1
|
Zeng L, Sun M, Fasullo M. Checkpoint and recombination pathways independently suppress rates of spontaneous homology-directed chromosomal translocations in budding yeast. Front Genet 2025; 16:1479307. [PMID: 40255487 PMCID: PMC12006765 DOI: 10.3389/fgene.2025.1479307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Homologous recombination between short repeated sequences, such as Alu sequences, can generate pathogenic chromosomal rearrangements. We used budding yeast to measure homologous recombination between short repeated his3 sequences located on non-homologous chromosomes to identify pathways that suppress spontaneous and radiation-associated translocations. Previous published data demonstrated that genes that participate in RAD9-mediated G2 arrest, the S phase checkpoint, and recombinational repair of double-strand breaks (DSBs) suppressed ectopic recombination between small repeats. We determined whether these pathways are independent in suppressing recombination by measuring frequencies of spontaneous recombination in single and double mutants. In the wild-type diploid, the rate of spontaneous recombination was (3 ± 1.2) × 10-8. This rate was increased 10-30-fold in the rad51, rad55, rad57, mre11, rad50, and xrs2 mutants, seven-fold in the rad9 checkpoint mutant, and 23-fold in the mec1-21 S phase checkpoint mutant. Double mutants defective in both RAD9 and in either RAD51, RAD55, or RAD57 increased spontaneous recombination rates by ∼40 fold, while double mutants defective in both the MEC1 (ATR/ATM ortholog) and RAD51 genes increased rates ∼100 fold. Compared to frequencies of radiation-associated translocations in wild type, radiation-associated frequencies increased in mre11, rad50, xrs2, rad51, rad55 and rad9 rad51 diploid mutants; an increase in radiation-associated frequencies was detected in the rad9 rad51 diploid after exposure to 100 rads X rays. These data indicate that the S phase and G2 checkpoint pathways are independent from the recombinational repair pathway in suppressing homology-directed translocations in yeast.
Collapse
Affiliation(s)
- Li Zeng
- New York State Department of Public Health, Albany, NY, United States
- Ordway Research Institute, Albany, NY, United States
| | - Mingzeng Sun
- Ordway Research Institute, Albany, NY, United States
- School of Public of Health, University at Albany, Albany, NY, United States
| | | |
Collapse
|
2
|
Zhihang H, Ezemaduka AN, Hongxia C, Yan P, Yiwen G, Nan Z, Xinrui L, Shan G, Guojun L, Jing Y, Bo X. The joint toxicity effect of glyphosate and cadmium in a concentration-dependent manner on nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117081. [PMID: 39341135 DOI: 10.1016/j.ecoenv.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The co-occurrence of glyphosate (GPS), a commonly used organophosphorus herbicide, and cadmium (Cd), a neurotoxic metal, in agricultural environments prompts concerns about their combined toxic effects on ecosystems. This study explores the combined effects of GPS and Cd on the model organism Caenorhabditis elegans (C. elegans), to understand their cumulative effects in organismal living environments. We investigated the interaction between GPS and Cd over 24 hours using a comprehensive approach that included a variety of toxicity endpoints as well as the novel Automated Recognition and Statistics Tool (NCLE) for body bend measurement. Our data show a concentration-dependent interplay in which antagonistic effects at lower concentrations reduce phenotypic damage while synergistic effects emerge at higher concentrations, particularly at GPS's LC50. Transcriptome analysis under antagonistic conditions revealed significant downregulation of Cd toxicity-related genes and identified Y22D7AL.16, which has a C2H2-type zinc finger domain, as a novel gene involved in metal stress response, implying an alternative Cd-resilience mechanism. The expression profile of this gene shows that it plays a larger role in both development and metal stress adaption. These findings highlight the complexities of compound pollutant interactions, emphasizing the importance of including such dynamics in environmental risk assessments and control techniques.
Collapse
Affiliation(s)
- Huang Zhihang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Anastasia Ngozi Ezemaduka
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Cai Hongxia
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Pan Yan
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gong Yiwen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhang Nan
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Lu Xinrui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Gao Shan
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Li Guojun
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Yang Jing
- Laboratory of Ageing Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xian Bo
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Laboratory of Ageing Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
3
|
da Silva Junior FC, Felipe MBMC, Castro DEFD, Araújo SCDS, Sisenando HCN, Batistuzzo de Medeiros SR. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116838. [PMID: 33714059 DOI: 10.1016/j.envpol.2021.116838] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Knowledge of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) has increased over time. Much of this knowledge is about the 16 United States - Environmental Protection Agency (US - EPA) priority PAHs; however, there are other US - EPA non-priority PAHs in the environment, whose toxic potential is underestimated. We conducted a systematic review of in vitro, in vivo, and in silico studies to assess the genotoxicity, mutagenicity, and carcinogenicity of 13 US - EPA non-priority parental PAHs present in the environment. Electronic databases, such as Science Direct, PubMed, Scopus, Google Scholar, and Web of Science, were used to search for research with selected terms without time restrictions. After analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, 249 articles, published between 1946 and 2020, were selected and the quality assessment of these studies was performed. The results showed that 5-methylchrysene (5-MC), 7,12-dimethylbenz[a]anthracene (7,12-DMBA), cyclopenta[cd]pyrene (CPP), and dibenzo[al]pyrene (Db[al]P) were the most studied PAHs. Moreover, 5-MC, 7,12-DMBA, benz[j]aceanthrylene (B[j]A), CPP, anthanthrene (ANT), dibenzo[ae]pyrene (Db[ae]P), and Db[al]P have been reported to cause mutagenic effects and have been being associated with a risk of carcinogenicity. Retene (RET) and benzo[c]fluorene (B[c]F), the least studied compounds, showed evidence of a strong influence on the mutagenicity and carcinogenicity endpoints. Overall, this systematic review provided evidence of the genotoxic, mutagenic, and carcinogenic endpoints of US - EPA non-priority PAHs. However, further studies are needed to improve the future protocols of environmental analysis and risk assessment in severely exposed populations.
Collapse
Affiliation(s)
- Francisco Carlos da Silva Junior
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | | | - Denis Elvis Farias de Castro
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Sinara Carla da Silva Araújo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Herbert Costa Nóbrega Sisenando
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
4
|
Alotaibi AG, Li JV, Gooderham NJ. Tumour necrosis factor-α (TNF-α) enhances dietary carcinogen-induced DNA damage in colorectal cancer epithelial cells through activation of JNK signaling pathway. Toxicology 2021; 457:152806. [PMID: 33961948 PMCID: PMC8211460 DOI: 10.1016/j.tox.2021.152806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer death. Benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazol [4,5-b] pyridine (PhIP) present in cooked meat are pro-carcinogens and considered to be potential risk factors for CRC. Their carcinogenic and mutagenic effects require metabolic activation primarily by cytochrome P450 1 family enzymes (CYPs); the expression of these enzymes can be modulated by aryl hydrocarbon receptor (AhR) activation and the tumour microenvironment, involving mediators of inflammation. In this study, we hypothesized that tumour necrosis factor-α (TNF-α), a key mediator of inflammation, modulates BaP- and PhIP-induced DNA damage in colon cancer epithelial cells. Importantly, we observed that TNF-α alone (0.1-100 pg/ml) induced DNA damage (micronuclei formation) in HCT-116 cells and co-treatment of TNF-α with BaP or PhIP showed higher levels of DNA damage compared to the individual single treatments. TNF-α alone or in combination with BaP or PhIP did not affect the expression levels of CYP1A1 and CYP1B1 (target genes of AhR signaling pathways). The DNA damage induced by TNF-α was elevated in p53 null HTC-116 cells compared to wild type cells, suggesting that TNF-α-induced DNA damage is suppressed by functional p53. In contrast, p53 status failed to affect BaP and PhIP induced micronucleus frequency. Furthermore, JNK and NF-κB signaling pathway were activated by TNF-α treatment but only inhibition of JNK significantly reduced TNF-α-induced DNA damage. Collectively, these findings suggest that TNF-α induced DNA damage involves JNK signaling pathway rather than AhR and NF-κB pathways in colon cancer epithelial cells.
Collapse
Affiliation(s)
- Aminah G Alotaibi
- Section of Biomolecular Medicine; National Centre for Genomic Technology, King Abdulaziz City for Science and Technology, KACST, Riyadh, Saudi Arabia
| | - Jia V Li
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
5
|
Moore MN, Sforzini S, Viarengo A, Barranger A, Aminot Y, Readman JW, Khlobystov AN, Arlt VM, Banni M, Jha AN. Antagonistic cytoprotective effects of C 60 fullerene nanoparticles in simultaneous exposure to benzo[a]pyrene in a molluscan animal model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142355. [PMID: 33022458 DOI: 10.1016/j.scitotenv.2020.142355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The hypothesis that C60 fullerene nanoparticles (C60) exert an antagonistic interactive effect on the toxicity of benzo[a]pyrene (BaP) has been supported by this investigation. Mussels were exposed to BaP (5, 50 & 100μg/L) and C60 (C60-1mg/L) separately and in combination. Both BaP and C60 were shown to co-localize in the secondary lysosomes of the hepatopancreatic digestive cells in the digestive gland where they reduced lysosomal membrane stability (LMS) or increased membrane permeability, while BaP also induced increased lysosomal lipid and lipofuscin, indicative of oxidative cell injury and autophagic dysfunction. Combinations of BaP and C60 showed antagonistic effects for lysosomal stability, mTORC1 (mechanistic target of rapamycin complex 1) inhibition and intralysosomal lipid (5 & 50μg/L BaP). The biomarker data (i.e., LMS, lysosomal lipidosis and lipofuscin accumulation; lysosomal/cell volume and dephosphorylation of mTORC1) were further analysed using multivariate statistics. Principal component and cluster analysis clearly indicated that BaP on its own was more injurious than in combination with C60. Use of a network model that integrated the biomarker data for the cell pathophysiological processes, indicated that there were significant antagonistic interactions in network complexity (% connectance) at all BaP concentrations for the combined treatments. Loss of lysosomal membrane stability probably causes the release of intralysosomal iron and hydrolases into the cytosol, where iron can generate harmful reactive oxygen species (ROS). It was inferred that this adverse oxidative reaction induced by BaP was ameliorated in the combination treatments by the ROS scavenging property of intralysosomal C60, thus limiting the injury to the lysosomal membrane; and reducing the oxidative damage in the cytosol and to the nuclear DNA. The ROS scavenging by C60, in combination with enhanced autophagic turnover of damaged cell constituents, appeared to have a cytoprotective effect against the toxic reaction to BaP in the combined treatments.
Collapse
Affiliation(s)
- Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK.
| | - Susanna Sforzini
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment - IAS, National Research Council - CNR, Via de Marini, 6, 16149 Genova, GE, Italy
| | - Aldo Viarengo
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment - IAS, National Research Council - CNR, Via de Marini, 6, 16149 Genova, GE, Italy
| | - Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Yann Aminot
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - James W Readman
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK; Toxicology Department, GAB Consulting GmbH, 69126 Heidelberg, Germany
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
6
|
Zhang S, Chen H, Zhang J, Li J, Hou H, Hu Q. The multiplex interactions and molecular mechanism on genotoxicity induced by formaldehyde and acrolein mixtures on human bronchial epithelial BEAS-2B cells. ENVIRONMENT INTERNATIONAL 2020; 143:105943. [PMID: 32659531 DOI: 10.1016/j.envint.2020.105943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Aldehydes are common air pollutants with carcinogenicity. Genotoxicity of single aldehyde has been studied well, but the combined genotoxicity is rarely known. Here, we evaluated the combined genotoxicity of formaldehyde and acrolein on BEAS-2B cells in terms of DNA strands breakage, chromosome damage and gene mutation below subcytotoxic concentrations covering smoking-related concentrations. Meanwhile, the molecular mechanism was investigated further based on oxidative stress, DNA-protein crosslinks (DPCs), cell cycle and DNA damage-repair pathway. Co-exposure to formaldehyde and acrolein mixtures showed significantly synergistic interaction on DNA strands breakage and chromosome damage in a concentration/time-dependent manner, while antagonism was shown on the late genotoxic endpoints (e.g. cytoplasmic block micronucleus (CBMN) and HPRT gene mutation). Moreover, formaldehyde synergistically potentiated acrolein-induced S-phase arrest, inhibition of DNA repair and up-regulation of genes related to cell stress, which conversely strengtherned mixture-induced DNA/chromosome damage and finally resulted in antagonism on late genotoxic events. Additionally, formaldehyde-induced DNA damage mainly resulted from the direct covalent bonding (e.g. DPCs), while acrolein-induced DNA damage mainly generated from oxidative damage (e.g. oxidative stress), which dominated the synergistic DNA strand breakage induced by mixtures. Summarily, aldehyde mixtures (formaldehyde and acrolein) induced multiplex combined genotoxicity on BEAS-2B cells even at smoking-related concentrations, which was dependent on genotoxic endpoints and closely related to that formaldehyde potentiated acrolein-induced cell stress, S-phase arrest and inhibition of DNA repair. So prolonged exposure to aldehyde mixtures may have a more serious risk to respiratory system in animal and human than the expectation based on the toxicity of single aldehyde even at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Sen Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - Jingni Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - Jun Li
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| |
Collapse
|
7
|
Chapman FM, Sparham C, Hastie C, Sanders DJ, van Egmond R, Chapman KE, Doak SH, Scott AD, Jenkins GJS. Comparison of passive-dosed and solvent spiked exposures of pro-carcinogen, benzo[a]pyrene, to human lymphoblastoid cell line, MCL-5. Toxicol In Vitro 2020; 67:104905. [PMID: 32497684 DOI: 10.1016/j.tiv.2020.104905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Genotoxicity testing methods in vitro provide a means to predict the DNA damaging effects of chemicals on human cells. This is hindered in the case of hydrophobic test compounds, however, which will partition to in vitro components such as plastic-ware and medium proteins, in preference to the aqueous phase of the exposure medium. This affects the freely available test chemical concentration, and as this freely dissolved aqueous concentration is that bioavailable to cells, it is important to define and maintain this exposure. Passive dosing promises to have an advantage over traditional 'solvent spiking' exposure methods and involves the establishment and maintenance of known chemical concentrations in the in vitro medium, and therefore aqueous phase. Passive dosing was applied in a novel format to expose the MCL-5 human lymphoblastoid cell line to the pro-carcinogen, benzo[a]pyrene (B[a]P) and was compared to solvent (dimethyl sulphoxide) spiked B[a]P exposures over 48 h. Passive dosing induced greater changes, at lower concentrations, to micronucleus frequency, p21 mRNA expression, cell cycle abnormalities, and cell and nuclear morphology. This was attributed to a maintained, definable, free chemical concentration using passive dosing and the presence or absence of solvent, and highlights the influence of exposure choice on genotoxic outcomes.
Collapse
Affiliation(s)
- Fiona M Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK.
| | - Chris Sparham
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Colin Hastie
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - David J Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Roger van Egmond
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Andrew D Scott
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| |
Collapse
|
8
|
Zhang S, Zhang J, Cheng W, Chen H, Wang A, Liu Y, Hou H, Hu Q. Combined cell death of co-exposure to aldehyde mixtures on human bronchial epithelial BEAS-2B cells: Molecular insights into the joint action. CHEMOSPHERE 2020; 244:125482. [PMID: 31812766 DOI: 10.1016/j.chemosphere.2019.125482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Aldehydes are common air pollutants and metabolites of the organism, which widely exist in many in vivo (e.g. Alzheimer's disease) and in vitro (e.g. cigarette smoke) situations. Individual aldehydes have been studied well alone, while their combined toxicity is still obscure. Here, we examined the combined apoptosis of aldehyde mixtures in BEAS-2B cells at smoking-related environmental/physiologically relevant concentrations, and the potential mechanism was investigated further based on the related signaling pathway. Co-exposure to aldehyde mixtures demonstrated significant synergistic interaction on apoptosis in a concentration-dependent manner, which differed from the expectation based on single aldehydes. Moreover, formaldehyde significantly potentiated the induction of death receptor-5, caspase 8/10, cleaved caspase 3/7/9, pro-apoptotic proteins (Bim, Bad and Bax), depolarization of MMP (mitochondrial membrane potential) and AIF (apoptosis-inducing factor) induced by acrolein, and synergistically decreased expressions of pro-survival proteins (Bcl-2 and Bcl-XL) and poly ADP-ribose polymerase. Therefore, aldehyde mixture-induced synergistic apoptosis was mediated both by TRAIL death receptor and mitochondrial pathway. Additionally, reactive oxygen species, Ca2+ levels, DNA damage, and phosphorylated MDM2 were all synergistically induced by aldehyde mixtures, while total p53, phosphorylated p53 and phosphorylated AKT (serine/threonine kinase) were inhibited. Antioxidants N-acetylcysteine suppressed the aldehyde mixture-induced ROS, DNA damage and apoptosis, and blocked the TRAIL death receptor and mitochondrial pathway, while it did not rescue the p53 and AKT pathway. Briefly, aldehyde mixtures induced synergistic apoptosis even at smoking-related environmental/physiologically relevant concentrations, which could be enhanced through ROS-mediated death receptor/mitochondrial pathway, and the down-regulation of phosphorylated AKT.
Collapse
Affiliation(s)
- Sen Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Jingni Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Wanyan Cheng
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| |
Collapse
|
9
|
Barranger A, Rance GA, Aminot Y, Dallas LJ, Sforzini S, Weston NJ, Lodge RW, Banni M, Arlt VM, Moore MN, Readman JW, Viarengo A, Khlobystov AN, Jha AN. An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse ‘Trojan Horse’ effects. Nanotoxicology 2019; 13:1324-1343. [DOI: 10.1080/17435390.2019.1654003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Graham A. Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth, UK
| | - Lorna J. Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Susanna Sforzini
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicola J. Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Rhys W. Lodge
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Mohamed Banni
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA chottMariem, Sousse University, Sousse, Tunisia
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, MRC-PHE Centre for Environmental & Health, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Michael N. Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Plymouth Marine Laboratory, Plymouth, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Royal Cornwall Hospital, Truro, UK
| | - James W. Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Aldo Viarengo
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andrei N. Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
10
|
Zhang W, Yang J, Lv Y, Li S, Qiang M. Paternal benzo[a]pyrene exposure alters the sperm DNA methylation levels of imprinting genes in F0 generation mice and their unexposed F1-2 male offspring. CHEMOSPHERE 2019; 228:586-594. [PMID: 31059956 DOI: 10.1016/j.chemosphere.2019.04.092] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Benzo[a]pyrene (BaP) is an environmental pollutant known to cause teratogenesis. However, the mechanism underlying this teratogenic effect is not fully understood. Recently, the alteration of DNA methylation of imprinting genes has emerged as a specific epigenetic mechanism linking the impact of environmental pollutants on embryonic development to paternal exposures. The aim of this study was to investigate the transgenerational effects of paternal BaP exposure on the imprinting genes in mouse sperm DNA. METHODS Male C57BL/6J mice received BaP (1.0 or 2.5 mg/kg) or olive oil twice a week for 12 weeks. The methylation status of 6 imprinting genes (H19, Meg3, Peg1, Peg3, Igf2 and Snrpn) was examined by bisulfite pyrosequencing of the sperm DNA of BaP-exposed F0 generation and their offspring. RESULTS BaP exposure reduced the methylation levels in the imprinting genes H19 and Meg3 and increased the methylation levels of Peg1 and Peg3; however, no significant differences was observed for the methylation levels of Igf2 or Snrpn in the sperm DNA. Furthermore, BaP-exposed male mice were mated with unexposed female mice to generate F1-2 generations. The methylation levels of the 6 genes in the sperm DNA from F1-2 offspring showed a similar pattern as that of the F0 male. The effects were attenuated in F1-2 generations. CONCLUSIONS Paternal BaP exposure altered the methylation levels of imprinting genes, implicating that imprinting genes are susceptible to environmental toxicants. Furthermore, a similar alteration was observed in the F1-2 generations although the attenuated in methylation in F2 generation, revealing a potential transgenerational effect.
Collapse
Affiliation(s)
- Wenping Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Jia Yang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Yi Lv
- Department of Toxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mei Qiang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan 030001, China.
| |
Collapse
|
11
|
Barranger A, Langan LM, Sharma V, Rance GA, Aminot Y, Weston NJ, Akcha F, Moore MN, Arlt VM, Khlobystov AN, Readman JW, Jha AN. Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C 60) in Toxicological Response of Marine Mussels. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E987. [PMID: 31288459 PMCID: PMC6669530 DOI: 10.3390/nano9070987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.
Collapse
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Graham A Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nicola J Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Farida Akcha
- Ifremer, Laboratory of Ecotoxicology, F-44311, CEDEX 03 Nantes, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England and Imperial College London, London SE1 9NH, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James W Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
12
|
Zhang S, Zhang J, Chen H, Wang A, Liu Y, Hou H, Hu Q. Combined cytotoxicity of co-exposure to aldehyde mixtures on human bronchial epithelial BEAS-2B cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:650-661. [PMID: 31035147 DOI: 10.1016/j.envpol.2019.03.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Aldehydes are well-known air pollutants and often studied alone, while co-exposure to aldehyde mixtures is more common than single aldehydes. Unfortunately, it has been very little known about the (mechanism of) combined toxicity of aldehyde mixtures. Here, formaldehyde and acrolein were selected as the typical representatives of common aldehydes, and were used to explore to get in-depth insight into the mechanism of combined toxicity of aldehyde mixtures. The NOECs (non-observed effect concentrations) are 60 μmoL/L for formaldehyde, and 0.5 μmoL/L for acrolein, so acrolein is more toxic than formaldehyde. Formaldehyde and acrolein mixtures showed significant cytotoxicity and synergistic effects in a concentration/time-dependent way on BEAS-2B cells based on acute and chronic cytotoxicity assay. Acrolein was dominant in aldehyde mixtures in inducing cytotoxicity at environmentally relevant doses because of higher toxicity. Moreover, aldehyde mixtures significantly synergistically increased the intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and lactate dehydrogenase (LDH) leakage, while caused an antagonistic effects on glutathione (GSH). Besides, formaldehyde could significantly potentiated the activation of environmental stress sensitive Nrf2 pathway induced by acrolein, even at doses at which formaldehyde treatment alone had no any response. Furthermore, as the downstream components of Nrf2 pathway, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) and heme oxygenase-1 (HO-1) were significantly synergistically induced by formaldehyde and acrolein mixtures. Antioxidants N-acetylcysteine and reduced glutathione could significantly suppress the acute and chronic combined cytotoxicity of acrolein and formaldehyde mixtures, and changed their interactions (synergism) on cytotoxicity. Taken together, aldehyde mixtures have higher toxicity than that expected for additivity based on single aldehydes even at environmentally relevant concentrations, and the combined cytotoxicity may be enhanced through oxidative stress and the related Nrf2 pathway. Prolonged exposure to pollutants containing aldehyde mixtures through inhalation may have more serious threat to respiratory system in animal and human.
Collapse
Affiliation(s)
- Sen Zhang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China
| | - Jingni Zhang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China
| |
Collapse
|
13
|
Dose-dependent synergistic and antagonistic mutation responses of binary mixtures of the environmental carcinogen benzo[a]pyrene with food-derived carcinogens. Arch Toxicol 2018; 92:3459-3469. [DOI: 10.1007/s00204-018-2319-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/19/2018] [Indexed: 12/08/2022]
|
14
|
Zhang S, Chen H, Wang A, Liu Y, Hou H, Hu Q. Combined effects of co-exposure to formaldehyde and acrolein mixtures on cytotoxicity and genotoxicity in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25306-25314. [PMID: 29946839 DOI: 10.1007/s11356-018-2584-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
FA (formaldehyde) and ACR (acrolein) are common pollutants in environment, which often occur together in air. So, adverse health effects may not only result from their individual toxicity but also from the combined toxicity. While often studied alone, combination effects of these pollutants are inconclusive. Here, we examined the combined cytotoxicity and genotoxicity of FA and ACR on A549 cells based on CCK-8 assay, comet assay, and cytokinesis-block micronuclei assay. FA and ACR mixtures showed significant cytotoxicity and genotoxicity even at NOECs (no observed effect concentrations). Moreover, FA and ACR administrated jointly at doses from NOECs to sub-cytotoxic concentrations demonstrated significant interactions in cytotoxicity, DNA strand breaks, and chromosome damage. Co-exposure to FA and ACR significantly showed a lower responses on DNA strand break and chromosome damage than those expected for additivity, while an opposite result was obtained on cytotoxicity. Taken together, these results indicated that there was significant interactions on cytotoxicity and genotoxicity for FA and ACR, and prolonged exposure to mixtures of FA and ACR below sub-cytotoxic concentrations can produce a serious threat in human's health.
Collapse
Affiliation(s)
- Sen Zhang
- Institute of Applied Technology, Hefei Institutes of physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, People's Republic of China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, People's Republic of China
| | - An Wang
- Institute of Applied Technology, Hefei Institutes of physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, People's Republic of China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
15
|
Malik DES, David RM, Gooderham NJ. Mechanistic evidence that benzo[a]pyrene promotes an inflammatory microenvironment that drives the metastatic potential of human mammary cells. Arch Toxicol 2018; 92:3223-3239. [PMID: 30155724 PMCID: PMC6132703 DOI: 10.1007/s00204-018-2291-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Benzo[a]pyrene (B(a)P) is a major cancer-causing contaminant present in food such as cooked meats and cereals, and is ubiquitous in the environment in smoke derived from the combustion of organic material. Exposure to B(a)P is epidemiologically linked with the incidence of breast cancer. Although B(a)P is recognized as a complete genotoxic carcinogen, thought to act primarily via CYP-mediated metabolic activation to DNA-damaging species, there is also evidence that B(a)P exposure elicits other biological responses that promote development of the cancer phenotype. Here in mechanistic studies using human mammary cells MCF-7 and MDA-MB-231, we have explored mechanisms whereby B(a)P (10- 8 to 10- 5M) promotes inflammation pathways via TNF-α and NFκB leading to IL-6 upregulation, microRNA (Let7a, miR21 and miR29b) dysregulation and activation of VEGF. The miRNA dysregulation is associated with altered expression of inflammation mediators and increased migration and invasive potential of human mammary cancer cells. Our data suggest that mammary cell exposure to B(a)P results in perturbation of inflammation mediators and dysregulation of tumorigenic miRNAs, leading to an inflammation microenvironment that facilitates migration and invasion of mammary epithelial cells. These properties of B(a)P, together with its well-established metabolic activation to DNA-damaging species, offer mechanistic insights into its carcinogenic mode of action.
Collapse
Affiliation(s)
- Durr-E-Shahwar Malik
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Rhiannon M David
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
- Genetic Toxicology, Drug Safety and Metabolism, MSAS Unit, AstraZeneca, Cambridge, UK
| | - Nigel J Gooderham
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Zhang S, Chen H, Wang A, Liu Y, Hou H, Hu Q. Genotoxicity analysis of five particle matter toxicants from cigarette smoke based on γH2AX assay combined with Hill/Two-component model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:131-140. [PMID: 29329021 DOI: 10.1016/j.etap.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
To investigate the genotoxic characteristics of typical toxicants in particle phase of cigarette smoke, including B[a]P, nicotine, tar, NNN and NNK. The in vitro γH2AX assay was used to detect the DNA double-strand breaks (DSBs) in A549 cells using high content screening (HCS). The results showed all toxicants had a dose/time-dependent effects on induction of γH2AX except for NNN and NNK. Based on dose-response of γH2AX and Hill model, the ability to induce DSBs was evaluated: NNN-acetate > B[a]P > NNK-acetate > tar > nicotine. Based on time-course of γH2AX and two-component model, the complex DNA damage was the main subtypes of DNA damage induced by these toxicants. Overall, all toxicants were genotoxic in A549 cells in a dose- or time- dependent manner except for NNN and NNK based on the γH2AX HCS assay. NNN-acetate had more potential to induce DSBs, which was followed by B[a]P, NNK-acetate, tar and nicotine.
Collapse
Affiliation(s)
- Sen Zhang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China; University of Science and Technology of China, Hefei 230026, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer. Arch Toxicol 2018; 92:1639-1655. [PMID: 29362861 PMCID: PMC5882637 DOI: 10.1007/s00204-018-2160-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10-7-10-4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10-3-10-1 M) with PhIP (10-7-10-4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.
Collapse
|
18
|
Chen YS, Wang R, Dashwood WM, Löhr CV, Williams DE, Ho E, Mertens-Talcott S, Dashwood RH. A miRNA signature for an environmental heterocyclic amine defined by a multi-organ carcinogenicity bioassay in the rat. Arch Toxicol 2017; 91:3415-3425. [PMID: 28289824 PMCID: PMC5836314 DOI: 10.1007/s00204-017-1945-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022]
Abstract
Heterocyclic amines (HCAs) produced during high-temperature cooking have been studied extensively in terms of their genotoxic/genetic effects, but recent work has implicated epigenetic mechanisms involving non-coding RNAs. Colon tumors induced in the rat by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) have altered microRNA (miRNA) signatures linked to dysregulated pluripotency factors, such as c-Myc and Krüppel-like factor 4 (KLF4). We tested the hypothesis that dysregulated miRNAs from PhIP-induced colon tumors would provide a "PhIP signature" for use in other target organs obtained from a 1-year carcinogenicity bioassay in the rat. Downstream targets that were corroborated in the rat were then investigated in human cancer datasets. The results confirmed that multiple let-7 family members were downregulated in PhIP-induced skin, colon, lung, small intestine, and Zymbal's gland tumors, and were associated with c-myc and Hmga2 upregulation. PhIP signature miRNAs with the profile mir-21high/mir-126low/mir-29clow/mir-215low/mir-145low were linked to reduced Klf4 levels in rat tumors, and in human pan-cancer and colorectal cancer. It remains to be determined whether this PhIP signature has predictive value, given that more than 20 different genotoxic HCAs are present in the human diet, plus other agents that likely induce or repress many of the same miRNAs. Future studies should define more precisely the miRNA signatures of other HCAs, and their possible value for human risk assessment.
Collapse
Affiliation(s)
- Ying-Shiuan Chen
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA
| | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Wan-Mohaiza Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Susanne Mertens-Talcott
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA.
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA.
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
19
|
Mimmler M, Peter S, Kraus A, Stroh S, Nikolova T, Seiwert N, Hasselwander S, Neitzel C, Haub J, Monien BH, Nicken P, Steinberg P, Shay JW, Kaina B, Fahrer J. DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP. Nucleic Acids Res 2016; 44:10259-10276. [PMID: 27599846 PMCID: PMC5137439 DOI: 10.1093/nar/gkw791] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 08/27/2016] [Indexed: 11/13/2022] Open
Abstract
PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs.
Collapse
Affiliation(s)
| | - Simon Peter
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Alexander Kraus
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Svenja Stroh
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Teodora Nikolova
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Nina Seiwert
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | - Carina Neitzel
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Jessica Haub
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Bernhard H Monien
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Petra Nicken
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
20
|
Sekimoto M, Sumi H, Hosaka T, Umemura T, Nishikawa A, Degawa M. Aryl hydrocarbon receptor activation and CYP1A induction by cooked food-derived carcinogenic heterocyclic amines in human HepG2 cell lines. Food Chem Toxicol 2016; 97:256-264. [DOI: 10.1016/j.fct.2016.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 11/27/2022]
|
21
|
Fahrer J, Kaina B. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens. Food Chem Toxicol 2016; 106:583-594. [PMID: 27693244 DOI: 10.1016/j.fct.2016.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O6-methylguanine (O6-MeG), which are removed by base excision repair (BER) and O6-methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER). Both O6-MeG and HCA-induced DNA adducts are linked to the occurrence of KRAS and APC mutations in colorectal tumors of rodents and humans, thereby driving CRC initiation and progression. In this review, we focus on DNA repair pathways removing DNA lesions induced by NOC and HCA and assess their role in protecting against mutagenicity and carcinogenicity in the large intestine. We further discuss the impact of DNA repair on the dose-response relationship in colorectal carcinogenesis in view of recent studies, demonstrating the existence of 'no effect' point of departures (PoDs), i.e. thresholds for genotoxicity and carcinogenicity. The available data support the threshold concept for NOC with DNA repair being causally involved.
Collapse
Affiliation(s)
- Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
22
|
Zhang W, Tian F, Zheng J, Li S, Qiang M. Chronic Administration of Benzo(a)pyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation. PLoS One 2016; 11:e0149574. [PMID: 26901155 PMCID: PMC4768874 DOI: 10.1371/journal.pone.0149574] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recently, an increasing number of human and animal studies have reported that exposure to benzo(a)pyrene (BaP) induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance. METHODS C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg) or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B) was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus. RESULTS Compared to controls, mice that received BaP (2.5, 6.25 mg/kg) showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions. CONCLUSIONS Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain.
Collapse
Affiliation(s)
- Wenping Zhang
- Department of Neurotoxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, 030001, China
| | - Fengjie Tian
- Department of Neurotoxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, 030001, China
| | - Jinping Zheng
- Department of Neurotoxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, 030001, China
| | - Senlin Li
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Mei Qiang
- Department of Children and Adolescences, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, 030001, China
| |
Collapse
|
23
|
David RM, Gooderham NJ. Using 3D MCF-7 mammary spheroids to assess the genotoxicity of mixtures of the food-derived carcinogens benzo[ a]pyrene and 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine. Toxicol Res (Camb) 2015; 5:312-317. [PMID: 30090347 DOI: 10.1039/c5tx00343a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022] Open
Abstract
Genotoxic carcinogens are present in the human diet, and two important examples are benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). BaP is a polycyclic aromatic hydrocarbon generated by incomplete combustion of organic substances, thus contaminating numerous foodstuffs, and PhIP is a heterocyclic amine formed when meat is cooked. Genotoxicity testing of chemical carcinogens has focussed largely on individual chemicals, particularly in relation to diet, despite mixtures representing a more realistic exposure scenario. We have previously shown that exposure of MCL-5 cells to BaP-PhIP mixtures produces a TK mutation dose response that differs from the predicted additive response, using traditional regulatory-like two-dimensional (2D) cell culture. There is a large gap between 2D cell culture and the whole animal, and three-dimensional (3D) cell culture, shown to better represent in vivo tissue structure, may bridge the gap. The aim of the current study was to use 3D spheroids to characterise the DNA damage response following exposure to mixtures of the mammary carcinogens BaP and PhIP. Mammary MCF-7 cells were grown in 3D spheroids, exposed (24 h) to BaP (10-10 to 10-5 M) or PhIP (10-9 to 10-4 M) individually or in mixtures and DNA damage assessed by micronucleus (MN) formation. A dose-dependent increase in MN was observed for the individual chemicals in 3D cell culture. In line with our previous 2D TK mutation data, 3D mixture exposures gave a modified DNA damage profile compared to the individual chemicals, with a potent response at low dose combinations and a decrease in MN with higher concentrations of BaP in the mixture. Ethoxyresorufin-O-deethylase (CYP1A) activity increased with increasing concentration of BaP in the mixture, and for combinations with 10 μM BaP, CYP1A1 mRNA induction was sustained up to 48 h. These data suggest mixtures of genotoxic chemicals give DNA damage responses that differ considerably from those produced by the chemicals individually, and that 3D cell culture is an appropriate platform for DNA damage assays.
Collapse
Affiliation(s)
- Rhiannon M David
- Computational and Systems Medicine , Department of Surgery and Cancer , Imperial College , London , UK .
| | - Nigel J Gooderham
- Computational and Systems Medicine , Department of Surgery and Cancer , Imperial College , London , UK .
| |
Collapse
|