1
|
Deng L, Chen G, Duan T, Xie J, Huang G, Li X, Huang S, Zhang J, Luo Z, Liu C, Zhu S, He G, Dong X, Liu T, Ma W, Gong Y, Shen X, Yang P. Mixed effects of ambient air pollutants on oocyte-related outcomes: A novel insight from women undergoing assisted reproductive technology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116525. [PMID: 38852468 DOI: 10.1016/j.ecoenv.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Air pollution is widely acknowledged as a significant risk factor for human health, especially reproductive health. Nevertheless, many studies have disregarded the potentially mixed effects of air pollutants on reproductive outcomes. We performed a retrospective cohort study involving 8048 women with 9445 cycles undergoing In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI) in China, from 2017 to 2021. A land-use random forest model was applied to estimate daily residential exposure to air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and fine particulate matter (PM2.5). Individual and joint associations between air pollutants and oocyte-related outcomes of ART were evaluated. In 90 days prior to oocyte pick-up to oocyte pick-up (period A), NO2, O3 and CO was negatively associated with total oocyte yield. In the 90 days prior to oocyte pick-up to start of gonadotropin medication (Gn start, period B), there was a negative dose-dependent association of exposure to five air pollutants with total oocyte yield and mature oocyte yield. In Qgcomp analysis, increasing the multiple air pollutants mixtures by one quartile was related to reducing the number of oocyte pick-ups by -2.00 % (95 %CI: -2.78 %, -1.22 %) in period A, -2.62 % (95 %CI: -3.40 %, -1.84 %) in period B, and -0.98 % (95 %CI: -1.75 %, -0.21 %) in period C. During period B, a 1-unit increase in the WQS index of multiple air pollutants exposure was associated with fewer number of total oocyte (-1.27 %, 95 %CI: -2.16 %, -0.36 %) and mature oocyte (-1.42 %, 95 %CI: -2.41 %, -0.43 %). O3 and NO2 were major contributors with adverse effects on the mixed associations. Additionally, period B appears to be the susceptible window. Our study implies that exposure to air pollution adversely affects oocyte-related outcomes, which raises concerns about the potential adverse impact of air pollution on women's reproductive health.
Collapse
Affiliation(s)
- Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guimin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, PR China
| | - Tiantian Duan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Jinglei Zhang
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Zicong Luo
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Yajie Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| | - Xiaoting Shen
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Joint effect of particulate matter and cigarette smoke on women's sex hormones. BMC Womens Health 2022; 22:3. [PMID: 34996432 PMCID: PMC8742359 DOI: 10.1186/s12905-021-01586-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although relationships between exposure to air pollution and reproductive health are broadly studied, mechanisms behind these phenomena are still unknown. The aim of the study was to assess whether exposure to particulate matter (PM10) and tobacco smoking have an impact on menstrual profiles of 17β-estradiol (E2) and progesterone (P) and the E2/P ratio. METHODS Levels of sex hormones were measured daily in saliva during the entire menstrual cycle among 132 healthy, urban women. Exposure to smoking (active or passive) was assessed by questionnaire, whilst exposure to PM10 with municipal monitoring data. RESULTS During the early luteal phase, profiles of E2 were elevated among women with higher versus lower exposure to PM10 (p = 0.02, post-hoc tests). Among those who were exposed versus unexposed to tobacco smoking, the levels of mean E2 measured during the entire cycle were higher (p = 0.02). The difference in mean E2 levels between the group of joint exposure (i.e. to high PM10 and passive or active smoking) versus the reference group (low PM10, no smoking) was statistically significant at p = 0.03 (18.4 vs. 12.4 pmol/l, respectively). The E2/P ratios were higher among women with higher versus lower exposure to PM10 and this difference was seen only in the early luteal phase (p = 0.01, exploratory post-hoc tests). CONCLUSIONS We found that PM10 and tobacco smoking affect ovarian hormones independently and do not interact with each other. Both exposures appear to have estrogenic effects even though women's susceptibility to these effects differs across the menstrual cycle. We propose that the hormonal mechanisms are involved in observed relationships between air pollution and smoking with women's reproductive health.
Collapse
|
3
|
Lin SY, Yang YC, Lin CC, Chang CYY, Hsu WH, Wang IK, Lin CD, Hsu CY, Kao CH. Increased Incidence of Dysmenorrhea in Women Exposed to Higher Concentrations of NO, NO 2, NO x, CO, and PM 2.5: A Nationwide Population-Based Study. Front Public Health 2021; 9:682341. [PMID: 34222182 PMCID: PMC8247898 DOI: 10.3389/fpubh.2021.682341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Air pollution is speculated to affect the reproductive health of women. However, a longitudinal association between exposure to air pollution and dysmenorrhea has not been identified, which this study aimed to examine this point. Methods: Two nationwide databases, namely the Taiwan Air Quality Monitoring database and the Taiwan National Health Research Institutes database were linked. Women with a history of dysmenorrhea (International Classification of Disease, Ninth Revision, Clinical Modification code 625.3) before 2000 were excluded. All participants were followed from January 1, 2000 until the diagnosis of dysmenorrhea, withdrawal from National Health Insurance, or December 31, 2013. Furthermore, air pollutants were categorized into quartiles with three cut-off points (25th, 50th, and 75th percentiles). The Cox regression model was used to calculate the hazard ratios of dysmenorrhea. Results: This study enrolled 296,078 women. The mean concentrations of yearly air pollutants were 28.2 (±12.6) ppb for nitric oxides (NOx), 8.91 (±7.93) ppb for nitric oxide (NO), 19.3 (±5.49) ppb for nitrogen dioxide (NO2), 0.54 (±0.18) ppm for carbon monoxide (CO), and 31.8 (±6.80) μg/m3 for PM2.5. In total, 12,514 individuals developed dysmenorrhea during the 12-year follow-up. Relative to women exposed to Q1 concentrations of NOx, women exposed to Q4 concentrations exhibited a significantly higher dysmenorrhea risk [adjusted hazard ratio (aHR)= 27.9, 95% confidence interval (CI) = 21.6–31.3]; similarly higher risk was found for exposure to NO (aHR = 16.7, 95% CI = 15.4–18.4) and NO2 (aHR = 33.1, 95% CI = 30.9–37.4). For CO, the relative dysmenorrhea risk in women with Q4 level exposure was 28.7 (95% CI = 25.4–33.6). For PM2.5, women at the Q4 exposure level were 27.6 times (95% CI = 23.1–29.1) more likely to develop dysmenorrhea than those at the Q1 exposure level. Conclusion: Our results showed that women would have higher dysmenorrhea incidences while exposure to high concentrations of NO, NO2, NOx, CO, and PM2.5.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cih Yang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cherry Yin-Yi Chang
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Chest Medicine, China Medical University Hospital, Taichung, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Der Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department Teaching, China Medical University Hospital, Taichung, Taiwan.,Department Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Y Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Choi G, Stingone JA, Desrosiers TA, Olshan AF, Nembhard WN, Shaw GM, Pruitt S, Romitti PA, Yazdy MM, Browne ML, Langlois PH, Botto L, Luben TJ. Maternal exposure to outdoor air pollution and congenital limb deficiencies in the National Birth Defects Prevention Study. ENVIRONMENTAL RESEARCH 2019; 179:108716. [PMID: 31546130 PMCID: PMC6842662 DOI: 10.1016/j.envres.2019.108716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/28/2019] [Accepted: 09/01/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Congenital limb deficiencies (CLDs) are a relatively common group of birth defects whose etiology is mostly unknown. Recent studies suggest maternal air pollution exposure as a potential risk factor. AIM To investigate the relationship between ambient air pollution exposure during early pregnancy and offspring CLDs. METHODS The study population was identified from the National Birth Defects Prevention Study, a population-based multi-center case-control study, and consisted of 615 CLD cases and 5,701 controls with due dates during 1997 through 2006. Daily averages and/or maxima of six criteria air pollutants (particulate matter <2.5 μm [PM2.5], particulate matter <10 μm [PM10], nitrogen dioxide [NO2], sulfur dioxide [SO2], carbon monoxide [CO], and ozone [O3]) were averaged over gestational weeks 2-8, as well as for individual weeks during this period, using data from EPA air monitors nearest to the maternal address. Logistic regression was used to estimate odds ratios (aORs) and 95% confidence intervals (CIs) adjusted for maternal age, race/ethnicity, education, and study center. We estimated aORs for any CLD and CLD subtypes (i.e., transverse, longitudinal, and preaxial). Potential confounding by co-pollutant was assessed by adjusting for one additional air pollutant. Using the single pollutant model, we further investigated effect measure modification by body mass index, cigarette smoking, and folic acid use. Sensitivity analyses were conducted restricting to those with a residence closer to an air monitor. RESULTS We observed near-null aORs for CLDs per interquartile range (IQR) increase in PM10, PM2.5, and O3. However, weekly averages of the daily average NO2 and SO2, and daily max NO2, SO2, and CO concentrations were associated with increased odds of CLDs. The crude ORs ranged from 1.03 to 1.12 per IQR increase in these air pollution concentrations, and consistently elevated aORs were observed for CO. Stronger associations were observed for SO2 and O3 in subtype analysis (preaxial). In co-pollutant adjusted models, associations with CO remained elevated (aORs: 1.02-1.30); but aORs for SO2 and NO2 became near-null. The aORs for CO remained elevated among mothers who lived within 20 km of an air monitor. The aORs varied by maternal BMI, smoking status, and folic acid use. CONCLUSION We observed modest associations between CLDs and air pollution exposures during pregnancy, including CO, SO2, and NO2, though replication through further epidemiologic research is warranted.
Collapse
Affiliation(s)
- Giehae Choi
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States.
| | - Jeanette A Stingone
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Tania A Desrosiers
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Andrew F Olshan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Wendy N Nembhard
- Department of Epidemiology, Fay Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gary M Shaw
- Stanford School of Medicine, Stanford, CA, United States
| | - Shannon Pruitt
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Paul A Romitti
- Department of Epidemiology, The University of Iowa, Iowa City, IA, United States
| | - Mahsa M Yazdy
- Massachusetts Department of Health, Boston, MA, United States
| | | | - Peter H Langlois
- Texas Department of State Health Services, Austin, TX, United States
| | - Lorenzo Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Luben
- Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, United States
| |
Collapse
|
5
|
Environmental Contaminants Exposure and Preterm Birth: A Systematic Review. TOXICS 2019; 7:toxics7010011. [PMID: 30832205 PMCID: PMC6468584 DOI: 10.3390/toxics7010011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Preterm birth is an obstetric condition associated with a high risk of infant mortality and morbidities in both the neonatal period and later in life, which has also a significant public health impact because it carries an important societal economic burden. As in many cases the etiology is unknown, it is important to identify environmental factors that may be involved in the occurrence of this condition. In this review, we report all the studies published in PubMed and Scopus databases from January 1992 to January 2019, accessible as full-text articles, written in English, including clinical studies, original studies, and reviews. We excluded articles not written in English, duplicates, considering inappropriate populations and/or exposures or irrelevant outcomes and patients with known risk factors for preterm birth (PTB). The aim of this article is to identify and summarize the studies that examine environmental toxicants exposure associated with preterm birth. This knowledge will strengthen the possibility to develop strategies to reduce the exposure to these toxicants and apply clinical measures for preterm birth prevention.
Collapse
|
6
|
Grippo A, Zhang J, Chu L, Guo Y, Qiao L, Zhang J, Myneni AA, Mu L. Air pollution exposure during pregnancy and spontaneous abortion and stillbirth. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:247-264. [PMID: 29975668 PMCID: PMC7183911 DOI: 10.1515/reveh-2017-0033] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
The developing fetus is particularly susceptible to environmental pollutants, and evidence has shown adverse effects of air pollutants on pregnancy and birth outcomes. Pregnancy loss, including spontaneous abortion (miscarriage) and stillbirth, is the most severe adverse pregnancy outcome. This review focuses on air pollution exposure during pregnancy in relation to spontaneous abortion and stillbirth. A total of 43 studies are included in this review, including 35 human studies and eight animal studies. Overall, these studies suggest that exposure to air pollutants such as particulate matter (PM), carbon monoxide (CO) and cooking smoke may be associated with higher risk for stillbirth and spontaneous abortion. PM10 exposure during an entire pregnancy was associated with increased risk of spontaneous abortion, and exposure to PM2.5 and PM10 in the third trimester might increase the risk of stillbirth. CO exposure during the first trimester of pregnancy was associated with an increased risk of spontaneous abortion and exposure during the third trimester was associated with an increased risk of stillbirth. Cooking smoke was found to increase the risk of stillbirths, and the evidence was consistent. Insufficient and conflicting evidence was found for various other pollutants, such as NO2 and SO2. Studies did not show clear evidence for associations between pregnancy loss and others pollutants such as heavy metals, organochlorine compounds, PAH and total dust count. Further research is warranted to better understand the relationship between air pollution exposure and pregnancy loss.
Collapse
Affiliation(s)
- Alexandra Grippo
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY), Buffalo, NY, USA
| | | | - Li Chu
- Anzhen Hospital, Beijing, China
| | - Yanjun Guo
- Hang Tian General Hospital, Beijing, China
| | - Lihua Qiao
- Center of Global Health, Tsinghua University, Beijing, China
| | - Jun Zhang
- Center of Global Health, Tsinghua University, Beijing, China
| | - Ajay A Myneni
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY), Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
7
|
Carré J, Gatimel N, Moreau J, Parinaud J, Léandri R. Does air pollution play a role in infertility?: a systematic review. Environ Health 2017; 16:82. [PMID: 28754128 PMCID: PMC5534122 DOI: 10.1186/s12940-017-0291-8] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/20/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Air pollution is involved in many pathologies. These pollutants act through several mechanisms that can affect numerous physiological functions, including reproduction: as endocrine disruptors or reactive oxygen species inducers, and through the formation of DNA adducts and/or epigenetic modifications. We conducted a systematic review of the published literature on the impact of air pollution on reproductive function. Eligible studies were selected from an electronic literature search from the PUBMED database from January 2000 to February 2016 and associated references in published studies. Search terms included (1) ovary or follicle or oocyte or testis or testicular or sperm or spermatozoa or fertility or infertility and (2) air quality or O3 or NO2 or PM2.5 or diesel or SO2 or traffic or PM10 or air pollution or air pollutants. The literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We have included the human and animal studies corresponding to the search terms and published in English. We have excluded articles whose results did not concern fertility or gamete function and those focused on cancer or allergy. We have also excluded genetic, auto-immune or iatrogenic causes of reduced reproduction function from our analysis. Finally, we have excluded animal data that does not concern mammals and studies based on results from in vitro culture. Data have been grouped according to the studied pollutants in order to synthetize their impact on fertility and the molecular pathways involved. CONCLUSION Both animal and human epidemiological studies support the idea that air pollutants cause defects during gametogenesis leading to a drop in reproductive capacities in exposed populations. Air quality has an impact on overall health as well as on the reproductive function, so increased awareness of environmental protection issues is needed among the general public and the authorities.
Collapse
Affiliation(s)
- Julie Carré
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
| | - Nicolas Gatimel
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
- Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, 31059 Toulouse, France
| | - Jessika Moreau
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
- Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, 31059 Toulouse, France
| | - Jean Parinaud
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
- Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, 31059 Toulouse, France
- Médecine de la Reproduction, CHU Paule de Viguier, 330 avenue de Grande Bretagne, 31059 Toulouse, France
| | - Roger Léandri
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
- Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, 31059 Toulouse, France
| |
Collapse
|
8
|
Madeen EP, Williams DE. Environmental PAH exposure and male idiopathic infertility: a review on early life exposures and adult diagnosis. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:73-81. [PMID: 27935856 PMCID: PMC5454023 DOI: 10.1515/reveh-2016-0045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/24/2016] [Indexed: 05/07/2023]
Abstract
The male reproductive system is acutely and uniquely sensitive to a variety of toxicities, including those induced by environmental pollutants throughout the lifespan. Early life hormonal and morphological development results in several especially sensitive critical windows of toxicity risk associated with lifelong decreased reproductive health and fitness. Male factor infertility can account for over 40% of infertility in couples seeking treatment, and 44% of infertile men are diagnosed with idiopathic male infertility. Human environmental exposures are poorly understood due to limited available data. The latency between maternal and in utero exposure and a diagnosis in adulthood complicates the correlation between environmental exposures and infertility. The results from this review include recommendations for more and region specific monitoring of polycyclic aromatic hydrocarbon (PAH) exposure, longitudinal and clinical cohort considerations of exposure normalization, gene-environment interactions, in utero exposure studies, and controlled mechanistic animal experiments. Additionally, it is recommended that detailed semen analysis and male fertility data be included as endpoints in environmental exposure cohort studies due to the sensitivity of the male reproductive system to environmental pollutants, including PAHs.
Collapse
Affiliation(s)
- Erin P. Madeen
- Superfund Research Program, Oregon State University, Agriculture and Life Sciences Bldg, Corvallis, Oregon 97330, USA
| | - David E. Williams
- Superfund Research Program, Oregon State University, Agriculture and Life Sciences Bldg, Corvallis, Oregon 97330, USA
- Department of Environmental and Molecular Toxicology, Agriculture and Life Sciences Bldg, Oregon State University, Corvallis Oregon 97330, USA
- Linus Pauling Institute, Linus Pauling Science Center, Oregon State University, Corvallis, Oregon, 97330, USA
| |
Collapse
|
9
|
Amegah AK, Jaakkola JJK, Quansah R, Norgbe GK, Dzodzomenyo M. Cooking fuel choices and garbage burning practices as determinants of birth weight: a cross-sectional study in Accra, Ghana. Environ Health 2012; 11:78. [PMID: 23075225 PMCID: PMC3533864 DOI: 10.1186/1476-069x-11-78] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 10/15/2012] [Indexed: 05/16/2023]
Abstract
BACKGROUND Effect of indoor air pollution (IAP) on birth weight remains largely unexplored but yet purported as the most important environmental exposure for pregnant women in developing countries due to the effects of second-hand smoke. We investigated the associations between the determinants of indoor air quality in households and birth weight. METHODS A cross-sectional study of 592 mothers and their newborns using postnatal services at the Korle Bu Teaching Hospital located in Accra, Ghana was conducted in 2010 to collect information on characteristics of indoor environment and other potential determinants of fetal growth. Birth weight was recorded from hospital records. RESULTS Household cooking fuel choices and garbage burning practices were determinants of birth weight. Multivariate linear regression analysis adjusting for age, social class, marital status and gravidity of mothers, and sex of neonate resulted in a 243 g (95% CI: 496, 11) and 178g (95% CI: 421, 65) reduction in birth weight for use of charcoal, and garbage burning respectively compared with use of LPG only. The estimated reductions in birth weight was not statistically significant. Applying the ordinal scale exposure parameter nonetheless revealed a significant exposure-response relationship between maternal exposures from charcoal use and garbage burning, and birth weight. Generalized linear models adjusting for confounders resulted in a 41% (risk ratio [RR] = 1.41; 95% CI: 0.62, 3.23) and 195% (RR=2.95; 95% CI: 1.10, 7.92) increase in the risk of low birth weight (LBW) for use of charcoal, and garbage burning respectively compared with use of LPG only. A combination of charcoal use and household garbage burning during pregnancy on fetal growth resulted in a 429 g (95% CI: 259, 599) reduction in birth weight and 316% (RR=4.16; 95% CI: 2.02, 8.59) excess risk of LBW. Sensitivity analysis performed by restricting the analysis to term births produced similar results. CONCLUSIONS Maternal use of charcoal as a cooking fuel during pregnancy and burning of garbage at home are strong determinants of average fetal growth and risk of LBW. Efforts to reduce maternal exposures to IAP are thus important to improve birth outcomes.
Collapse
Affiliation(s)
- Adeladza K Amegah
- Department of Human Biology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
- Center for Environmental and Respiratory Health Research, University of Oulu, Oulu, Finland
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Jouni JK Jaakkola
- Center for Environmental and Respiratory Health Research, University of Oulu, Oulu, Finland
| | - Reginald Quansah
- Center for Environmental and Respiratory Health Research, University of Oulu, Oulu, Finland
| | - Gameli K Norgbe
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Mawuli Dzodzomenyo
- Department of Biological, Occupational and Environmental Health, School of Public Health, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
10
|
Faiz AS, Rhoads GG, Demissie K, Kruse L, Lin Y, Rich DQ. Ambient air pollution and the risk of stillbirth. Am J Epidemiol 2012; 176:308-16. [PMID: 22811493 DOI: 10.1093/aje/kws029] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of the present study was to examine the risk of stillbirth associated with ambient air pollution during pregnancy. Using live birth and fetal death data from New Jersey from 1998 to 2004, the authors assigned daily concentrations of air pollution to each birth or fetal death. Generalized estimating equation models were used to estimate the relative odds of stillbirth associated with interquartile range increases in mean air pollutant concentrations in the first, second, and third trimesters and throughout the entire pregnancy. The relative odds of stillbirth were significantly increased with each 10-ppb increase in mean nitrogen dioxide concentration in the first trimester (odds ratio (OR) = 1.16, 95% confidence interval (CI): 1.03, 1.31), each 3-ppb increase in mean sulfur dioxide concentration in the first (OR = 1.13, 95% CI: 1.01, 1.28) and third (OR = 1.26, 95% CI: 1.03, 1.37) trimesters, and each 0.4-ppm increase in mean carbon monoxide concentration in the second (OR = 1.14, 95% CI: 1.01, 1.28) and third (OR = 1.14, 95% CI: 1.06, 1.24) trimesters. Although ambient air pollution during pregnancy appeared to increase the relative odds of stillbirth, further studies are needed to confirm these findings and examine mechanistic explanations.
Collapse
Affiliation(s)
- Ambarina S Faiz
- Department of Medicine, Robert Wood Johnson Medical School, University of Melbourne and Dentistry of New Jersey, New Brunswick, NJ 08903, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Berrocal VJ, Gelfand AE, Holland DM, Burke J, Miranda ML. On the use of a PM(2.5) exposure simulator to explain birthweight. ENVIRONMETRICS 2011; 22:553-571. [PMID: 21691413 PMCID: PMC3116241 DOI: 10.1002/env.1086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In relating pollution to birth outcomes, maternal exposure has usually been described using monitoring data. Such characterization provides a misrepresentation of exposure as it (i) does not take into account the spatial misalignment between an individual's residence and monitoring sites, and (ii) it ignores the fact that individuals spend most of their time indoors and typically in more than one location. In this paper, we break with previous studies by using a stochastic simulator to describe personal exposure (to particulate matter) and then relate simulated exposures at the individual level to the health outcome (birthweight) rather than aggregating to a selected spatial unit.We propose a hierarchical model that, at the first stage, specifies a linear relationship between birthweight and personal exposure, adjusting for individual risk factors and introduces random spatial effects for the census tract of maternal residence. At the second stage, our hierarchical model specifies the distribution of each individual's personal exposure using the empirical distribution yielded by the stochastic simulator as well as a model for the spatial random effects.We have applied our framework to analyze birthweight data from 14 counties in North Carolina in years 2001 and 2002. We investigate whether there are certain aspects and time windows of exposure that are more detrimental to birthweight by building different exposure metrics which we incorporate, one by one, in our hierarchical model. To assess the difference in relating ambient exposure to birthweight versus personal exposure to birthweight, we compare estimates of the effect of air pollution obtained from hierarchical models that linearly relate ambient exposure and birthweight versus those obtained from our modeling framework.Our analysis does not show a significant effect of PM(2.5) on birthweight for reasons which we discuss. However, our modeling framework serves as a template for analyzing the relationship between personal exposure and longer term health endpoints.
Collapse
Affiliation(s)
| | - Alan E. Gelfand
- Department of Statistical Science, Duke University, Durham, NC, USA ()
| | - David M. Holland
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA ()
| | - Janet Burke
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA ()
| | | |
Collapse
|
12
|
Jedrychowski W, Perera F, Mrozek-Budzyn D, Flak E, Mroz E, Sochacka-Tatara E, Jacek R, Kaim I, Skolicki Z, Spengler JD. Higher fish consumption in pregnancy may confer protection against the harmful effect of prenatal exposure to fine particulate matter. ANNALS OF NUTRITION AND METABOLISM 2010; 56:119-26. [PMID: 20134157 DOI: 10.1159/000275918] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 09/17/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM The objective of this study was to assess a hypothesized beneficial effect of fish consumption during the last trimester of pregnancy on adverse birth outcomes resulting from prenatal exposure to fine air particulate matter. METHODS The cohort consisted of 481 nonsmoking women with singleton pregnancies, of 18-35 years of age, who gave birth at term. All recruited women were asked about their usual diet over the period of pregnancy. Measurements of particulate matter less than 2.5 mum in size (PM(2.5)) were carried out by personal air monitoring over 48 h during the second trimester of pregnancy. The effect of PM(2.5) and fish intake during gestation on the birth weight of the babies was estimated from multivariable linear regression models, which beside the main independent variables considered a set of potential confounding factors such as the size of the mother (height, prepregnancy weight), maternal education, parity, the gender of the child, gestational age and the season of birth. RESULTS The study showed that the adjusted birth weight was significantly lower in newborns whose mothers were exposed to particulate matter greater than 46.3 microg/m3 (beta coefficient = -97.02, p = 0.032). Regression analysis stratified by the level of maternal fish consumption (in tertiles) showed that the deficit in birth weight amounted to 133.26 g (p = 0.052) in newborns whose mothers reported low fish intake (<91 g/week). The birth weight deficit in newborns whose mothers reported medium (91-205 g/week) or higher fish intake (>205 g/week) was insignificant. The interaction term between PM(2.5) and fish intake levels was also insignificant (beta = -107,35, p = 0.215). Neither gestational age nor birth weight correlated with maternal fish consumption. CONCLUSIONS The results suggest that a higher consumption of fish by women during pregnancy may reduce the risk of adverse effects of prenatal exposure to toxicants and highlight the fact that a full assessment of adverse birth outcomes resulting from prenatal exposure to ambient hazards should consider maternal nutrition during pregnancy.
Collapse
Affiliation(s)
- Wieslaw Jedrychowski
- Epidemiology and Preventive Medicine, College of Medicine, Jagiellonian University, Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jurisicova A, Taniuchi A, Li H, Shang Y, Antenos M, Detmar J, Xu J, Matikainen T, Benito Hernández A, Nunez G, Casper RF. Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of Harakiri. J Clin Invest 2008; 117:3971-8. [PMID: 18037991 DOI: 10.1172/jci28493] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 09/21/2007] [Indexed: 02/01/2023] Open
Abstract
Maternal smoking during pregnancy is associated with a variety of adverse neonatal outcomes including altered reproductive performance. Herein we provide molecular evidence for a pathway involved in the elimination of the female germline due to prepregnancy and/or lactational exposure to polycyclic aromatic hydrocarbons (PAHs), environmental toxicants found in cigarette smoke. We show that ovaries of offspring born to mice exposed to PAHs contained only a third of the ovarian follicle pool compared with offspring of unexposed female mice. Activation of the cell death pathway in immature follicles of exposed females was mediated by the aryl hydrocarbon receptor (Ahr), as ovarian reserve was fully rescued by maternal cotreatment with the Ahr antagonist, resveratrol, or by inactivation of the Ahr gene. Furthermore, in response to PAHs, Ahr-mediated activation of the harakiri, BCL2 interacting protein (contains only BH3 domain), was necessary for execution of cell death. This pathway appeared to be conserved between mouse and human, as xenotransplanted human ovarian cortex exposed to PAHs responded by activation of the identical cell death cascade. Our data indicate that maternal exposure to PAHs prior to pregnancy and/or during lactation compromises ovarian reserve of female offspring, raising the concern about the transgenerational impact of maternal smoking on ovarian function in the human.
Collapse
Affiliation(s)
- Andrea Jurisicova
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Toronto, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kannan S, Misra DP, Dvonch JT, Krishnakumar A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1636-42. [PMID: 17107846 PMCID: PMC1665414 DOI: 10.1289/ehp.9081] [Citation(s) in RCA: 368] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
OBJECTIVES The specific objectives are threefold: to describe the biologically plausible mechanistic pathways by which exposure to particulate matter (PM) may lead to the adverse perinatal outcomes of low birth weight (LBW), intrauterine growth retardation (IUGR), and preterm delivery (PTD); review the evidence showing that nutrition affects the biologic pathways; and explain the mechanisms by which nutrition may modify the impact of PM exposure on perinatal outcomes. METHODS We propose an interdisciplinary conceptual framework that brings together maternal and infant nutrition, air pollution exposure assessment, and cardiopulmonary and perinatal epidemiology. Five possible albeit not exclusive biologic mechanisms have been put forth in the emerging environmental sciences literature and provide corollaries for the proposed framework. CONCLUSIONS Protecting the environmental health of mothers and infants remains a top global priority. The existing literature indicates that the effects of PM on LBW, PTD, and IUGR may manifest through the cardiovascular mechanisms of oxidative stress, inflammation, coagulation, endothelial function, and hemodynamic responses. PM exposure studies relating mechanistic pathways to perinatal outcomes should consider the likelihood that biologic responses and adverse birth outcomes may be derived from both PM and non-PM sources (e.g., nutrition). In the concluding section, we present strategies for empirically testing the proposed model and developing future research efforts.
Collapse
Affiliation(s)
- Srimathi Kannan
- Department of Environmental Health Sciences, Human Nutrition Program, University of Michigan, Ann Arboe, Michigan 48109-2029, USA.
| | | | | | | |
Collapse
|
15
|
Srám RJ, Binková B, Dejmek J, Bobak M. Ambient air pollution and pregnancy outcomes: a review of the literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:375-82. [PMID: 15811825 PMCID: PMC1278474 DOI: 10.1289/ehp.6362] [Citation(s) in RCA: 441] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Over the last decade or so, a large number of studies have investigated the possible adverse effects of ambient air pollution on birth outcomes. We reviewed these studies, which were identified by a systematic search of the main scientific databases. Virtually all reviewed studies were population based, with information on exposure to air pollution derived from routine monitoring sources. Overall, there is evidence implicating air pollution in adverse effects on different birth outcomes, but the strength of the evidence differs between outcomes. The evidence is sufficient to infer a causal relationship between particulate air pollution and respiratory deaths in the postneonatal period. For air pollution and birth weight the evidence suggests causality, but further studies are needed to confirm an effect and its size and to clarify the most vulnerable period of pregnancy and the role of different pollutants. For preterm births and intrauterine growth retardation (IUGR) the evidence as yet is insufficient to infer causality, but the available evidence justifies further studies. Molecular epidemiologic studies suggest possible biologic mechanisms for the effect on birth weight, premature birth, and IUGR and support the view that the relation between pollution and these birth outcomes is genuine. For birth defects, the evidence base so far is insufficient to draw conclusions. In terms of exposure to specific pollutants, particulates seem the most important for infant deaths, and the effect on IUGR seems linked to polycyclic aromatic hydrocarbons, but the existing evidence does not allow precise identification of the different pollutants or the timing of exposure that can result in adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Radim J Srám
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences, and Health Institute of Central Bohemia, Prague, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Jedrychowski W, Bendkowska I, Flak E, Penar A, Jacek R, Kaim I, Spengler JD, Camann D, Perera FP. Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: an epidemiologic prospective cohort study in Poland. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1398-402. [PMID: 15471732 PMCID: PMC1247567 DOI: 10.1289/ehp.7065] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The purpose of this study was to estimate exposure of pregnant women in Poland to fine particulate matter [less than or equal to 2.5 microm in diameter (PM 2.5)] and to assess its effect on the birth outcomes. The cohort consisted of 362 pregnant women who gave birth between 34 and 43 weeks of gestation. The enrollment included only nonsmoking women with singleton pregnancies, 18-35 years of age, who were free from chronic diseases such as diabetes and hypertension. PM 2.5 was measured by personal air monitoring over 48 hr during the second trimester of pregnancy. All assessed birth effects were adjusted in multiple linear regression models for potential confounding factors such as the size of mother (maternal height, prepregnancy weight), parity, sex of child, gestational age, season of birth, and self-reported environmental tobacco smoke (ETS). The regression model explained 35% of the variability in birth weight (beta = -200.8, p = 0.03), and both regression coefficients for PM 2.5 and birth length (beta = -1.44, p = 0.01) and head circumference (HC; beta = -0.73, p = 0.02) were significant as well. In all regression models, the effect of ETS was insignificant. Predicted reduction in birth weight at an increase of exposure from 10 to 50 microg/m3 was 140.3 g. The corresponding predicted reduction of birth length would be 1.0 cm, and of HC, 0.5 cm. The study provides new and convincing epidemiologic evidence that high personal exposure to fine particles is associated with adverse effects on the developing fetus. These results indicate the need to reduce ambient fine particulate concentrations. However, further research should establish possible biologic mechanisms explaining the observed relationship.
Collapse
Affiliation(s)
- Wieslaw Jedrychowski
- Epidemiology and Preventive Medicine, Medical College, Jagiellonian University, 7A Kopernika Street, Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kaiser R, Romieu I, Medina S, Schwartz J, Krzyzanowski M, Künzli N. Air pollution attributable postneonatal infant mortality in U.S. metropolitan areas: a risk assessment study. Environ Health 2004; 3:4. [PMID: 15128459 PMCID: PMC420482 DOI: 10.1186/1476-069x-3-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 05/05/2004] [Indexed: 05/18/2023]
Abstract
BACKGROUND The impact of outdoor air pollution on infant mortality has not been quantified. METHODS Based on exposure-response functions from a U.S. cohort study, we assessed the attributable risk of postneonatal infant mortality in 23 U.S. metropolitan areas related to particulate matter <10 microm in diameter (PM10) as a surrogate of total air pollution. RESULTS The estimated proportion of all cause mortality, sudden infant death syndrome (normal birth weight infants only) and respiratory disease mortality (normal birth weight) attributable to PM10 above a chosen reference value of 12.0 microg/m3 PM10 was 6% (95% confidence interval 3-11%), 16% (95% confidence interval 9-23%) and 24% (95% confidence interval 7-44%), respectively. The expected number of infant deaths per year in the selected areas was 106 (95% confidence interval 53-185), 79 (95% confidence interval 46-111) and 15 (95% confidence interval 5-27), respectively. Approximately 75% of cases were from areas where the current levels are at or below the new U.S. PM2.5 standard of 15 microg/m3 (equivalent to 25 microg/m3 PM10). In a country where infant mortality rates and air pollution levels are relatively low, ambient air pollution as measured by particulate matter contributes to a substantial fraction of infant death, especially for those due to sudden infant death syndrome and respiratory disease. Even if all counties would comply to the new PM2.5 standard, the majority of the estimated burden would remain. CONCLUSION Given the inherent limitations of risk assessments, further studies are needed to support and quantify the relationship between infant mortality and air pollution.
Collapse
Affiliation(s)
- Reinhard Kaiser
- Institute for Social and Preventive Medicine, University of Basel, Steinengraben 49, 4051 Basel, Switzerland
| | - Isabelle Romieu
- Instituto Nacional de Salud Publica, Av.Universidad 655, Planta Baja, Col. Santa María Ahuacatitlán, 62508 Cuernavaca, Morelos, México
| | - Sylvia Medina
- Air pollution program, Department of Environmental Health, National Institute of Public Health Surveillance (InVS), 12 rue du Val d'Osne 94415 Saint Maurice cedex, France
| | - Joel Schwartz
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Landmark Center, West 401 Park Drive, Boston MA 02215 USA
| | - Michal Krzyzanowski
- World Health Organization, European Centre for Environment and Health, Bonn Office, Goerresstrasse 15, 53113 Bonn, Germany
| | - Nino Künzli
- Institute for Social and Preventive Medicine, University of Basel, Steinengraben 49, 4051 Basel, Switzerland
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine University of Southern California, 1540 Alcazar Street, CHP 236, Los Angeles, CA 90033 USA
| |
Collapse
|
18
|
Arrieta DE, Ontiveros CC, Li WW, Garcia JH, Denison MS, McDonald JD, Burchiel SW, Washburn BS. Aryl hydrocarbon receptor-mediated activity of particulate organic matter from the Paso del Norte airshed along the U.S.-Mexico border. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1299-305. [PMID: 12896850 PMCID: PMC1241610 DOI: 10.1289/ehp.6058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this study, we determined the biologic activity of dichloromethane-extracted particulate matter < 10 micro m in aerodynamic diameter (PM10) obtained from filters at three sites in the Paso del Norte airshed, which includes El Paso, Texas, USA; Juarez, Chihuahua, Mexico, and Sunland Park, New Mexico, USA. The extracts were rich in polycyclic aromatic hydrocarbons (PAHs) and had significant biologic activity, measured using two in vitro assay systems: ethoxyresorufin-(O-deethylase (EROD) induction and the aryl hydrocarbon-receptor luciferase reporter system. In most cases, both EROD (5.25 pmol/min/mg protein) and luciferase activities (994 relative light units/mg) were highest in extracts from the Advance site located in an industrial neighborhood in Juarez. These values represented 58% and 55%, respectively, of induction associated with 1 micro M ss-naphthoflavone exposures. In contrast, little activity was observed at the Northeast Clinic site in El Paso, the reference site. In most cases, luciferase and EROD activity from extracts collected from the Tillman Health Center site, situated in downtown El Paso, fell between those observed at the other two sites. Overall, a statistically significant correlation existed between PM10 and EROD and luciferase activities. Chemical analysis of extracts collected from the Advance site demonstrated that concentrations of most PAHs were higher than those reported in most other metropolitan areas in the United States. Calculations made with these data suggest a cancer risk of 5-12 cases per 100,000 people. This risk estimate, as well as comparisons with the work of other investigators, raises concern regarding the potential for adverse health effects to the residents of this airshed. Further work is needed to understand the sources, exposure, and effects of PM10 and particulate organic material in the Paso del Norte airshed.
Collapse
Affiliation(s)
- Daniel E Arrieta
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Maroziene L, Grazuleviciene R. Maternal exposure to low-level air pollution and pregnancy outcomes: a population-based study. Environ Health 2002; 1:6. [PMID: 12495448 PMCID: PMC149395 DOI: 10.1186/1476-069x-1-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Accepted: 12/09/2002] [Indexed: 05/18/2023]
Abstract
BACKGROUND Recent reports have shown that air pollution may increase the risk of adverse birth outcomes. We have evaluated the relationship between ambient air pollution and the occurrence of low birth weight and preterm delivery using routinely collected data in Lithuania. METHODS This epidemiological study comprised all singleton newborns (N = 3,988), born to women in 1998, who resided in the City of Kaunas. Birth data and information on maternal characteristics were obtained from the Lithuanian National Birth Register. To estimate residential exposure levels, we used measurements of ambient nitrogen dioxide (NO2) and formaldehyde, which were collected at 12 monitoring posts. Multivariate logistic regression was used to estimate the effect that each pollutant would have on low birth weight (LBW) and premature birth while controlling for potential confounders. RESULTS Adjusted odds ratios (OR) for LBW increased with increasing formaldehyde exposure (OR2nd tertile = 1.86, 95% CI 1.10-3.16; OR3rd tertile = 1.84, 95% CI 1.12-3.03). Adjusted ORs of preterm birth for the medium and high NO2 tertile exposures were OR = 1.14 (95% CI 0.77-1.68) and OR = 1.68 (95% CI 1.15-2.46), respectively. The risk of preterm birth increased by 25% (adjusted OR = 1.25, 95% CI 1.07-1.46) per 10 microg/m3 increase in NO2 concentrations. An analysis by trimester showed that pregnancy outcomes were associated with first-trimester exposure to air pollutants. However, there were no significant relationships in other pregnancy periods between preterm birth and exposure to formaldehyde or between LBW and NO2 exposure. CONCLUSION Our findings suggest that in the City of Kaunas there might be a relationship between maternal exposure to ambient formaldehyde and the risk of LBW, as well as between NO2 exposure and the risk of preterm birth.
Collapse
Affiliation(s)
- Ligita Maroziene
- Department of Environmental Science, Vytautas Magnus University, Vileikos 8, Kaunas, Lithuania
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, Vileikos 8, Kaunas, Lithuania
| |
Collapse
|
20
|
Maisonet M, Bush TJ, Correa A, Jaakkola JJ. Relation between ambient air pollution and low birth weight in the Northeastern United States. ENVIRONMENTAL HEALTH PERSPECTIVES 2001; 109 Suppl 3:351-356. [PMID: 11427384 DOI: 10.2307/3434782] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We evaluated the relation between term low birth weight (LBW) and ambient air levels of carbon monoxide (CO), particulate matter up to 10 microm in diameter (PM(10)), and sulfur dioxide (SO(2)). The study population consisted of singleton, term live births (37-44 weeks of gestation) born between 1 January 1994 and 31 December 1996 in six northeastern cities of the United States: Boston, Massachusetts; Hartford, Connecticut; Philadelphia, Pennsylvania; Pittsburgh, Pennsylvania; Springfield, Massachusetts; and Washington, DC. Birth data were obtained from National Center for Health Statistics Natality Data Sets. Infants with a birth weight < 2,500 g were classified as LBW. Air monitoring data obtained from the U.S. Environmental Protection Agency were used to estimate average trimester exposures to ambient CO, PM(10), and SO(2). Our results suggest that exposures to ambient CO and SO(2) increase the risk for term LBW. This risk increased by a unit increase in CO third trimester average concentration [adjusted odds ratio (AOR) 1.31; 95% confidence interval (CI) 1.06,1.62]. Infants with SO(2) second trimester exposures falling within the 25 and < 50th (AOR 1.21; CI 1.07,1.37), the 50 to < 75th (AOR 1.20; CI 1.08,1.35), and the 75 to < 95th (AOR 1.21; CI 1.03,1.43) percentiles were also at increased risk for term LBW when compared to those in the reference category (< 25th percentile). There was no indication of a positive association between prenatal exposures to PM(10) and term LBW. Increased ambient levels of air pollution may be associated with an increased risk for LBW.
Collapse
Affiliation(s)
- M Maisonet
- Department of Epidemiology, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
21
|
Maisonet M, Bush TJ, Correa A, Jaakkola JJ. Relation between ambient air pollution and low birth weight in the Northeastern United States. ENVIRONMENTAL HEALTH PERSPECTIVES 2001; 109 Suppl 3:351-6. [PMID: 11427384 PMCID: PMC1240552 DOI: 10.1289/ehp.01109s3351] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We evaluated the relation between term low birth weight (LBW) and ambient air levels of carbon monoxide (CO), particulate matter up to 10 microm in diameter (PM(10)), and sulfur dioxide (SO(2)). The study population consisted of singleton, term live births (37-44 weeks of gestation) born between 1 January 1994 and 31 December 1996 in six northeastern cities of the United States: Boston, Massachusetts; Hartford, Connecticut; Philadelphia, Pennsylvania; Pittsburgh, Pennsylvania; Springfield, Massachusetts; and Washington, DC. Birth data were obtained from National Center for Health Statistics Natality Data Sets. Infants with a birth weight < 2,500 g were classified as LBW. Air monitoring data obtained from the U.S. Environmental Protection Agency were used to estimate average trimester exposures to ambient CO, PM(10), and SO(2). Our results suggest that exposures to ambient CO and SO(2) increase the risk for term LBW. This risk increased by a unit increase in CO third trimester average concentration [adjusted odds ratio (AOR) 1.31; 95% confidence interval (CI) 1.06,1.62]. Infants with SO(2) second trimester exposures falling within the 25 and < 50th (AOR 1.21; CI 1.07,1.37), the 50 to < 75th (AOR 1.20; CI 1.08,1.35), and the 75 to < 95th (AOR 1.21; CI 1.03,1.43) percentiles were also at increased risk for term LBW when compared to those in the reference category (< 25th percentile). There was no indication of a positive association between prenatal exposures to PM(10) and term LBW. Increased ambient levels of air pollution may be associated with an increased risk for LBW.
Collapse
Affiliation(s)
- M Maisonet
- Department of Epidemiology, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
22
|
Smith KR. National burden of disease in India from indoor air pollution. Proc Natl Acad Sci U S A 2000; 97:13286-93. [PMID: 11087870 PMCID: PMC27217 DOI: 10.1073/pnas.97.24.13286] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2000] [Indexed: 02/03/2023] Open
Abstract
In the last decade, a number of quantitative epidemiological studies of specific diseases have been done in developing countries that for the first time allow estimation of the total burden of disease (mortality and morbidity) attributable to use of solid fuels in adult women and young children, who jointly receive the highest exposures because of their household roles. Few such studies are available as yet for adult men or children over 5 years. This paper evaluates the existing epidemiological studies and applies the resulting risks to the more than three-quarters of all Indian households dependent on such fuels. Allowance is made for the existence of improved stoves with chimneys and other factors that may lower exposures. Attributable risks are calculated in reference to the demographic conditions and patterns of each disease in India. Sufficient evidence is available to estimate risks most confidently for acute respiratory infections (ARI), chronic obstructive pulmonary disease (COPD), and lung cancer. Estimates for tuberculosis (TB), asthma, and blindness are of intermediate confidence. Estimates for heart disease have the lowest confidence. Insufficient quantitative evidence is currently available to estimate the impact of adverse pregnancy outcomes (e.g., low birthweight and stillbirth). The resulting conservative estimates indicate that some 400-550 thousand premature deaths can be attributed annually to use of biomass fuels in these population groups. Using a disability-adjusted lost life-year approach, the total is 4-6% of the Indian national burden of disease, placing indoor air pollution as a major risk factor in the country.
Collapse
Affiliation(s)
- K R Smith
- School of Public Health, University of California, Berkeley, CA 94720-7360, USA.
| |
Collapse
|