06 increase in park proximity index), when adjusted for air pollution. CONCLUSIONS This study reported mixed findings showing both null and beneficial effects of green spaces and active living environments on ASD. Further investigations are warranted to elucidate the role of exposure to greenspaces and active living environments on the development of ASD.
Collapse
Affiliation(s)
- Éric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Kasim E Abdulaziz
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Malia Sq Murphy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Cristina Stanescu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alysha Lj Dingwall-Harvey
- Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David M Stieb
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Mark C Walker
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics, Gynecology & Newborn Care, The Ottawa Hospital, Ottawa, Ontario, Canada; International and Global Health Office, University of Ottawa, Ottawa, Canada
| | - Shi Wu Wen
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics, Gynecology & Newborn Care, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Hwashin Hyun Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
15
|
Parasin N, Amnuaylojaroen T, Saokaew S. Prenatal PM 2.5 Exposure and Its Association with Low Birth Weight: A Systematic Review and Meta-Analysis. TOXICS 2024; 12:446. [PMID: 39058098 PMCID: PMC11280910 DOI: 10.3390/toxics12070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Exposure to PM2.5 while pregnant is associated with negative effects on low birth weight (LBW). This study employed a systematic review and meta-analysis to investigate the impact of PM2.5 exposure during pregnancy on LBW. A search of databases such as Scopus, ScienceDirect, and PubMed identified thirteen appropriate studies. This study used a random-effects model to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs) for each trimester. The findings revealed a significant relationship between PM2.5 exposure and LBW in both the first and second trimesters (OR 1.05, 95% CI 1.00-1.09, p < 0.001). There was no significant difference between trimesters (p = 0.704). The results emphasize the persistent influence of PM2.5 on fetal development throughout all stages of pregnancy. Reducing air pollution is critical for improving pregnancy outcomes and decreasing the incidence of LBW. Further study is needed to improve exposure assessments and investigate the underlying biological pathways.
Collapse
Affiliation(s)
- Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand;
| | - Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
- Atmospheric Pollution and Climate Change Research Units, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand;
- Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
16
|
Zamstein O, Sheiner E, Binyamin Y, Pariente G, Wainstock T. Examining the relationship between autism spectrum disorder in children whose mother had labour epidural analgesia for their birth: A retrospective cohort study. Eur J Anaesthesiol 2024; 41:282-287. [PMID: 38084085 DOI: 10.1097/eja.0000000000001932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND Controversy exists regarding the association between autism spectrum disorder (ASD) in children whose mother had labour epidural analgesia for their birth, as the few existing investigations have reported mixed findings. OBJECTIVE This study aims to evaluate the possibility of an association in our heterogeneous population. DESIGN A retrospective population-based cohort study. SETTING Vaginal deliveries that took place between the years 2005 and 2017 at Soroka University Medical Center, a tertiary referral hospital in Israel, and a follow-up on the incidence of ASD in the children. PATIENTS A hundred and thirty-nine thousand, nine hundred and eighty-one labouring patients and their offspring. MAIN OUTCOME MEASURES The incidence of children diagnosed with ASD (both hospital and community-based diagnoses) was compared based on whether their mothers had received labour epidural analgesia during their labour. A Kaplan-Meier survival curve compared cumulative incidence of ASD. A Cox proportional hazards model was used to control for relevant confounders. RESULTS Labour epidural analgesia was administered to 33 315 women. Epidural analgesia was more common among high-risk pregnancy groups (including pregnancies complicated with diabetes mellitus, hypertensive disorders, intrauterine growth restriction, and oligohydramnios; P < 0.001). In a Cox proportional hazards model, the association between epidural analgesia during labour and ASD in the children lost statistical significance following adjustment for confounders such as maternal age, gestational age, hypertensive disorders, diabetes mellitus, and ethnicity [adjusted hazard ratio = 1.13, 95% confidence interval (CI), 0.96 to 1.34, P = 0.152]. CONCLUSION In our population, after adjusting for confounders, epidural analgesia is not independently associated with autism spectrum disorder in the children. These findings enhance our knowledge regarding the safety of epidural analgesia and enable patients to make informed decisions about their pain relief techniques during labour.
Collapse
Affiliation(s)
- Omri Zamstein
- From the Obstetrics and Gynecology Division, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel (OZ, ES, GP), Department of Anesthesiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (YB) and Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (TW)
| | | | | | | | | |
Collapse
|
17
|
Amnuaylojaroen T, Parasin N. Pathogenesis of PM 2.5-Related Disorders in Different Age Groups: Children, Adults, and the Elderly. EPIGENOMES 2024; 8:13. [PMID: 38651366 PMCID: PMC11036283 DOI: 10.3390/epigenomes8020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/07/2024] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
The effects of PM2.5 on human health fluctuate greatly among various age groups, influenced by a range of physiological and immunological reactions. This paper compares the pathogenesis of the disease caused by PM2.5 in people of different ages, focusing on how children, adults, and the elderly are each susceptible to it because of differences in their bodies. Regarding children, exposure to PM2.5 is linked to many negative consequences. These factors consist of inflammation, oxidative stress, and respiratory problems, which might worsen pre-existing conditions and potentially cause neurotoxicity and developmental issues. Epigenetic changes can affect the immune system and make people more likely to get respiratory diseases. On the other hand, exposures during pregnancy can change how the cardiovascular and central nervous systems develop. In adults, the inhalation of PM2.5 is associated with a wide range of health problems. These include respiratory difficulties, reduced pulmonary function, and an increased susceptibility to illnesses such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. In addition, exposure to PM2.5 induces systemic inflammation, cardiovascular diseases, insulin resistance, and neurotoxic consequences. Evident disturbances in the immune system and cognitive function demonstrate the broad impact of PM2.5. The elderly population is prone to developing respiratory and cardiovascular difficulties, which worsen their pre-existing health issues and raise the risk of cognitive decline and neurological illnesses. Having additional medical conditions, such as peptic ulcer disease, significantly increases the likelihood of being admitted to hospital.
Collapse
Affiliation(s)
- Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
- Atmospheric Pollution and Climate Research Unit, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand;
| |
Collapse
|
18
|
Goez H, Nielsen CC, Bryan S, Clark B, Zwaigenbaum L, Yamamoto SS, Osornio-Vargas AR. Autistic Regression and Exposure to Industrial Chemicals: Preliminary Observations. Can J Neurol Sci 2024; 51:289-292. [PMID: 37519226 DOI: 10.1017/cjn.2023.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Exposure to industrial pollutants is a potential risk factor not fully explored in ASD with regression (ASD+R). We studied geographical collocation patterns of industrial air chemical emissions and the location of homes of children with ASD+R at different exposure times, compared with ASD cases without regression (ASD-R). Fifteen of 111 emitted chemicals collocated with ASD+R, and 65 with ASD-R. ASD+R collocated more strongly with different neurotoxicants/immunotoxicants a year before diagnosis, whereas ASD-R were moderately collocated with chemicals across all exposure periods. This preliminary exploratory analysis of differences in exposure patterns raises a question regarding potential pathophysiological differences between the conditions.
Collapse
Affiliation(s)
- Helly Goez
- Division of Developmental Medicine and Rehabilitation, Children's Hospital of Eastern Ontario (CHEO), Ottawa, ON, Canada
| | | | - Sean Bryan
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Brenda Clark
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | - Shelby S Yamamoto
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Alvaro R Osornio-Vargas
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Goodrich AJ, Kleeman MJ, Tancredi DJ, Ludeña YJ, Bennett DH, Hertz-Picciotto I, Schmidt RJ. Ultrafine particulate matter exposure during second year of life, but not before, associated with increased risk of autism spectrum disorder in BKMR mixtures model of multiple air pollutants. ENVIRONMENTAL RESEARCH 2024; 242:117624. [PMID: 37956751 PMCID: PMC10872511 DOI: 10.1016/j.envres.2023.117624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Prenatal and early postnatal air pollution exposures have been shown to be associated with autism spectrum disorder (ASD) risk but results regarding specific air pollutants and exposure timing are mixed and no study has investigated the effects of combined exposure to multiple air pollutants using a mixtures approach. We aimed to evaluate prenatal and early life multipollutant mixtures for the drivers of associations of air pollution with ASD. This study examined 484 typically developing (TD) and 660 ASD children from the CHARGE case-control study. Daily air concentrations for NO2, O3, ultrafine (PM0.1), fine (PM0.1-2.5), and coarse (PM2.5-10) particles were predicted from chemical transport models with statistical bias adjustment based on ground-based monitors. Daily averages were calculated for each exposure period (pre-pregnancy, each trimester of pregnancy, first and second year of life) between 2000 and 2016. Air pollution variables were natural log-transformed and then standardized. Individual and joint effects of pollutant exposure with ASD, and potential interactions, were evaluated for each period using hierarchical Bayesian Kernel Machine Regression (BKMR) models, with three groups: PM size fractions (PM0.1, PM0.1-2.5, PM2.5-10), NO2, and O3. In BKMR models, the PM group was associated with ASD in year 2 (group posterior inclusion probability (gPIP) = 0.75), and marginally associated in year 1 (gPIP = 0.497). PM2.5-10 appeared to drive the association (conditional PIP (cPIP) = 0.64) in year 1, while PM0.1 appeared to drive the association in year 2 (cPIP = 0.76), with both showing a moderately strong increased risk. Pre-pregnancy O3 showed a slight J-shaped risk of ASD (gPIP = 0.55). No associations were observed for exposures during pregnancy. Pre-pregnancy O3 and year 2 p.m.0.1 exposures appear to be associated with an increased risk of ASD. Future research should examine ultrafine particulate matter in relation to ASD.
Collapse
Affiliation(s)
- Amanda J Goodrich
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California Davis, Sacramento, CA, USA
| | - Daniel J Tancredi
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Yunin J Ludeña
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
20
|
Raffuse S, O’Neill S, Schmidt R. A model for rapid PM 2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3. GEOSCIENTIFIC MODEL DEVELOPMENT 2024; 17:381-397. [PMID: 39398326 PMCID: PMC11469206 DOI: 10.5194/gmd-17-381-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has increased. The rapidfire (relatively accurate particulate information derived from inputs retrieved easily) R package (version 0.1.3) provides a suite of tools for developing exposure assignments using data sets that are routinely generated and publicly available within a month of the event. Specifically, rapidfire harvests official air quality monitoring, satellite observations, meteorological modeling, operational predictive smoke modeling, and low-cost sensor networks. A machine learning approach, random forest (RF) regression, is used to fuse the different data sets. Using rapidfire, we produced estimates of ground-level 24 h average particulate matter for several large wildfire smoke events in California from 2017-2021. These estimates show excellent agreement with independent measures from filter-based networks.
Collapse
Affiliation(s)
- Sean Raffuse
- Air Quality Research Center, University of California, Davis, Davis, CA, United States
| | - Susan O’Neill
- Pacific Northwest Research Station, USDA Forest Service, Seattle, WA, United States
| | - Rebecca Schmidt
- Department of Public Health Sciences, MIND Institute, University of California Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
21
|
Ruiz-Sobremazas D, Ruiz Coca M, Morales-Navas M, Rodulfo-Cárdenas R, López-Granero C, Colomina MT, Perez-Fernandez C, Sanchez-Santed F. Neurodevelopmental consequences of gestational exposure to particulate matter 10: Ultrasonic vocalizations and gene expression analysis using a bayesian approach. ENVIRONMENTAL RESEARCH 2024; 240:117487. [PMID: 37918762 DOI: 10.1016/j.envres.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Air pollution has been associated with a wide range of health issues, particularly regarding cardio-respiratory diseases. Increasing evidence suggests a potential link between gestational exposure to environmental pollutants and neurodevelopmental disorders such as autism spectrum disorder. The respiratory pathway is the most commonly used exposure model regarding PM due to valid and logical reasons. However, PM deposition on food (vegetables, fruits, cereals, etc.) and water has been previously described. Although this justifies the need of unforced, oral models of exposure, preclinical studies using oral exposure are uncommon. Specifically, air pollution can modify normal brain development at genetic, cellular, and structural levels. The present work aimed to investigate the effects of oral gestational exposure to particulate matter (PM) on ultrasonic vocalizations (USV). To this end, pregnant rats were exposed to particulate matter during gestation. The body weight of the pups was monitored until the day of recording the USVs. The results revealed that the exposed group emitted more USV calls when compared to the control group. Furthermore, the calls from the exposed group were longer in duration and started earlier than those from the non-exposed group. Gene expression analyses showed that PM exposure down-regulates the expression of Gabrg2 and Maoa genes in the brain, but no effect was detected on glutamate or other neurotransmission systems. These findings suggest that gestational exposure to PM10 may be related to social deficits or other phenomena that can be analyzed with USV. In addition, we were able to detect abnormalities in the expression of genes related to different neurotransmitter systems, such as the GABAergic and monoaminergic systems. Further research is needed to fully understand the possible effects of air pollutant exposure on neurodevelopmental disorders as well as the way in which these effects are linked to differences in neurotransmission systems.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain; University of Zaragoza, Department of Psychology and Sociology, Teruel, Spain
| | - Mario Ruiz Coca
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Rocío Rodulfo-Cárdenas
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | | | - Maria Teresa Colomina
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Cristian Perez-Fernandez
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sanchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain.
| |
Collapse
|
22
|
Yenkoyan K, Mkhitaryan M, Bjørklund G. Environmental Risk Factors in Autism Spectrum Disorder: A Narrative Review. Curr Med Chem 2024; 31:2345-2360. [PMID: 38204225 DOI: 10.2174/0109298673252471231121045529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 01/12/2024]
Abstract
Existing evidence indicates that environmental factors might contribute up to 50% of the variance in autism spectrum disorder (ASD) risk. This structured narrative review offers a comprehensive synthesis of current knowledge on environmental risk factors in ASD, including evaluation of conflicting evidence, exploration of underlying mechanisms, and suggestions for future research directions. Analysis of diverse epidemiological investigations indicates that certain environmental factors, including advanced parental age, preterm birth, delivery complications, and exposure to toxic metals, drugs, air pollutants, and endocrine-disrupting chemicals, are linked to an increased ASD risk through various mechanisms such as oxidative stress, inflammation, hypoxia, and its consequences, changes in neurotransmitters, disruption of signaling pathways and some others. On the other hand, pregnancy-related factors such as maternal diabetes, maternal obesity, and caesarian section show a weaker association with ASD risk. At the same time, other environmental factors, such as vaccination, maternal smoking, or alcohol consumption, are not linked to the risk of ASD. Regarding nutritional elements data are inconclusive. These findings highlight the significance of environmental factors in ASD etiology and emphasize that more focused research is needed to target the risk factors of ASD. Environmental interventions targeting modifiable risk factors might offer promising avenues for ASD prevention and treatment.
Collapse
Affiliation(s)
| | - Meri Mkhitaryan
- Neuroscience Laboratory, Cobrain Center, YSMU, Yerevan, 0025, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
23
|
Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton KE, Ashwood P. Characterizing the neuroimmune environment of offspring in a novel model of maternal allergic asthma and particulate matter exposure. J Neuroinflammation 2023; 20:252. [PMID: 37919762 PMCID: PMC10621097 DOI: 10.1186/s12974-023-02930-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Inflammation during pregnancy is associated with an increased risk for neurodevelopmental disorders (NDD). Increased gestational inflammation can be a result of an immune condition/disease, exposure to infection, and/or environmental factors. Epidemiology studies suggest that cases of NDD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with NDD such as autism spectrum disorders (ASD). Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were sensitized for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA to induce allergic asthma or phosphate buffered saline (PBS) for 1 h. Following the 1-h exposure, pregnant females were then exposed to UIS with a size distribution of 55 to 169 nm at an average concentration of 176 ± 45 μg/m3) (SD), or clean air for 4 h, over 8 exposure sessions. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1β), and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. There was a suppressive effect of the combined MAA plus UIS on the anti-inflammatory cytokine IL-10. Potentially shifting the cytokine balance towards more neuroinflammation. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA, 01075, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California at Davis, Davis, CA, 95616, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA.
| |
Collapse
|
24
|
Angell AM, Lindly OJ, Floríndez D, Floríndez LI, Duker LIS, Zuckerman KE, Yin L, Solomon O. Pediatricians' role in healthcare for Latino autistic children: Shared decision-making versus "You've got to do everything on your own". AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:2407-2421. [PMID: 37070240 PMCID: PMC10579452 DOI: 10.1177/13623613231163056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
LAY ABSTRACT Latino parents may choose to use complementary health approaches, such as vitamins, supplements, and special diets, for their autistic children. However, they might not tell their pediatrician about their complementary health approach use if they worry that the pediatrician will disapprove or judge them. This fear, along with pediatricians' lack of autism knowledge, creates barriers to "shared decision-making" between parents and pediatricians. Shared decision-making is a process where families and healthcare providers collaborate and exchange information in order to come to an agreement about treatment options. In our qualitative study with 12 bilingual Latino families of autistic children, we interviewed and observed families to learn about their experiences with both conventional healthcare (their pediatrician) and complementary health approaches. Our study results describe the parents' different pathways to an autism assessment, a process that is sometimes called the "diagnostic odyssey." The parents reported that conventional healthcare met their needs for their child's physical health but not for their child's developmental challenges. The parents who used complementary health approaches for their autistic children were more frustrated about a lack of autism information from pediatricians than those who did not use complementary health approaches. Finally, we describe two examples of successful shared decision-making between parents and pediatricians. We conclude that pediatricians who are able to talk about complementary health approaches with Latino families may help to facilitate shared decision-making and reduce healthcare disparities for Latino autistic children.
Collapse
Affiliation(s)
- Amber M. Angell
- Mrs. T. H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles CA
| | - Olivia J. Lindly
- Department of Health Sciences, Northern Arizona University, Flagstaff, AZ
| | | | - Lucía I. Floríndez
- Department of Nursing Research, Cedars Sinai Medical Center, Los Angeles CA
| | - Leah I. Stein Duker
- Mrs. T. H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles CA
| | - Katharine E. Zuckerman
- Division of General Pediatrics and OHSU-PSU School of Public Health, Oregon Health & Science University, Portland OR
| | - Larry Yin
- Keck School of Medicine and Children’s Hospital Los Angeles, University of Southern California, Los Angeles CA
| | - Olga Solomon
- Department of Nursing Research, Cedars Sinai Medical Center, Los Angeles CA
| |
Collapse
|
25
|
Payne-Sturges DC, Taiwo TK, Ellickson K, Mullen H, Tchangalova N, Anderko L, Chen A, Swanson M. Disparities in Toxic Chemical Exposures and Associated Neurodevelopmental Outcomes: A Scoping Review and Systematic Evidence Map of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:96001. [PMID: 37754677 PMCID: PMC10525348 DOI: 10.1289/ehp11750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Children are routinely exposed to chemicals known or suspected of harming brain development. Targeting Environmental Neuro-Development Risks (Project TENDR), an alliance of > 50 leading scientists, health professionals, and advocates, is working to protect children from these toxic chemicals and pollutants, especially the disproportionate exposures experienced by children from families with low incomes and families of color. OBJECTIVE This scoping review was initiated to map existing literature on disparities in neurodevelopmental outcomes for U.S. children from population groups who have been historically economically/socially marginalized and exposed to seven exemplar neurotoxicants: combustion-related air pollution (AP), lead (Pb), mercury (Hg), organophosphate pesticides (OPs), phthalates (Phth), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). METHODS Systematic literature searches for the seven exemplar chemicals, informed by the Population, Exposure, Comparator, Outcome (PECO) framework, were conducted through 18 November 2022, using PubMed, CINAHL Plus (EBSCO), GreenFILE (EBSCO), and Web of Science sources. We examined these studies regarding authors' conceptualization and operationalization of race, ethnicity, and other indicators of sociodemographic and socioeconomic disadvantage; whether studies presented data on exposure and outcome disparities and the patterns of those disparities; and the evidence of effect modification by or interaction with race and ethnicity. RESULTS Two hundred twelve individual studies met the search criteria and were reviewed, resulting in 218 studies or investigations being included in this review. AP and Pb were the most commonly studied exposures. The most frequently identified neurodevelopmental outcomes were cognitive and behavioral/psychological. Approximately a third (74 studies) reported investigations of interactions or effect modification with 69% (51 of 74 studies) reporting the presence of interactions or effect modification. However, less than half of the studies presented data on disparities in the outcome or the exposure, and fewer conducted formal tests of heterogeneity. Ninety-two percent of the 165 articles that examined race and ethnicity did not provide an explanation of their constructs for these variables, creating an incomplete picture. DISCUSSION As a whole, the studies we reviewed indicated a complex story about how racial and ethnic minority and low-income children may be disproportionately harmed by exposures to neurotoxicants, and this has implications for targeting interventions, policy change, and other necessary investments to eliminate these health disparities. We provide recommendations on improving environmental epidemiological studies on environmental health disparities. To achieve environmental justice and health equity, we recommend concomitant strategies to eradicate both neurotoxic chemical exposures and systems that perpetuate social inequities. https://doi.org/10.1289/EHP11750.
Collapse
Affiliation(s)
| | | | - Kristie Ellickson
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
- Union of Concerned Scientists, Cambridge, Massachusetts, USA
| | - Haley Mullen
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | | | - Laura Anderko
- M. Fitzpatrick College of Nursing, Villanova University, Villanova, Pennsylvania, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
26
|
Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton K, Ashwood P. Characterizing the Neuroimmune Environment of Offspring in a Novel Model of Maternal Allergic Asthma and Particulate Matter Exposure. RESEARCH SQUARE 2023:rs.3.rs-3140415. [PMID: 37503062 PMCID: PMC10371118 DOI: 10.21203/rs.3.rs-3140415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by the presence of decreased social interactions and an increase in stereotyped and repetitive behaviors. Epidemiology studies suggest that cases of ASD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with ASD. Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders including ASD. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were primed for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA or phosphate buffered saline (PBS) for 1 hour. Following the 1-hour exposure, pregnant females were then exposed to UIS or clean air for 4 hours. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1β), IL-2, IL-13, and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely interferon gamma (IFNγ) and IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.
Collapse
|
27
|
Iyanna N, Yolton K, LeMasters G, Lanphear BP, Cecil KM, Schwartz J, Brokamp C, Rasnick E, Xu Y, MacDougall MC, Ryan PH. Air pollution exposure and social responsiveness in childhood: The cincinnati combined childhood cohorts. Int J Hyg Environ Health 2023; 251:114172. [PMID: 37116232 PMCID: PMC10682723 DOI: 10.1016/j.ijheh.2023.114172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Autism Spectrum Disorder (ASD) affects about 1 in 44 children and environmental exposures may contribute to disease onset. Air pollution has been associated with adverse neurobehavioral outcomes, yet little research has examined its association with autistic-like behaviors. Therefore, our objective was to examine the association between exposure to air pollution, including NO2 and PM2.5, during pregnancy and the first year of life to ASD-like behaviors during childhood. Participants (n = 435) enrolled in the Cincinnati Childhood Allergy and Air Pollution Study and the Health Outcomes and Measures of the Environment Study were included in the analysis. Daily exposures to NO2 and PM2.5 at the residential addresses of participants were estimated using validated spatiotemporal models and averaged to obtain prenatal and first year exposure estimates. ASD-like behaviors were assessed via the Social Responsiveness Scale (SRS) questionnaire at age 12. Linear regression models adjusting for confounders were applied to estimate the association between pollutants and SRS scores. After adjusting for covariates, the association between NO2 and PM2.5 and SRS scores remained positive but were no longer statistically significant. Prenatal and first year exposure to NO2 were associated with total SRS T-scores with an estimated 0.4 point increase (95% CI: -0.7, 1.6) per 5.2 ppb increase in NO2 exposure and 0.7 point (95% CI: -0.3, 1.6) per 4.2 ppb increase in NO2 exposure, respectively. For PM2.5, a 2.6 μg/m3 increase in prenatal exposure was associated with a 0.1 point increase (95% CI: -1.1, 1.4) in SRS Total T-scores and a 1.3 μg/m3 increase first year of life was associated with a 1 point increase (95% CI: -0.2, 2.3). In summary, exposure to NO2 and PM2.5 during pregnancy and the first year of life were not significantly associated with higher autistic-like behaviors measured with SRS scores after adjustment of covariates. Additional research is warranted given prior studies suggesting air pollution contributes to ASD.
Collapse
Affiliation(s)
- Nidhi Iyanna
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Grace LeMasters
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Kim M Cecil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, USA
| | - Cole Brokamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Erika Rasnick
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Melinda C MacDougall
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Patrick H Ryan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Ghahari N, Yousefian F, Najafi E. Prenatal exposure to ambient air pollution and autism spectrum disorders: Results from a family-based case-control study. JCPP ADVANCES 2023; 3:e12129. [PMID: 37431319 PMCID: PMC10241453 DOI: 10.1002/jcv2.12129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/01/2022] [Indexed: 09/20/2024] Open
Abstract
Background Autism prevalence has increased considerably, but its etiology is still poorly understood. While there have been suggestions regarding associations between air pollution exposure and neurodevelopmental disorders, several studies have looked at the effect of air pollution exposure on autism. However, the results are inconsistent. The possible role of unknown confounders is mainly blamed for this inconsistency. Methods To minimize confounding effects, we evaluated the impact of air pollution exposure on autism using a family-based case-control study. Cases were individuals with a diagnosis of autism born between 2009 and 2012 in Isfahan city, Iran. The controls did not have a previous history of autism and were cousins of the case person. The controls were matched with the autistic cases in terms of residential location and age range. For each trimester of pregnancy, carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and PM10 exposure were estimated using the inverse distance weighted method. Results The analysis indicates a significant association between CO exposure and autism in the second trimester (OR = 1.59; p = 0.046, 95% CI: 1.01-2.51) and entire pregnancy (OR = 2.02; p = 0.049, 95% CI: 1.01-2.95). Likewise, exposure to NO2 during the second trimester (OR = 1.17; p = 0.006, 95% CI: 1.04-1.31), third trimester (OR = 1.11; p = 0.046, 95% CI: 1.01-1.24), and entire pregnancy (OR = 1.27; p = 0.007, 95% CI: 1.07-1.51) were found to be associated with increased risk of autism. Conclusions Overall, our study found higher exposure to CO and NO2, particularly during the second and third trimesters of pregnancy, was significantly associated with a higher risk of autism.
Collapse
Affiliation(s)
- Nima Ghahari
- Centre for Health Services ResearchFaculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Department of Survey EngineeringFaculty of Civil EngineeringShahid Rajaee Teacher Training UniversityTehranIran
| | - Fatemeh Yousefian
- Department of Environmental Health EngineeringFaculty of HealthKashan University of Medical SciencesKashanIran
| | - Ehsan Najafi
- Department of Survey EngineeringFaculty of Civil EngineeringShahid Rajaee Teacher Training UniversityTehranIran
| |
Collapse
|
29
|
Abstract
Children suffer disproportionately from disease and disability due to environmental hazards, for reasons rooted in their biology. The contribution is substantial and increasingly recognized, particularly due to ever-increasing awareness of endocrine disruption. Regulatory actions can be traced directly to reductions in toxic exposures, with tangible benefits to society. Deep flaws remain in the policy framework in industrialized countries, failing to offer sufficient protection, but are even more limited in industrializing nations where the majority of chemical production and use will occur by 2030. Evidence-based steps for reducing chemical exposures associated with adverse health outcomes exist and should be incorporated into anticipatory guidance.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU School of Global Public Health, New York, NY, USA.
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
30
|
Rahman MM, Carter SA, Lin JC, Chow T, Yu X, Martinez MP, Levitt P, Chen Z, Chen JC, Rud D, Lewinger JP, Eckel SP, Schwartz J, Lurmann FW, Kleeman MJ, McConnell R, Xiang AH. Prenatal exposure to tailpipe and non-tailpipe tracers of particulate matter pollution and autism spectrum disorders. ENVIRONMENT INTERNATIONAL 2023; 171:107736. [PMID: 36623380 PMCID: PMC9943058 DOI: 10.1016/j.envint.2023.107736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Traffic-related air pollution exposure is associated with increased risk of autism spectrum disorder (ASD). It is unknown whether carbonaceous material from vehicular tailpipe emissions or redox-active non-tailpipe metals, eg. from tire and brake wear, are responsible. We assessed ASD associations with fine particulate matter (PM2.5) tracers of tailpipe (elemental carbon [EC] and organic carbon [OC]) and non-tailpipe (copper [Cu]; iron [Fe] and manganese [Mn]) sources during pregnancy in a large cohort. METHODS This retrospective cohort study included 318,750 children born in Kaiser Permanente Southern California (KPSC) hospitals during 2001-2014, followed until age 5. ASD cases were identified by ICD codes. Monthly estimates of PM2.5 and PM2.5 constituents EC, OC, Cu, Fe, and Mn with 4 km spatial resolution were obtained from a source-oriented chemical transport model. These exposures and NO2 were assigned to each maternal address during pregnancy, and associations with ASD were assessed using Cox regression models adjusted for covariates. PM constituent effect estimates were adjusted for PM2.5 and NO2 to assess independent effects. To distinguish ASD risk associated with non-tailpipe from tailpipe sources, the associations with Cu, Fe, and Mn were adjusted for EC and OC, and vice versa. RESULTS There were 4559 children diagnosed with ASD. In single-pollutant models, increased ASD risk was associated with gestational exposures to tracers of both tailpipe and non-tailpipe emissions. The ASD hazard ratios (HRs) per inter-quartile increment of exposure) for EC, OC, Cu, Fe, and Mn were 1.11 (95% CI: 1.06-1.16), 1.09 (95% CI: 1.04-1.15), 1.09 (95% CI: 1.04-1.13), 1.14 (95% CI: 1.09-1.20), and 1.17 (95% CI: 1.12-1.22), respectively. Estimated effects of Cu, Fe, and Mn (reflecting non-tailpipe sources) were largely unchanged in two-pollutant models adjusting for PM2.5, NO2, EC or OC. In contrast, ASD associations with EC and OC were markedly attenuated by adjustment for non-tailpipe sources. CONCLUSION Results suggest that non-tailpipe emissions may contribute to ASD. Implications are that reducing tailpipe emissions, especially from vehicles with internal combustion engines, may not eliminate ASD associations with traffic-related air pollution.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Pat Levitt
- Department of Pediatrics, Keck School of Medicine, Program in Developmental Neuroscience and Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Rud
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| |
Collapse
|
31
|
Rezaei Rahimi N, Fouladi-Fard R, Rezvani Ghalhari M, Mojarrad H, Yari A, Farajollahi MM, Hamta A, Fiore M. The links between microclimatic and particulate matter concentration in a multi-storey car parking: a case study iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:775-783. [PMID: 36406607 PMCID: PMC9672195 DOI: 10.1007/s40201-022-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
Multi-storey cars increasing with population growth have excellent security and temporary parking for cars in big cities, which isn't suitable for parking in the streets. The goals of this study are (1) to determine PM concentrations in the ZGP and (2) to investigate the effect of temperature and humidity on PM concentration in ZGP. This study measured the levels of emitted PM1, PM2.5, and PM10 by GRIMM EDM 107 laser dust monitor in a busy multi-storey parking garage located in Qom. Moreover, the relationship between microclimatic parameters and the contaminants mentioned above was investigated. Samples were collected in two stages in different spatiotemporal conditions, namely, the summer and autumn of 2017. The results indicate that during the sampling period, the daily mean ± standard deviation of PM10, PM2.5, and PM1 were 120.9 ± 90.6, 28.5 ± 10.4, and 10.8 ± 3.8 µg/m3, respectively. A decrease in pollution level was observed during the measurement period. During rush hours, the levels of particulate matter increased. Also, a significant positive relationship between indoor humidity and particle level was observed, while there was a meaningful, inverse relationship between temperature and particle level. The high PM concentration in the parking garage indicates the necessity of proper management and planning. Graphical Abstract
Collapse
Affiliation(s)
- Nayereh Rezaei Rahimi
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fouladi-Fard
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Mojarrad
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Ahmadreza Yari
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | | | - Amir Hamta
- Department of Social Medicine, Faculty of Medical Sciences, Qom University of medical sciences, Qom, Iran
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Shin HM, Oh J, J. Schmidt R, N. Pearce E. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Maternal Thyroid Dysfunction, and Child Autism Spectrum Disorder. Endocrinol Metab (Seoul) 2022; 37:819-829. [PMID: 36415960 PMCID: PMC9816503 DOI: 10.3803/enm.2022.1598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorder (ASD), with its high economic and societal costs, is a growing public health concern whose prevalence has risen steadily over the last two decades. Although actual increased incidence versus improved diagnosis remains controversial, the increased prevalence of ASD suggests non-inherited factors as likely contributors. There is increasing epidemiologic evidence that abnormal maternal thyroid function during pregnancy is associated with increased risk of child ASD and other neurodevelopmental disorders. Prenatal exposure to endocrine-disrupting chemicals such as per- and polyfluoroalkyl substances (PFAS) is known to disrupt thyroid function and can affect early brain development; thus, thyroid dysfunction is hypothesized to mediate this relationship. The concept of a potential pathway from prenatal PFAS exposure through thyroid dysfunction to ASD etiology is not new; however, the extant literature on this topic is scant. The aim of this review is to evaluate and summarize reports with regard to potential mechanisms in this pathway.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Corresponding author: Hyeong-Moo Shin. Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA Tel: +1-254-710-7627, Fax: +1-254-710-3409 E-mail:
| | - Jiwon Oh
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Elizabeth N. Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
33
|
Gheissari R, Liao J, Garcia E, Pavlovic N, Gilliland FD, Xiang AH, Chen Z. Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review. TOXICS 2022; 10:toxics10080458. [PMID: 36006137 PMCID: PMC9415268 DOI: 10.3390/toxics10080458] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 06/04/2023]
Abstract
(1) Background: The developmental origins of health and disease (DOHaD) hypothesis links adverse fetal exposures with developmental mal-adaptations and morbidity later in life. Short- and long-term exposures to air pollutants are known contributors to health outcomes; however, the potential for developmental health effects of air pollution exposures during gestation or early-childhood have yet to be reviewed and synthesized from a DOHaD lens. The objective of this study is to summarize the literature on cardiovascular and metabolic, respiratory, allergic, and neuropsychological health outcomes, from prenatal development through early childhood, associated with early-life exposures to outdoor air pollutants, including traffic-related and wildfire-generated air pollutants. (2) Methods: We conducted a search using PubMed and the references of articles previously known to the authors. We selected papers that investigated health outcomes during fetal or childhood development in association with early-life ambient or source-specific air pollution exposure. (3) Results: The current literature reports that prenatal and early-childhood exposures to ambient and traffic-related air pollutants are associated with a range of adverse outcomes in early life, including cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental outcomes. Very few studies have investigated associations between wildfire-related air pollution exposure and health outcomes during prenatal, postnatal, or childhood development. (4) Conclusion: Evidence from January 2000 to January 2022 supports a role for prenatal and early-childhood air pollution exposures adversely affecting health outcomes during development. Future studies are needed to identify both detrimental air pollutants from the exposure mixture and critical exposure time periods, investigate emerging exposure sources such as wildfire, and develop feasible interventional tools.
Collapse
Affiliation(s)
- Roya Gheissari
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Nathan Pavlovic
- Sonoma Technology Inc., 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, USA
| | - Frank D. Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91107, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
35
|
Li S, Liu Y, Liu B, Hu YQ, Ding YQ, Zhang J, Feng L. Maternal urban particulate matter exposure and signaling pathways in fetal brains and neurobehavioral development in offspring. Toxicology 2022; 474:153225. [PMID: 35659516 DOI: 10.1016/j.tox.2022.153225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
It is well understood that exposure to particulate matter (PM) can have adverse effects on the nervous system. When pregnant women are exposed to PM, their fetuses are also affected through the placenta. However, the mechanisms by which fetal brain development is regulated between mother and fetus remain unclear. C57BL/6J pregnant mice were exposed to PM at embryonic day (E) 2.5, 5.5, 8.5, 11.5, 14.5, and 17.5 via nasal drip at three doses (3, 6, 12 mg/kg of body weight) or PBS control. Neurobehavioral changes in the offspring were examined at 5-6-week-old by open field test (OFT) and elevated plus maze (EPM). The maternal and fetal brain and placenta were collected at E18.5, and molecular signal changes were explored using transcriptome analysis. We found that both male and female low-dose pups and male middle-dose pups traveled a significantly longer distance than controls in EPM tests. Both male and female low-dose pups showed a higher frequency of entering the center area and female low-dose pups exhibited a higher percentage of distance moved in the center area than controls in OFT tests. Gene expression in the maternal brain, fetal brain, and placenta at E18.5 was altered. Differentially expressed genes were enriched in the neuroactive ligand-receptor interaction pathway in all three tissue types. Pathway analysis revealed that the PI3K-Akt and PKC signaling was dysregulated in the fetal brain in the high-dose group compared with the control group. The pathways play a role in neuronal survival and apoptosis. Furthermore, there is a dose-dependent increase in Caspase-6, neuronal apoptosis and neurodegeneration biomarker, levels in E18.5 fetal brain (P = 0.06). In conclusion, our study demonstrated that prenatal PM exposure enhanced exploration and locomotor activity in adolescent offspring and altered molecular events in maternal brain, fetal brain, and placenta. The connections of these changes warrant further investigations.
Collapse
Affiliation(s)
- Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA.
| |
Collapse
|
36
|
Margolis AE, Cohen JW, Ramphal B, Thomas L, Rauh V, Herbstman J, Pagliaccio D. Prenatal Exposure to Air Pollution and Early Life Stress Effects on Hippocampal Subregional Volumes and Associations with Visual-Spatial Reasoning. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:292-300. [PMID: 35978944 PMCID: PMC9380862 DOI: 10.1016/j.bpsgos.2022.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Children from economically distressed families and neighborhoods are at risk for stress and pollution exposure and potential neurotoxic sequelae. We examine dimensions of early-life stress affecting hippocampal volumes, how prenatal exposure to air pollution might magnify these effects, and associations between hippocampal volumes and visuospatial reasoning. Methods Fifty-three Hispanic/Latinx and/or Black children of ages 7 to 9 years were recruited from a longitudinal birth cohort for magnetic resonance imaging and cognitive assessment. Exposure to airborne polycyclic aromatic hydrocarbons was measured during the third trimester of pregnancy. Maternal report of psychosocial stress was collected at child age 5 and served as measures of early-life stress. Whole hippocampus and subfield volumes were extracted using FreeSurfer. Wechsler performance IQ measured visuospatial reasoning. Results Maternal perceived stress associated with smaller right hippocampal volume among their children (B = −0.57, t34 = −3.05, 95% CI, −0.95 to −0.19). Prenatal polycyclic aromatic hydrocarbon moderated the association between maternal perceived stress and right CA1, CA3, and CA4/dentate gyrus volumes (B ≥ 0.68, t33 ≥ 2.17) such that higher prenatal polycyclic aromatic hydrocarbon exposure magnified negative associations between stress and volume, whereas this was buffered at lower exposure. Right CA3 and CA4/dentate gyrus volumes (B ≥ 0.35, t33 > 2.16) were associated with greater performance IQ. Conclusions Prenatal and early-life exposures to chemical and social stressors are likely compounding. Socioeconomic deprivation and disparities increase risk of these exposures that exert critical neurobiological effects. Developing deeper understandings of these complex interactions will facilitate more focused public health strategies to protect and foster the development of children at greatest risk of mental and physical effects associated with poverty.
Collapse
Affiliation(s)
- Amy E. Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Address correspondence to Amy Margolis, Ph.D.
| | - Jacob W. Cohen
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Lauren Thomas
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Virginia Rauh
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York
| | - Julie Herbstman
- Columbia Center for Children’s Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - David Pagliaccio
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
37
|
Marí-Bauset S, Peraita-Costa I, Donat-Vargas C, Llopis-González A, Marí-Sanchis A, Llopis-Morales J, Morales Suárez-Varela M. Systematic review of prenatal exposure to endocrine disrupting chemicals and autism spectrum disorder in offspring. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:6-32. [PMID: 34412519 DOI: 10.1177/13623613211039950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders comprise a complex group with many subtypes of behaviorally defined neurodevelopmental abnormalities in two core areas: deficits in social communication and fixated, restricted, repetitive, or stereotyped behaviors and interests each with potential unique risk factors and characteristics. The underlying mechanisms and the possible causes of autism spectrum disorder remain elusive and while increased prevalence is undoubtable, it is unclear if it is a reflection of diagnostic improvement or emerging risk factors such as endocrine disrupting chemicals. Epidemiological studies, which are used to study the relation between endocrine disrupting chemicals and autism spectrum disorder, can have inherent methodological challenges that limit the quality and strength of their findings. The objective of this work is to systematically review the treatment of these challenges and assess the quality and strength of the findings in the currently available literature. The overall quality and strength were "moderate" and "limited," respectively. Risk of bias due to the exclusion of potential confounding factors and the lack of accuracy of exposure assessment methods were the most prevalent. The omnipresence of endocrine disrupting chemicals and the biological plausibility of the association between prenatal exposure and later development of autism spectrum disorder highlight the need to carry out well-designed epidemiological studies that overcome the methodological challenges observed in the currently available literature in order to be able to inform public policy to prevent exposure to these potentially harmful chemicals and aid in the establishment of predictor variables to facilitate early diagnosis of autism spectrum disorder and improve long-term outcomes.
Collapse
Affiliation(s)
- Salvador Marí-Bauset
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
| | - Isabel Peraita-Costa
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| | | | - Agustín Llopis-González
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| | | | - Juan Llopis-Morales
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
| | - María Morales Suárez-Varela
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| |
Collapse
|
38
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
39
|
Ahmed SM, Mishra GD, Moss KM, Yang IA, Lycett K, Knibbs LD. Maternal and Childhood Ambient Air Pollution Exposure and Mental Health Symptoms and Psychomotor Development in Children: An Australian Population-Based Longitudinal Study. ENVIRONMENT INTERNATIONAL 2022; 158:107003. [PMID: 34991263 DOI: 10.1016/j.envint.2021.107003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Accumulating evidence indicates early life exposure to air pollution, a suspected neurotoxicant, is negatively associated with children's neurodevelopment. OBJECTIVES To explore the role of multiple exposure periods to ambient particulate matter with diameter <2.5 μm (PM2.5) and nitrogen dioxide (NO2) on emotion and behaviour, and early development in children <13 years. METHODS We used data from Mothers and their Children's Health (MatCH) study, a 2016/17 sub-study from a prospective longitudinal study, the Australian Longitudinal Study on Women's Health. Annual PM2.5 and NO2 estimates since 1996 were obtained from a land-use regression model. Maternal residential proximity to roadways were used as a proxy measure of exposure to traffic-related air pollution. Child outcomes were maternal-rated emotional and behavioural problems (Strengths and Difficulties Questionnaire; SDQ, aged 2-12 years, n = 5471 children) and developmental delay in communication and gross motor skills (Ages and Stages Questionnaire; ASQ, aged 1-66 months, n = 1265 children). Defined exposure periods were early life exposure ('during pregnancy' and 'first year of life') and 'children's lifetime exposure'. Ambient air pollution was divided into tertiles and logistic regression was performed to estimate odds ratio (OR) for each child outcome, adjusting for potential confounders. RESULTS Children exposed to moderate and high PM2.5 exposure, compared to low exposure, across all periods, had higher odds of emotional and behavioural problems, and gross motor delay. Children's lifetime exposure to moderate levels of PM2.5 (5.9-7.1 µg/m3) was associated with 1.27 (95% confidence interval 1.03, 1.57) fold higher odds of emotional/behavioural problems. Similar associations were found for moderate PM2.5 levels at 'first year of life' in a two-pollutant model only (OR: 1.30; 1.05, 1.60). However, there was insufficient evidence to suggest that NO2 exposure or living within 200 m of major roads was associated with emotional and behaviour problems or developmental delay across any exposure periods. CONCLUSION We found isolated evidence that early life and childhood exposure to PM2.5 may be associated with emotional and behavioural problems and delays in gross motor skills, but most associations were null. Due to the limited number of longitudinal studies on low-exposure settings, further studies with more temporally refined exposure assessment are warranted.
Collapse
Affiliation(s)
- Salma M Ahmed
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia.
| | - Gita D Mishra
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Katrina M Moss
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian A Yang
- Faculty of Medicine, The University of Queensland, and Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland Australia
| | - Kate Lycett
- Centre for Social & Early Emotional Development, School of Psychology, Deakin University, Burwood, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Carter SA, Rahman MM, Lin JC, Shu YH, Chow T, Yu X, Martinez MP, Eckel SP, Chen JC, Chen Z, Schwartz J, Pavlovic N, Lurmann FW, McConnell R, Xiang AH. In utero exposure to near-roadway air pollution and autism spectrum disorder in children. ENVIRONMENT INTERNATIONAL 2022; 158:106898. [PMID: 34627014 PMCID: PMC8688235 DOI: 10.1016/j.envint.2021.106898] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 05/29/2023]
Abstract
IMPORTANCE Previous studies have reported associations between in utero exposure to regional air pollution and autism spectrum disorders (ASD). In utero exposure to components of near-roadway air pollution (NRAP) has been linked to adverse neurodevelopment in animal models, but few studies have investigated NRAP association with ASD risk. OBJECTIVE To identify ASD risk associated with in utero exposure to NRAP in a large, representative birth cohort. DESIGN, SETTING, AND PARTICIPANTS This retrospective pregnancy cohort study included 314,391 mother-child pairs of singletons born between 2001 and 2014 at Kaiser Permanente Southern California (KPSC) hospitals. Maternal and child data were extracted from KPSC electronic medical records. Children were followed until: clinical diagnosis of ASD, non-KPSC membership, death, or December 31, 2019, whichever came first. Exposure to the complex NRAP mixture during pregnancy was assessed using line-source dispersion models to estimate fresh vehicle emissions from freeway and non-freeway sources at maternal addresses during pregnancy. Vehicular traffic load exposure was characterized using advanced telematic models combining traditional traffic counts and travel-demand models with cell phone and vehicle GPS data. Cox proportional-hazard models estimated hazard ratios (HR) of ASD associated with near-roadway traffic load and dispersion-modeled NRAP during pregnancy, adjusted for covariates. Non-freeway NRAP was analyzed using quintile distribution due to nonlinear associations with ASD. EXPOSURES Average NRAP and traffic load exposure during pregnancy at maternal residential addresses. MAIN OUTCOMES Clinical diagnosis of ASD. RESULTS A total of 6,291 children (5,114 boys, 1,177 girls) were diagnosed with ASD. The risk of ASD was associated with pregnancy-average exposure to total NRAP [HR(95% CI): 1.03(1.00,1.05) per 5 ppb increase in dispersion-modeled NOx] and to non-freeway NRAP [HR(95% CI) comparing the highest to the lowest quintile: 1.19(1.11, 1.27)]. Total NRAP had a stronger association in boys than in girls, but the association with non-freeway NRAP did not differ by sex. The association of freeway NRAP with ASD risk was not statistically significant. Non-freeway traffic load exposure demonstrated associations with ASD consistent with those of NRAP and ASD. CONCLUSIONS In utero exposure to near-roadway air pollution, particularly from non-freeway sources, may increase ASD risk in children.
Collapse
Affiliation(s)
- Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Md Mostafijur Rahman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Yu-Hsiang Shu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| |
Collapse
|
41
|
Amadi CN, Orish CN, Frazzoli C, Orisakwe OE. Association of autism with toxic metals: A systematic review of case-control studies. Pharmacol Biochem Behav 2021; 212:173313. [PMID: 34896416 DOI: 10.1016/j.pbb.2021.173313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Environmental factors have been associated with the etiology of autism spectrum disorder ASD in recent times. The involvement of toxic metals in the generation of reactive oxygen species and their epigenetics effects have been implicated in ASD. This systemic review examines the association of toxic metals with autism in children. A systematic literature search was performed in scientific databases such as PubMed, Google scholar, and Scopus. Case-control studies evaluating toxic metal levels in different tissues of ASD children and comparing them to healthy children (control group) were identified. The Newcastle-Ottawa Scale was used to evaluate the risk of bias of the included studies. Six case-control studies with 425 study subjects met our inclusion criteria. A total of four studies indicated higher levels of As, Pb, Hg, Cd, Al, Sn, Sb, Ba, TI, W, and Zr in whole blood, RBC, in whole blood, RBC, and hair samples of children with autism compared with control suggestive of a greater toxic metal exposure (immediate and long-term). Three studies identified significantly higher concentrations of Cd, Pb and Hg in urine and hair samples of autistic children compared to control suggesting decreased excretion and possible high body burden of these metals. The findings from this review demonstrate that high levels of toxic metals are associated with ASD, therefore, critical care is necessary to reduce body burden of these metals in children with ASD as a major therapeutic strategy.
Collapse
Affiliation(s)
- Cecilia N Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department for Cardiovascular, Dysmetabolic and Aging Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria.
| |
Collapse
|
42
|
Morton S, Honda T, Zimmerman E, Kirwa K, Huerta-Montanez G, Martens A, Hines M, Ondras M, Eum KD, Cordero JF, Alshawabekeh A, Suh HH. Non-nutritive suck and airborne metal exposures among Puerto Rican infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148008. [PMID: 34082200 PMCID: PMC8295239 DOI: 10.1016/j.scitotenv.2021.148008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Air pollution has been shown to impact multiple measures of neurodevelopment in young children. Its effects on particularly vulnerable populations, such as ethnic minorities, however, is less studied. To address this gap in the literature, we assess the associations between infant non-nutritive suck (NNS), an early indicator of central nervous system integrity, and air pollution exposures in Puerto Rico. Among infants aged 0-3 months enrolled in the Center for Research on Early Childhood Exposure and Development (CRECE) cohort from 2017 to 2019, we examined associations between exposure to fine particulate matter (PM2.5) and its components on infant NNS in Puerto Rico. NNS was assessed using a pacifier attached to a pressure transducer, allowing for real-time visualization of NNS amplitude, frequency, duration, cycles/burst, cycles/min and bursts/min. These data were linked to 9-month average prenatal concentrations of PM2.5 and components, measured at three community monitoring sites. We used linear regression to examine the PM2.5-NNS association in single pollutant models, controlling for infant sex, maternal age, gestational age, and season of birth in base and additionally for household smoke exposure, age at testing, and NNS duration in full models. Among 198 infants, the average NNS amplitude and burst duration was 17.1 cmH2O and 6.1 s, respectively. Decreased NNS amplitude was consistently and significantly associated with 9-month average exposure to sulfur (-1.026 ± 0.507), zinc (-1.091 ± 0.503), copper (-1.096 ± 0.535) vanadium (-1.157 ± 0.537), and nickel (-1.530 ± 0.501). Decrements in NNS frequency were associated with sulfur exposure (0.036 ± 0.018), but not other examined PM components. Our findings provide new evidence that prenatal maternal exposure to specific PM components are associated with impaired neurodevelopment in Puerto Rican infants soon after birth.
Collapse
Affiliation(s)
- Sarah Morton
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, MA 02155, USA
| | - Trenton Honda
- Bouvé College of Health Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Kipruto Kirwa
- Department of Environmental and Occupational Health Sciences, University of Washington, Box 351618, Seattle, WA 98195, USA
| | - Gredia Huerta-Montanez
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Alaina Martens
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Morgan Hines
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Martha Ondras
- Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110, USA
| | - Ki-Do Eum
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, MA 02155, USA
| | - Jose F Cordero
- Departmentof Epidemiology, University of Georgia, 101 Buck Rd, Athens, GA 30602, USA
| | - Akram Alshawabekeh
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Helen H Suh
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, MA 02155, USA.
| |
Collapse
|
43
|
Wang SY, Cheng YY, Guo HR, Tseng YC. Air Pollution during Pregnancy and Childhood Autism Spectrum Disorder in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9784. [PMID: 34574710 PMCID: PMC8467611 DOI: 10.3390/ijerph18189784] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
Air pollutants have been linked to some diseases in humans, but their effects on the nervous system were less frequently evaluated. Autism spectrum disorder (ASD) is a group of neurondevelopmental disorders of which the etiology is still unknown. We conducted a study in Taiwan to evaluate the possible associations between prenatal exposure to air pollutants and ASD. From a random sample of one million people in the National Insurance Research Database, we identified all the infants born between 1996 and 2000. We followed them till the end of 2013 and identified cases of ASD. We traced back the mothers' residence and assessed the exposure to air pollutants using the data obtained from the air quality monitoring database maintained by the government, which included ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matters with diameter less than 10 µm (PM10). Cox proportional hazard models were constructed to evaluate the associations between childhood ASD and exposures to the pollutants in the three trimesters and the whole gestation. We identified a total of 63,376 newborns and included 62,919 as the study cohort. After adjusting for other risk factors, we observed trimester-specific associations between levels of CO, NO2, and PM10 and the risk of childhood ASD. An increase of 1 ppm of CO in the first, second, and third trimester was associated with a hazard ratio (HR) of 1.93 (95% confidence interval [CI]: 1.55-2.39), 1.77 (95%CI: 1.41-2.22), and 1.75 (95%CI: 1.39-2.21), respectively. An increase of 10 ppb in the level of NO2 in the first, second, and third trimester was associated with an HR of 1.39 (95%CI: 1.22-1.58), 1.25 (95%CI: 1.10-1.42), and 1.18 (95%CI: 1.03-1.34), respectively. In conclusion, we found that exposures to CO and NO2 in all three trimesters were associated with increased risks of developing ASD.
Collapse
Affiliation(s)
- Shu-Yuan Wang
- Department of Environmental and Occupational Health, College of Medical, National Cheng Kung University, Tainan 704, Taiwan; (S.-Y.W.); (Y.-Y.C.); (H.-R.G.)
| | - Ya-Yun Cheng
- Department of Environmental and Occupational Health, College of Medical, National Cheng Kung University, Tainan 704, Taiwan; (S.-Y.W.); (Y.-Y.C.); (H.-R.G.)
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medical, National Cheng Kung University, Tainan 704, Taiwan; (S.-Y.W.); (Y.-Y.C.); (H.-R.G.)
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Yen-Cheng Tseng
- Department of Tourism, Food, and Beverage Management, College of Management, Chang Jung Christian University, Tainan 711, Taiwan
| |
Collapse
|
44
|
Kissoondoyal A, Rai-Bhogal R, Crawford DA. Abnormal dendritic morphology in the cerebellum of cyclooxygenase-2 - knockin mice. Eur J Neurosci 2021; 54:6355-6373. [PMID: 34510613 DOI: 10.1111/ejn.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
Prostaglandin E2 (PGE2) is a bioactive signalling molecule metabolized from the phospholipid membranes by the enzymatic activity of cycloxygenase-2 (COX-2). In the developing brain, COX-2 constitutively regulates the production of PGE2, which is important in neuronal development. However, abnormal COX-2/PGE2 signalling has been linked to neurodevelopmental disorders including autism spectrum disorders (ASDs). We have previously demonstrated that COX-2- -KI mice show autism-related behaviours including social deficits, repetitive behaviours and anxious behaviours. COX-2-deficient mice also have deficits in pathways involved in synaptic transmission and dendritic spine formation. In this study, we use a Golgi-COX staining method to examine sex-dependent differences in dendritic and dendritic spine morphology in neurons of COX-2- -KI mice cerebellum compared with wild-type (WT) matched controls at postnatal day 25 (P25). We show that COX-2- -KI mice have increased dendritic arborization closer to the cell soma and increased dendritic looping. We also observed a sex-dependent effect of the COX-2- -KI on dendritic thickness, dendritic spine density, dendritic spine morphology, and the expression of β-actin and the actin-binding protein spinophilin. Our findings show that changes in COX-2/PGE2 signalling lead to impaired morphology of dendrites and dendritic spines in a sex-dependant manner and may contribute the pathology of the cerebellum seen in individuals with ASD. This study provides further evidence that the COX-2- -KI mouse model can be used to study a subset of ASD pathologies.
Collapse
Affiliation(s)
- Ashby Kissoondoyal
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| | - Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Haghani A, Feinberg JI, Lewis KC, Ladd-Acosta C, Johnson RG, Jaffe AE, Sioutas C, Finch CE, Campbell DB, Morgan TE, Volk HE. Cerebral cortex and blood transcriptome changes in mouse neonates prenatally exposed to air pollution particulate matter. J Neurodev Disord 2021; 13:30. [PMID: 34429070 PMCID: PMC8383458 DOI: 10.1186/s11689-021-09380-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Prenatal exposure to air pollutants is associated with increased risk for neurodevelopmental and neurodegenerative disorders. However, few studies have identified transcriptional changes related to air pollutant exposure. Methods RNA sequencing was used to examine transcriptomic changes in blood and cerebral cortex of three male and three female mouse neonates prenatally exposed to traffic-related nano-sized particulate matter (nPM) compared to three male and three female mouse neonates prenatally exposed to control filter air. Results We identified 19 nPM-associated differentially expressed genes (nPM-DEGs) in blood and 124 nPM-DEGs in cerebral cortex. The cerebral cortex transcriptional responses to nPM suggested neuroinflammation involvement, including CREB1, BDNF, and IFNγ genes. Both blood and brain tissues showed nPM transcriptional changes related to DNA damage, oxidative stress, and immune responses. Three blood nPM-DEGs showed a canonical correlation of 0.98 with 14 nPM-DEGS in the cerebral cortex, suggesting a convergence of gene expression changes in blood and cerebral cortex. Exploratory sex-stratified analyses suggested a higher number of nPM-DEGs in female cerebral cortex than male cerebral cortex. The sex-stratified analyses identified 2 nPM-DEGs (Rgl2 and Gm37534) shared between blood and cerebral cortex in a sex-dependent manner. Conclusions Our findings suggest that prenatal nPM exposure induces transcriptional changes in the cerebral cortex, some of which are also observed in blood. Further research is needed to replicate nPM-induced transcriptional changes with additional biologically relevant time points for brain development. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09380-3.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason I Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristy C Lewis
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard G Johnson
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Andrew E Jaffe
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Lieber Institute for Brain Development, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Daniel B Campbell
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
46
|
Weitekamp CA, Hofmann HA. Effects of air pollution exposure on social behavior: a synthesis and call for research. Environ Health 2021; 20:72. [PMID: 34187479 PMCID: PMC8243425 DOI: 10.1186/s12940-021-00761-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND There is a growing literature from both epidemiologic and experimental animal studies suggesting that exposure to air pollution can lead to neurodevelopmental and neuropsychiatric disorders. Here, we suggest that effects of air pollutant exposure on the brain may be even broader, with the potential to affect social decision-making in general. METHODS We discuss how the neurobiological substrates of social behavior are vulnerable to air pollution, then briefly present studies that examine the effects of air pollutant exposure on social behavior-related outcomes. RESULTS Few experimental studies have investigated the effects of air pollution on social behavior and those that have focus on standard laboratory tests in rodent model systems. Nonetheless, there is sufficient evidence to support a critical need for more research. CONCLUSION For future research, we suggest a comparative approach that utilizes diverse model systems to probe the effects of air pollution on a wider range of social behaviors, brain regions, and neurochemical pathways.
Collapse
Affiliation(s)
- Chelsea A. Weitekamp
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Durham, NC USA
| | - Hans A. Hofmann
- Department of Integrative Biology, The University of Texas At Austin, Austin, TX USA
- Institute for Cellular and Molecular Biology, The University of Texas At Austin, Austin, TX USA
- Institute for Neuroscience, The University of Texas At Austin, Austin, TX USA
| |
Collapse
|
47
|
Marazziti D, Cianconi P, Mucci F, Foresi L, Chiarantini I, Della Vecchia A. Climate change, environment pollution, COVID-19 pandemic and mental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145182. [PMID: 33940721 PMCID: PMC7825818 DOI: 10.1016/j.scitotenv.2021.145182] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
Converging data would indicate the existence of possible relationships between climate change, environmental pollution and epidemics/pandemics, such as the current one due to SARS-CoV-2 virus. Each of these phenomena has been supposed to provoke detrimental effects on mental health. Therefore, the purpose of this paper was to review the available scientific literature on these variables in order to suggest and comment on their eventual synergistic effects on mental health. The available literature report that climate change, air pollution and COVID-19 pandemic might influence mental health, with disturbances ranging from mild negative emotional responses to full-blown psychiatric conditions, specifically, anxiety and depression, stress/trauma-related disorders, and substance abuse. The most vulnerable groups include elderly, children, women, people with pre-existing health problems especially mental illnesses, subjects taking some types of medication including psychotropic drugs, individuals with low socio-economic status, and immigrants. It is evident that COVID-19 pandemic uncovers all the fragility and weakness of our ecosystem, and inability to protect ourselves from pollutants. Again, it underlines our faults and neglect towards disasters deriving from climate change or pollution, or the consequences of human activities irrespective of natural habitats and constantly increasing the probability of spillover of viruses from animals to humans. In conclusion, the psychological/psychiatric consequences of COVID-19 pandemic, that currently seem unavoidable, represent a sharp cue of our misconception and indifference towards the links between our behaviour and their influence on the "health" of our planet and of ourselves. It is time to move towards a deeper understanding of these relationships, not only for our survival, but for the maintenance of that balance among man, animals and environment at the basis of life in earth, otherwise there will be no future.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy; UniCamillus - Saint Camillus University of Health Sciences, Rome, Italy
| | - Paolo Cianconi
- Institute of Psychiatry, Department of Neurosciences, Catholic University, Rome, Italy
| | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Psychiatry, North-Western Tuscany Region, NHS Local Health Unit, Italy
| | - Lara Foresi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.
| |
Collapse
|
48
|
Dutheil F, Comptour A, Morlon R, Mermillod M, Pereira B, Baker JS, Charkhabi M, Clinchamps M, Bourdel N. Autism spectrum disorder and air pollution: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116856. [PMID: 33714060 DOI: 10.1016/j.envpol.2021.116856] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Despite the widely-known effects of air pollution, pollutants exposure surrounding pregnancy and the risk for autism spectrum disorder (ASD) in newborns remains controversial. The purpose of our study was to carry out a systematic review and meta-analyses of the risk of ASD in newborns following air pollution exposure during the perinatal period (preconception to second year of life). The PubMed, Cochrane Library, Embase and ScienceDirect databases were searched for articles, published up to July 2020, with the keywords "air pollution" and "autism". Three models were used for each meta-analysis: a global model based on all risks listed in included articles, a pessimistic model based on less favorable data only, and an optimistic model based on the most favorable data only. 28 studies corresponding to a total of 758 997 newborns were included (47190 ASD and 703980 controls). Maternal exposure to all pollutants was associated with an increased risk of ASD in newborns by 3.9% using the global model and by 12.3% using the optimistic model, while the pessimistic model found no change. Each increase of 5 μg/m3 in particulate matter <2.5 μm (PM2.5) was associated with an increased risk of ASD in newborns, regardless of the model used (global +7%, pessimistic +5%, optimistic +15%). This risk increased during preconception (global +17%), during pregnancy (global +5%, and optimistic +16%), and during the postnatal period (global +11% and optimistic +16%). Evidence levels were poor for other pollutants (PM10, NOx, O3, metals, solvents, styrene, PAHs, pesticides). PM2.5 was associated with a greater risk than PM10 (coefficient 0.20, 95CI -0.02 to 0.42), NOx (0.29, 0.08 to 0.50) or solvents (0.24, 0.04 to 0.44). All models revealed that exposure to pollutants, notably PM2.5 during pregnancy, was associated with an increased risk of ASD in newborns. Pregnancy and postnatal periods seem to be the most at-risk periods.
Collapse
Affiliation(s)
- Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, Clermont-Ferrand, France.
| | - Aurélie Comptour
- INSERM, CIC 1405 CRECHE Unit, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Gynecological Surgery, Clermont-Ferrand, France
| | - Roxane Morlon
- Université Clermont Auvergne, Faculty of Medicine, Occupational and Environmental Medicine, Clermont-Ferrand, France
| | | | - Bruno Pereira
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Biostatistics, Clermont-Ferrand, France
| | - Julien S Baker
- Hong Kong Baptist University, Physical Education and Health, Centre for Health and Exercise Science Research, Kowloon Tong, Hong Kong, China
| | - Morteza Charkhabi
- National Research University Higher School of Economics, Moscow, Russia
| | - Maëlys Clinchamps
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, Clermont-Ferrand, France
| | - Nicolas Bourdel
- Université Clermont Auvergne, UMR 6602, Pascal Institute, Endoscopy and Computer Vision Group, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Gynecological Surgery, Clermont-Ferrand, France
| |
Collapse
|
49
|
Volk HE, Perera F, Braun JM, Kingsley SL, Gray K, Buckley J, Clougherty JE, Croen LA, Eskenazi B, Herting M, Just AC, Kloog I, Margolis A, McClure LA, Miller R, Levine S, Wright R. Prenatal air pollution exposure and neurodevelopment: A review and blueprint for a harmonized approach within ECHO. ENVIRONMENTAL RESEARCH 2021; 196:110320. [PMID: 33098817 PMCID: PMC8060371 DOI: 10.1016/j.envres.2020.110320] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Air pollution exposure is ubiquitous with demonstrated effects on morbidity and mortality. A growing literature suggests that prenatal air pollution exposure impacts neurodevelopment. We posit that the Environmental influences on Child Health Outcomes (ECHO) program will provide unique opportunities to fill critical knowledge gaps given the wide spatial and temporal variability of ECHO participants. OBJECTIVES We briefly describe current methods for air pollution exposure assessment, summarize existing studies of air pollution and neurodevelopment, and synthesize this information as a basis for recommendations, or a blueprint, for evaluating air pollution effects on neurodevelopmental outcomes in ECHO. METHODS We review peer-reviewed literature on prenatal air pollution exposure and neurodevelopmental outcomes, including autism spectrum disorder, attention deficit hyperactivity disorder, intelligence, general cognition, mood, and imaging measures. ECHO meta-data were compiled and evaluated to assess frequency of neurodevelopmental assessments and prenatal and infancy residential address locations. Cohort recruitment locations and enrollment years were summarized to examine potential spatial and temporal variation present in ECHO. DISCUSSION While the literature provides compelling evidence that prenatal air pollution affects neurodevelopment, limitations in spatial and temporal exposure variation exist for current published studies. As >90% of the ECHO cohorts have collected a prenatal or infancy address, application of advanced geographic information systems-based models for common air pollutant exposures may be ideal to address limitations of published research. CONCLUSIONS In ECHO we have the opportunity to pioneer unifying exposure assessment and evaluate effects across multiple periods of development and neurodevelopmental outcomes, setting the standard for evaluation of prenatal air pollution exposures with the goal of improving children's health.
Collapse
Affiliation(s)
- Heather E Volk
- Department of Mental Health and Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | | | - Kimberly Gray
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Jessie Buckley
- Department of Environmental Health and Engineering and Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Megan Herting
- Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amy Margolis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Rachel Miller
- Department of Medicine, Department of Pediatrics, The College of Physicians and Surgeons, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sarah Levine
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rosalind Wright
- Department of Environmental Medicine and Public Health, And Pediatrics, Institute for Exposomics Research, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
50
|
Payne-Sturges DC, Cory-Slechta DA, Puett RC, Thomas SB, Hammond R, Hovmand PS. Defining and Intervening on Cumulative Environmental Neurodevelopmental Risks: Introducing a Complex Systems Approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:35001. [PMID: 33688743 PMCID: PMC7945198 DOI: 10.1289/ehp7333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND The combined effects of multiple environmental toxicants and social stressor exposures are widely recognized as important public health problems contributing to health inequities. However cumulative environmental health risks and impacts have received little attention from U.S. policy makers at state and federal levels to develop comprehensive strategies to reduce these exposures, mitigate cumulative risks, and prevent harm. An area for which the inherent limitations of current approaches to cumulative environmental health risks are well illustrated is children's neurodevelopment, which exhibits dynamic complexity of multiple interdependent and causally linked factors and intergenerational effects. OBJECTIVES We delineate how a complex systems approach, specifically system dynamics, can address shortcomings in environmental health risk assessment regarding exposures to multiple chemical and nonchemical stressors and reshape associated public policies. DISCUSSION Systems modeling assists in the goal of solving problems by improving the "mental models" we use to make decisions, including regulatory and policy decisions. In the context of disparities in children's cumulative exposure to neurodevelopmental stressors, we describe potential policy insights about the structure and behavior of the system and the types of system dynamics modeling that would be appropriate, from visual depiction (i.e., informal maps) to formal quantitative simulation models. A systems dynamics framework provides not only a language but also a set of methodological tools that can more easily operationalize existing multidisciplinary scientific evidence and conceptual frameworks on cumulative risks. Thus, we can arrive at more accurate diagnostic tools for children's' environmental health inequities that take into consideration the broader social and economic environment in which children live, grow, play, and learn. https://doi.org/10.1289/EHP7333.
Collapse
Affiliation(s)
- Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, University of Maryland School of UMD Public Health, College Park, Maryland, USA
| | | | - Robin C. Puett
- Maryland Institute for Applied Environmental Health, University of Maryland School of UMD Public Health, College Park, Maryland, USA
| | - Stephen B. Thomas
- Department of Health Policy and Management and Maryland Center for Health Equity, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Ross Hammond
- Brown School of Social Work, Washington University, St. Louis, Missouri, USA
- Center on Social Dynamics and Policy, The Brookings Institution, Washington, DC, USA
| | - Peter S. Hovmand
- Center for Community Health Integration, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|