1
|
Yang X, Yu Q, Zhang Y, Ma W. Occupational health risk assessment of construction workers caused by particulate matter exposure on construction sites. Heliyon 2023; 9:e20433. [PMID: 37822615 PMCID: PMC10562764 DOI: 10.1016/j.heliyon.2023.e20433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/04/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Construction particulate matter is one of the main environmental impact factors in the construction process. Due to the lack of sufficient awareness and understanding of the potential health effects of particulate matter by project managers and construction workers, the on-site working environment has not been effectively improved for a long time, and construction workers have been exposed to high particulate matter concentration conditions for physical labor for a long time. The construction site is a special operation scene, and the source and diffusion of particulate matter are a complex physical change process, and the degree of damage to the health of construction workers is closely related to the exposure dose. Thus, suitable quantitative and evaluation methods need to be adopted. The current on-site particulate matter concentration control system lacks technical and data support and cannot support the needs of on-site environmental management. In this paper, three construction sites in different stages of construction in Shanghai were selected to measure the mass concentration of open source particulate matter, and on this basis, the emission factors of particulate matter in different operating areas were calculated. At foundation stage, the emission factor of TSP, PM10, PM2.5 are 0.0214 g/m2·h, 0.0067 g/m2·h, 0.0054 g/m2·h; at main structure stage, the emission factor of TSP, PM10, PM2.5 are 0.0136 g/m2·h, 0.0053 g/m2·h, 0.0041 g/m2·h; at installation and decoration stage, the emission factor of TSP, PM10, PM2.5 are 0.0165 g/m2·h, 0.0059 g/m2·h, 0.0043 g/m2·h. Using simulation software to simulate the temporal and spatial distribution of particulate matter concentration at the site of the example project, it is found that workers engaged in pit bottom operation in the foundation stage, steel bar processing in the main structure stage, and plastering, masonry and putty workers in the installation and decoration stage are the people with the highest occupational health risk at the construction site. In this study, DALYs were used as a metric to monetize the health risks of particulate matter to workers in the field. Support scientific decision-making on particulate matter control at construction sites and improve the level of on-site occupational health management.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China
- China Construction Eighth Engineering Division, 200122, Shanghai, China
| | - Qi Yu
- Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China
| | - Yan Zhang
- Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China
| | - Weichun Ma
- Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Shanghai, 200433, China
| |
Collapse
|
2
|
Honda A, Okuda T, Nagao M, Miyasaka N, Tanaka M, Takano H. PM2.5 collected using cyclonic separation causes stronger biological responses than that collected using a conventional filtration method. ENVIRONMENTAL RESEARCH 2021; 198:110490. [PMID: 33220242 DOI: 10.1016/j.envres.2020.110490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Evaluation of the health effects of particulate matter with aerodynamic dias. ≤ 2.5 μm (PM2.5) should reflect realistic condition in ambient atmosphere. However, using conventional filtration methods, only extracts from PM2.5 collected on the filter can be analyzed and not the particle itself. Cyclonic separation is a technique that enables the direct analysis of the effects of the crude "powder form" of PM2.5 on respiratory health. Airway epithelial cells and antigen-presenting cells were exposed to PM2.5 collected during the same period using a conventional filtration method or cyclonic separation. PM2.5 collected using cyclonic separation led to a higher secretion of interleukins 6 and 8 (IL-6, IL-8) from airway epithelial cells, and IL-6, IL-1β, tumor necrosis factor-α (TNF-α) secretion, cluster of differentiation 86 (CD86), and dendritic and epithelial cells 205 (DEC205) expression on antigen-presenting cells, compared with the effects of filter-collected PM2.5. Furthermore, PM2.5 collected using cyclonic separation increased inflammatory cytokine levels and induced lung inflammation in vivo. These results suggest that crude PM2.5 collected using cyclonic separation causes stronger biological responses than filter-collected PM2.5. Hence, PM2.5 collected using cyclonic separation can be utilized for a reliable evaluation of the health effects of ambient PM2.5.
Collapse
Affiliation(s)
- Akiko Honda
- Graduate School of Global Environmental Studies, Kyoto University, Japan; Graduate School of Engineering, Kyoto University, Japan.
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Megumi Nagao
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Michitaka Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Japan; Graduate School of Engineering, Kyoto University, Japan
| |
Collapse
|
3
|
Wen Y, Ding X, Guan Q, Hu W, Wang B, Hu Q, Bigambo FM, Zhou Z, Wang X, Xia Y. Effects of exposure to urban particulate matter SRM 1648a during pregnancy on the neurobehavioral development of offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112142. [PMID: 33740484 DOI: 10.1016/j.ecoenv.2021.112142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
|
4
|
Wei H, Yuan W, Yu H, Geng H. Cytotoxicity induced by fine particulate matter (PM 2.5) via mitochondria-mediated apoptosis pathway in rat alveolar macrophages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25819-25829. [PMID: 33474668 PMCID: PMC7817249 DOI: 10.1007/s11356-021-12431-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/07/2021] [Indexed: 05/22/2023]
Abstract
Although positive associations exist between ambient particulate matter (PM2.5; diameter ≤ 2.5 μm) and the morbidity and mortality rates for respiratory diseases, the biological mechanisms of the reported health effects are unclear. Considering that alveolar macrophages (AM) are the main cells responsible for phagocytic clearance of xenobiotic particles that reach the airspaces of the lungs, the purpose of this study was to investigate whether PM2.5 induced AM apoptosis, and investigate its possible mechanisms. Freshly isolated AM from Wistar rats were treated with extracted PM2.5 at concentrations of 33, 100, or 300 μg/mL for 4 h; thereafter, the cytotoxic effects were evaluated. The results demonstrated that PM2.5 induced cytotoxicity by decreasing cell viability and increasing lactate dehydrogenase (LDH) levels in AMs. The levels of reactive oxygen species (ROS) and intracellular calcium cations (Ca2+) markedly increased in higher PM2.5 concentration groups. Additionally, the apoptotic ratio increased, and the apoptosis-related proteins BCL2-associated X (Bax), caspase-3, and caspase-9 were upregulated, whereas B cell lymphoma-2 (Bcl-2) protein levels were downregulated following PM2.5 exposure. Cumulative findings showed that PM2.5 induced apoptosis in AMs through a mitochondrial-mediated pathway, which indicated that PM2.5 plays a significant role in lung injury diseases.
Collapse
Affiliation(s)
- Haiying Wei
- College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China.
| | - Wanjun Yuan
- College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Huan Yu
- College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Hong Geng
- College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
5
|
Yuan W, Fulgar CC, Sun X, Vogel CFA, Wu CW, Zhang Q, Bein KJ, Young DE, Li W, Wei H, Pinkerton KE. In vivo and in vitro inflammatory responses to fine particulate matter (PM 2.5) from China and California. Toxicol Lett 2020; 328:52-60. [PMID: 32320776 PMCID: PMC7641014 DOI: 10.1016/j.toxlet.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/28/2022]
Abstract
Ambient PM2.5 was collected during the winter season from Taiyuan, Shanxi, China; Jinan, Shandong, China; and Sacramento, California, USA, and used to create PMSX, PMSD, and PMCA extracts, respectively. Time-lag experiments were performed to explore the in vivo and in vitro toxicity of the PM extracts. In vivo inflammatory lung responses were assessed in BALB/c mice using a single oropharyngeal aspiration (OPA) of PM extract or vehicle (CTRL) on Day 0. Necropsies were performed on Days 1, 2, and 4 post-OPA, and pulmonary effects were determined using bronchoalveolar lavage (BAL) and histopathology. On Day 1, BAL neutrophils were significantly elevated in all PM- versus CTRL-exposed mice, with PMCA producing the strongest response. However, histopathological scoring showed greater alveolar and perivascular effects in PMSX-exposed mice compared to all three other groups. By Day 4, BAL neutrophilia and tissue inflammation were resolved, similar across all groups. In vitro effects were examined in human HepG2 hepatocytes, and U937 cells following 6, 24, or 48 h of exposure to PM extract or DMSO (control). Luciferase reporter and quantitative polymerase chain reaction assays were used to determine in vitro effects on aryl hydrocarbon receptor (AhR) activation and gene transcription, respectively. Though all three PM extracts activated AhR, PMSX produced the greatest increases in AhR activation, and mRNA levels of cyclooxygenase-2, cytochrome P450, interleukin (IL)-8, and interleukin (IL)-1β. These effects were assumed to result from a greater abundance of polycyclic aromatic hydrocarbons (PAHs) in PMSX compared to PMSD and PMCA.
Collapse
Affiliation(s)
- Wanjun Yuan
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, China; Center for Health and the Environment, University of California, Davis, USA
| | - Ciara C Fulgar
- Center for Health and the Environment, University of California, Davis, USA
| | - Xiaolin Sun
- Center for Health and the Environment, University of California, Davis, USA; Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, USA
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, USA
| | - Keith J Bein
- Center for Health and the Environment, University of California, Davis, USA
| | - Dominique E Young
- Department of Environmental Toxicology, University of California, Davis, USA
| | - Wei Li
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China.
| | - Haiying Wei
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, China.
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, USA.
| |
Collapse
|
6
|
Mack SM, Madl AK, Pinkerton KE. Respiratory Health Effects of Exposure to Ambient Particulate Matter and Bioaerosols. Compr Physiol 2019; 10:1-20. [PMID: 31853953 PMCID: PMC7553137 DOI: 10.1002/cphy.c180040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers have been studying the respiratory health effects of ambient air pollution for more than 70 years. While air pollution as a whole can include gaseous, solid, and liquid constituents, this article focuses only on the solid and liquid fractions, termed particulate matter (PM). Although PM may contain anthropogenic, geogenic, and/or biogenic fractions, in this article, particles that originate from microbial, fungal, animal, or plant sources are distinguished from PM as bioaerosols. Many advances have been made toward understanding which particle and exposure characteristics most influence deposition and clearance processes in the respiratory tract. These characteristics include particle size, shape, charge, and composition as well as the exposure concentration and dose rate. Exposure to particles has been directly associated with the exacerbation and, under certain circumstances, onset of respiratory disease. The circumstances of exposure leading to disease are dependent on stressors such as human activity level and changing particle composition in the environment. Historically, researchers assumed that bioaerosols were too large to be inhaled into the deep lung, and thus, not applicable for study in conjunction with PM2.5 (the 2.5-μm and below size fraction that can reach the deep lung); however, this concept is beginning to be challenged. While there is extensive research on the health effects of PM and bioaerosols independent of each other, only limited work has been performed on their coexposure. Studying these two particle types as dual stressors to the respiratory system may aid in more thoroughly understanding the etiology of respiratory injury and disease. © 2020 American Physiological Society. Compr Physiol 10:1-20, 2020.
Collapse
Affiliation(s)
- Savannah M. Mack
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Amy K. Madl
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| |
Collapse
|
7
|
Pinkerton KE, Chen CY, Mack SM, Upadhyay P, Wu CW, Yuan W. Cardiopulmonary Health Effects of Airborne Particulate Matter: Correlating Animal Toxicology to Human Epidemiology. Toxicol Pathol 2019; 47:954-961. [PMID: 31645209 DOI: 10.1177/0192623319879091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of particulate matter (PM) on cardiopulmonary health have been studied extensively over the past three decades. Particulate matter is the primary criteria air pollutant most commonly associated with adverse health effects on the cardiovascular and respiratory systems. The mechanisms by which PM exerts its effects are thought to be due to a variety of factors which may include, but are not limited to, concentration, duration of exposure, and age of exposed persons. Adverse effects of PM are strongly driven by their physicochemical properties, sites of deposition, and interactions with cells of the respiratory and cardiovascular systems. The direct translocation of particles, as well as neural and local inflammatory events, are primary drivers for the observed cardiopulmonary health effects. In this review, toxicological studies in animals, and clinical and epidemiological studies in humans are examined to demonstrate the importance of using all three approaches to better define potential mechanisms driving health outcomes upon exposure to airborne PM of diverse physicochemical compositions.
Collapse
Affiliation(s)
- Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, USA
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, USA
| | - Savannah M Mack
- Center for Health and the Environment, University of California, Davis, USA
| | - Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, USA
| | - Wanjun Yuan
- Center for Health and the Environment, University of California, Davis, USA.,College of Environmental & Resource Sciences, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Yang J, Chen Y, Yu Z, Ding H, Ma Z. The influence of PM 2.5 on lung injury and cytokines in mice. Exp Ther Med 2019; 18:2503-2511. [PMID: 31572502 PMCID: PMC6755482 DOI: 10.3892/etm.2019.7839] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Exposure to particulate matter ≤2.5 µm in diameter (PM2.5) profoundly affects human health. However, the role of PM2.5 on lung injury and cytokine levels in mice is currently unknown. The aim was to examine the effect of PM2.5 pollution on lung injury in mice fed at an underground parking lot. A total of 20 female Kunming mice were randomly divided into control and polluted groups, with 10 rats in each group. The control group was kept in the laboratory, while the pollution group was fed in an underground parking lot. The concentrations of pollutants were measured using ambient air quality monitoring instruments. After 3 months of treatment, the lungs were collected and examined using electron microscopy, and the morphological structures were assessed using hematoxylin and eosin staining. The polarization of macrophages was evaluated by immunofluorescence. The concentration of interleukin (IL)-4, tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 in peripheral sera were assessed by ELISA. The mRNA and protein levels of IL-4, TNF-α, and TGF-β1 in lung tissues were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. In the polluted group, the levels of CO, NOx and PM2.5 were significantly higher compared with the control group. Compared with the controls, intracellular edema, an increased number of microvilli and lamellar bodies, smaller lamellar bodies in type II alveolar epithelial cells, and abundant particles induced by PM2.5 in macrophages were observed in the polluted group. The lung ultrastructure changed in the polluted group, revealing exhaust-induced lung injury: The tissues were damaged, and the number of inflammatory cells, neutrophils, polylymphocytes and eosinophils increased in the polluted group compared with the control group. The authors also observed that the number of M1 and M2 macrophages markedly increased after the exhaust treatment. The levels of IL-4, TNF-α and TGF-β1 in the sera and tissues were significantly increased in the polluted group. PM2.5 pollutants in underground garages can lead to lung injury and have a significant impact on the level of inflammatory cytokines in mice. Therefore, the authors suggest that PM2.5 can activate the inflammatory reaction and induce immune dysfunction, leading to ultrastructural damage.
Collapse
Affiliation(s)
- Jie Yang
- Department of Dermatology, Guangdong Academy of Medical Sciences (Guangdong General Hospital), Guangzhou, Guangdong 510080, P.R. China
| | - Yi Chen
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhi Yu
- Research Center of Intelligent Transportation System, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Hui Ding
- Research Center of Intelligent Transportation System, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Zhongfu Ma
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
9
|
Li D, Zhang R, Cui L, Chu C, Zhang H, Sun H, Luo J, Zhou L, Chen L, Cui J, Chen S, Mai B, Chen S, Yu J, Cai Z, Zhang J, Jiang Y, Aschner M, Chen R, Zheng Y, Chen W. Multiple organ injury in male C57BL/6J mice exposed to ambient particulate matter in a real-ambient PM exposure system in Shijiazhuang, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:874-887. [PMID: 30856503 DOI: 10.1016/j.envpol.2019.02.097] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The development of a rodent ambient particulate matter (PM) inhalation system is critical for drawing causal inferences between PM exposure and the onset of human diseases. In this study, we constructed a real-ambient PM exposure system to investigate multi-organ injury and the reversibility of the impairments in C57BL/6 J male mice exposed to PM with a duration of up to three months in Shijiazhuang, a city with the highest PM2.5 concentration in China. This unique exposure system provided an optimal scenario for round-the-clock PM exposure absent a change in the physiochemical properties of PM and minimized the disturbance to the mice habitat. The mean concentration of PM2.5 in the exposure chambers was 89.95, 79.98, and 87.87 μg/m3 at three different time points, respectively: weeks 1-3, week 1-6, and week 1-12. The injury in multiple organs, including lung, brain, heart, testis, and intestine, was profound and was evident by the significant pathological and functional alterations. Pulmonary pathological examination revealed severe interstitial inflammatory and alveolar hemorrhage throughout the exposure, which was in line with the reduced lung function and the increased cytokine excretion in bronchoalveolar lavage fluid and blood plasma. Notably, the PM-mediated inflammatory response in different systems was correlated with the severity of the injury and the attenuation of pulmonary lesions in the recovery group. Thus, the PM2.5-induced inflammatory response, the chemical components-induced cytotoxicity, genetic damage, and oxidative stress might be implicated in the impairment of multiple murine organs. These findings revealed the severity, sensitivity, and reversibility of multi-organ injury in response to a real-ambient PM exposure.
Collapse
Affiliation(s)
- Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lianhua Cui
- School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Haiyan Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jing Luo
- School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shejun Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jianzhen Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jianqing Zhang
- Persistent Organic Pollution Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yousheng Jiang
- Persistent Organic Pollution Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Madl AK, Plummer LE, Carosino C, Pinkerton KE. Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 2013; 76:447-65. [PMID: 24215442 DOI: 10.1146/annurev-physiol-030212-183735] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties that induce inflammation and oxidative stress in biological systems. Oxidative stress reflects the imbalance between the generation of reactive oxygen species and the biochemical mechanisms to detoxify and repair the damage resulting from reactive intermediates. This review examines current research on incidental and engineered nanoparticles in terms of their health effects on lungs and the mechanisms by which oxidative stress via physicochemical characteristics influences toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review also briefly discusses some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site-specific fashion.
Collapse
Affiliation(s)
- Amy K Madl
- Center for Health and the Environment, University of California, Davis, California 95616; ,
| | | | | | | |
Collapse
|
11
|
Plummer LE, Ham W, Kleeman MJ, Wexler A, Pinkerton KE. Influence of season and location on pulmonary response to California's San Joaquin Valley airborne particulate matter. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:253-71. [PMID: 22409489 DOI: 10.1080/15287394.2012.640102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Season and location have documented impacts on particulate matter (PM)-induced morbidity and mortality. Seasonal and regional influences on the physical and chemical properties of PM₂.₅ (also known as fine/ultrafine PM) contribute to differences in exposure burden and adverse respiratory health outcomes experienced in California's San Joaquin Valley (SJV), which ranks among the worst in the nation for PM pollution. Current regulations are driven by the association between mass concentrations and adverse health outcomes. However, this association is difficult to reproduce in toxicological studies and suggests a role for other parameters, such as chemical composition, involved in PM-induced adverse pulmonary health effects. Pulmonary toxicity of summer/winter and rural/urban SJV PM was evaluated given the unique geography, metereology and sources of the region. Healthy juvenile male mice inhaled summer/winter and urban/rural concentrated ambient PM (CAP) or ambient PM for 6 h/d for 10 d, and pulmonary inflammatory responses were measured 48 h postexposure. Exposure concentrations ranged from 10 to 20 μg/m³ for ambient air control mice and from 86 to 284 μg/m³. Mice exposed to rural but not urban CAP, displayed significant neutrophil influx that was more than 50-fold greater than control levels, which ranged from 21 to 60 neutrophils/ml for all experiments. Pulmonary neutrophilic inflammation was measured despite lower CAP concentrations in the rural compared to the urban location and in the absence of cytotoxicity, oxidative stress, or elevations in cytokine and chemokines expression. Further, the inflammatory responses induced by rural winter CAP were associated with the highest levels of organic carbon (OC) and nitrates (NO₃⁻). Evidence indicates that regional/seasonal influences on PM chemical composition rather than PM mass may be associated with increased PM-induced adverse health effects.
Collapse
Affiliation(s)
- Laurel E Plummer
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
12
|
Zhao J, Xie Y, Jiang R, Kan H, Song W. Effects of atorvastatin on fine particle-induced inflammatory response, oxidative stress and endothelial function in human umbilical vein endothelial cells. Hum Exp Toxicol 2011; 30:1828-39. [DOI: 10.1177/0960327111401050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study is to explore the toxicity of organic extracts and water-soluble fraction of fine particles on human umbilical vein endothelial cells (HUVECs). The exposure doses were 100, 200 and 400 μg/ml, respectively, for two kinds of fractions. Moreover, atorvastatin was used for intervention study. HUVECs were stimulated by 400 μg/ml organic and water soluble extracts, respectively, immediately followed by treatment with atorvastatin in concentrations of 0.1 μmol/L, 1 μmol/L and 10 μmol/L, respectively. Cell viability, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), reactive oxygen species (ROS) and the expression of interleukin-6 beta (IL-6), tumor necrosis factor-α (TNF-α), endothelin-1 and P-selectin were determined in cells. The results showed that MDA and ROS increased in HUVECs after exposed to organic extracts and water-soluble fraction, whereas cell viability, NO and SOD decreased. The mRNA expression of IL-6, TNF-α, endothelin-1 (ET-1) and P-selectin increased after exposed to different fractions. Meanwhile, at the same exposure dose, water-soluble fraction caused more significant increase of MDA, IL-6, TNF-α and P-selectin and decrease of cell viability and NO when compared to organic extracts. Compared to no atorvastatin group, the levels of MDA, ROS and the expression of IL-6, TNF-α, ET-1 and P-selectin decreased in HUVECs in adding atorvastatin group, but cell viability, NO and SOD increased, which indicated that atorvastatin attenuated fine particle-induced inflammatory response, oxidative stress and endothelial damage. The results hinted that the inflammatory response, oxidative stress and endothelial dysfunction might be the mechanisms of cardiovascular injury induced by different fractions of ambient fine particles.
Collapse
Affiliation(s)
- Jinzhuo Zhao
- Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Rongfang Jiang
- Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Haidong Kan
- Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Weimin Song
- Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| |
Collapse
|
13
|
Rohr AC, Wagner JG, Morishita M, Kamal A, Keeler GJ, Harkema JR. Cardiopulmonary responses in spontaneously hypertensive and Wistar-Kyoto rats exposed to concentrated ambient particles from Detroit, Michigan. Inhal Toxicol 2010; 22:522-33. [PMID: 20384466 DOI: 10.3109/08958370903524509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicological effects have been observed in rats exposed to concentrated ambient particles (CAPs) from different regions of the United States. The objective of this study was to evaluate the cardiopulmonary and systemic effects of CAPs in Detroit. The authors stationed a mobile concentrator at a location near major traffic and industrial sources. Spontaneously hypertensive (SH) and Wistar-Kyoto (WKY) rats were exposed to fine CAPs (diameter < 0.1-2.5 microm) 8 h/day for 13 consecutive days. Animals were implanted with telemeters, and electrocardiogram data were recorded continuously. Bronchoalveolar lavage (BAL) fluid and plasma were analyzed. Comprehensive exposure monitoring was conducted, including CAPs components. CAPs exposure concentrations were 103-918 microg/m(3) (mean = 502 microg/m(3)). The authors found no statistically significant differences in heart rate or SDNN (standard deviation of the normal-to-normal intervals), a measure of heart rate variability, between CAPs-exposed and control rats. The authors found significantly higher levels of C-reactive protein in the serum of CAPs-exposed SH rats compared with air-exposed animals. Protein in BAL fluid was elevated in WKY rats exposed to CAPs. Measurement of trace metals in lung tissue showed elevated concentrations of V, Sb, La, and Ce in CAPs-exposed SH animals versus controls. These elements are generally associated with oil combustion, oil refining, waste incineration, and traffic. Examination of wind rose data from the exposure period confirmed that the predominant wind direction was SSW, the direction of many of the aforementioned sources. These results indicate that ambient particles in Detroit can cause mild pulmonary and systemic changes in rats, and suggest the importance of local PM(2.5) sources in these effects.
Collapse
Affiliation(s)
- Annette C Rohr
- Electric Power Research Institute, Palo Alto, California 94304, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Kang CM, Gupta T, Ruiz PA, Wolfson JM, Ferguson ST, Lawrence JE, Rohr AC, Godleski J, Koutrakis P. Aged particles derived from emissions of coal-fired power plants: the TERESA field results. Inhal Toxicol 2010; 23 Suppl 2:11-30. [PMID: 20462390 DOI: 10.3109/08958371003728040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Toxicological Evaluation of Realistic Emissions Source Aerosols (TERESA) study was carried out at three US coal-fired power plants to investigate the potential toxicological effects of primary and photochemically aged (secondary) particles using in situ stack emissions. The exposure system designed successfully simulated chemical reactions that power plant emissions undergo in a plume during transport from the stack to receptor areas (e.g., urban areas). Test atmospheres developed for toxicological experiments included scenarios to simulate a sequence of atmospheric reactions that can occur in a plume: (1) primary emissions only; (2) H(2)SO(4) aerosol from oxidation of SO(2); (3) H(2)SO(4) aerosol neutralized by gas-phase NH(3); (4) neutralized H(2)SO(4) with secondary organic aerosol (SOA) formed by the reaction of α-pinene with O(3); and (5) three control scenarios excluding primary particles. The aged particle mass concentrations varied significantly from 43.8 to 257.1 µg/m(3) with respect to scenario and power plant. The highest was found when oxidized aerosols were neutralized by gas-phase NH(3) with added SOA. The mass concentration depended primarily on the ratio of SO(2) to NO(x) (particularly NO) emissions, which was determined mainly by coal composition and emissions controls. Particulate sulfate (H(2)SO(4) + neutralized sulfate) and organic carbon (OC) were major components of the aged particles with added SOA, whereas trace elements were present at very low concentrations. Physical and chemical properties of aged particles appear to be influenced by coal type, emissions controls and the particular atmospheric scenarios employed.
Collapse
Affiliation(s)
- Choong-Min Kang
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Madl AK, Pinkerton KE. Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol 2010; 39:629-58. [PMID: 19743943 DOI: 10.1080/10408440903133788] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered nanoscale materials provide tremendous promise for technological advancements; however, concerns have been raised about whether research of the possible health risks of these nanomaterials is keeping pace with products going to market. Research on nanomaterials, including carbon nanotubes, semiconductor crystals, and other ultrafine particles (i.e., titanium dioxide, quantum dots, iridium) will be examined to illustrate what is currently known or unknown about how particle characteristics (e.g., size, agglomeration, morphology, solubility, surface chemistry) and exposure/dose metrics (e.g., mass, size, surface area) influence the biological fate and toxicity of inhaled nanosized particles. The fact that nanosized particles (1) have a potentially high efficiency for deposition; (2) target both the upper and lower regions of the respiratory tract; (3) are retained in the lungs for a long period of time, and (4) induce more oxidative stress and cause greater inflammatory effects than their fine-sized equivalents suggest a need to study the impact of these particles on the body. Achieving a better understanding of the dynamics at play between particle physicochemistry, transport patterns, and cellular responses in the lungs and other organs will provide a future basis for establishing predictive measures of toxicity or biocompatibility and a framework for assessing potential human health risks.
Collapse
Affiliation(s)
- Amy K Madl
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, USA.
| | | |
Collapse
|
16
|
Wegesser TC, Last JA. Lung response to coarse PM: bioassay in mice. Toxicol Appl Pharmacol 2008; 230:159-66. [PMID: 18384828 DOI: 10.1016/j.taap.2008.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/24/2008] [Accepted: 02/17/2008] [Indexed: 11/17/2022]
Abstract
Particulate matter (PM) elicits inflammatory and toxic responses in the lung specific to its constituents, which can vary by region, time, and particle size. To identify the mechanism of toxicity in PM collected in a rural area in the San Joaquin Valley of Central California, we studied coarse particles of 2.5-10 mum diameter (PM(2.5)-PM(10)). Potential pro-inflammatory and toxic effects of PM(2.5)-PM(10) in the lung were investigated using intratracheally instilled mice. We determined total and differential cell profiles and inflammatory chemokines in lung lavage fluid, and biomarkers of toxicity resulting from coarse PM exposure. Responses of the mice were readily observed with total doses of 25-50 mug of PM per mouse. Changes in pro-inflammatory cellular profiles and chemokines showed both dose and time responses; peak responses were observed 24 h after PM instillation, with recovery as early as 48 h. Furthermore, macrophage inflammatory protein (MIP-2) profiles following PM exposures were correlated to levels of measured macrophages and neutrophils recovered from lung lavage fluid of PM-treated animals. Our data suggest that pro-inflammatory effects observed from coarse PM collected during the summer months from California's hot and dry Central Valley are driven largely by the insoluble components of the PM mixture, and are not caused by endotoxin.
Collapse
Affiliation(s)
- Teresa C Wegesser
- Pulmonary and Critical Care Medicine Division, School of Medicine, University of California, 6519 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | |
Collapse
|
17
|
Vidrio E, Jung H, Anastasio C. Generation of Hydroxyl Radicals from Dissolved Transition Metals in Surrogate Lung Fluid Solutions. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2008; 42:4369-4379. [PMID: 19148304 PMCID: PMC2626252 DOI: 10.1016/j.atmosenv.2008.01.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Epidemiological research has linked exposure to atmospheric particulate matter (PM) to several adverse health effects, including cardiovascular and pulmonary morbidity and mortality. Despite these links, the mechanisms by which PM causes adverse health effects are poorly understood. The generation of hydroxyl radical (.OH) and other reactive oxygen species (ROS) through transition metal-mediated pathways is one of the main hypotheses for PM toxicity. In order to better understand the ability of particulate transition metals to produce ROS, we have quantified the amounts of .OH produced from dissolved iron and copper in a cell-free, surrogate lung fluid (SLF). We also examined how two important biological molecules, citrate and ascorbate, affect the generation of .OH by these metals. We have found that Fe(II) and Fe(III) produce little .OH in the absence of ascorbate and citrate, but that they efficiently make .OH in the presence of ascorbate and this is further enhanced when citrate is also added. In the presence of ascorbate, with or without citrate, the oxidation state of iron makes little difference on the amount of .OH formed after 24 hours. In the case of Cu(II), the production of .OH is greatly enhanced in the presence of ascorbate, but is inhibited by the addition of citrate. The mechanism for this effect is unclear, but appears to involve formation of a citrate-copper complex that is apparently less reactive than free, aquated copper in either the generation of HOOH or in the Fenton-like reaction of copper with HOOH to make .OH. By quantifying the amount of .OH that Fe and Cu can produce in surrogate lung fluid, we have provided a first step into being able to predict the amounts of .OH that can be produced in the human lung from exposure to PM containing known amounts of transition metals.
Collapse
Affiliation(s)
- Edgar Vidrio
- Graduate Group in Agricultural and Environmental Chemistry, University of California — Davis One Shields Avenue Davis, CA 95616
- Department of Land, Air and Water Resources, University of California — Davis One Shields Avenue Davis, CA 95616
| | - Heejung Jung
- Department of Land, Air and Water Resources, University of California — Davis One Shields Avenue Davis, CA 95616
- Department of Mechanical and Aeronautical Engineering, University of California — Davis One Shields Avenue Davis, CA 95616
| | - Cort Anastasio
- Graduate Group in Agricultural and Environmental Chemistry, University of California — Davis One Shields Avenue Davis, CA 95616
- Department of Land, Air and Water Resources, University of California — Davis One Shields Avenue Davis, CA 95616
- Corresponding author Tel: (530) 754−6095 Fax: (530) 752−1552
| |
Collapse
|
18
|
Schlesinger RB. The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: a critical review. Inhal Toxicol 2007; 19:811-32. [PMID: 17687714 DOI: 10.1080/08958370701402382] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ambient air particulate matter (PM) originates as either primary particles emitted directly into the atmosphere from a specific source or as secondary particles produced from atmospheric chemical reactions between precursor gases or between these gases and primary particles. PM can derive from both natural and anthropogenic sources, resulting in a complex chemical mix. The "fine" size mode of ambient PM, designated as PM(2.5), is defined as comprising those particles having aerodynamic diameters below 2.5 microm. While the total mass of PM(2.5) has been associated with adverse human health outcomes, the relationship between these and specific chemical components has not been resolved. This article provides a perspective on the current state of the science concerning health effects from a major group of chemical species found within PM(2.5), namely common inorganic constituents. The specific chemical classes discussed herein are secondary inorganic species, namely, sulfate, nitrate, and acidity, and generally crustal-derived species, namely, phosphate, sodium, potassium, calcium, magnesium, silicon, and aluminum. The article discusses evidence for adverse health effects from inorganic PM(2.5) components within the framework of various caveats surrounding both epidemiology and toxicology assessments. The largest database exists for sulfate, but conclusions that attribute sulfate to health outcomes have not been consistent across all epidemiology studies, and there is a lack of coherence with toxicology studies, which show biological responses only at high levels of exposure. Limited epidemiological and toxicological data for nitrate suggests little or no adverse health effects at current levels. Epidemiological studies specifically identifying crustal components of PM(2.5) suggest that they are not likely, by themselves, to produce a significant health risk, and these components do not have unequivocal biological plausibility from toxicological studies for being significant contributors to adverse health outcomes.
Collapse
Affiliation(s)
- Richard B Schlesinger
- Department of Biology and Health Sciences, Pace University, New York, New York 10038, USA.
| |
Collapse
|
19
|
Gilmour PS, Schladweiler MC, Nyska A, McGee JK, Thomas R, Jaskot RH, Schmid J, Kodavanti UP. Systemic imbalance of essential metals and cardiac gene expression in rats following acute pulmonary zinc exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:2011-32. [PMID: 17074742 DOI: 10.1080/15287390600746173] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
It was recently demonstrated that particulate matter (PM) containing water-soluble zinc produces cardiac injury following pulmonary exposure. To investigate whether pulmonary zinc exposure produces systemic metal imbalance and direct cardiac effects, male Wistar Kyoto (WKY) rats (12-14 wk age) were intratracheally (IT) instilled with saline or 2 micromol/kg zinc sulfate. Temporal analysis was performed for systemic levels of essential metals (zinc, copper, and selenium), and induction of zinc transporter-2 (ZT-2) and metallothionein-1 (MT-1) mRNA in the lung, heart, and liver. Additionally, cardiac gene expression profile was evaluated using Affymetrix GeneChips (rat 230A) arrays to identify zinc-specific effects. Pulmonary zinc instillation produced an increase in plasma zinc to approximately 20% at 1 and 4 h postexposure with concomitant decline in the lung levels. At 24 and 48 h postexposure, zinc levels rose significantly (approximately 35%) in the liver. At these time points, plasma and liver levels of copper and selenium also increased significantly, suggesting systemic disturbance in essential metals. Zinc exposure was associated with marked induction of MT-1 and ZT-2 mRNA in lung, heart, and liver, suggesting systemic metal sequestration response. Given the functional role of zinc in hundreds of proteins, the gene expression profiles demonstrated changes that are expected based on its physiological role. Zinc exposure produced an increase in expression of kinases and inhibition of expression of phosphatases; up- or downregulation of genes involved in mitochondrial function; changes in calcium regulatory proteins suggestive of elevated intracellular free calcium and increases in sulfotransferases; upregulation of potassium channel genes; and changes in free radical-sensitive proteins. Some of these expression changes are reflective of a direct effect of zinc on myocardium following pulmonary exposure, which may result in impaired mitochondrial respiration, stimulated cell signaling, altered Ca2+ homeostasis, and increased transcription of sulfotransferases. Cardiotoxicity may be an outcome of acute zinc toxicosis and occupational exposures to metal fumes containing soluble zinc. Imbalance of systemic metal homeostasis as a result of pulmonary zinc exposure may underlie the cause of extrapulmonary effects.
Collapse
Affiliation(s)
- Peter S Gilmour
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kooter IM, Boere AJF, Fokkens PHB, Leseman DLAC, Dormans JAMA, Cassee FR. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study. Part Fibre Toxicol 2006; 3:7. [PMID: 16700918 PMCID: PMC1513241 DOI: 10.1186/1743-8977-3-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 05/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM) are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (<0.15 microm) and fine (0.15- 2.5 microm) PM. In a series of 2-day inhalation studies, spontaneously hypersensitive (SH) rats were exposed to fine, concentrated, ambient PM (fCAP) at a city background location or a combination of ultrafine and fine (u+fCAP) PM at a location dominated by traffic. We examined the effect on inflammation and both pathological and haematological indicators as markers of pulmonary and cardiovascular injury. Exposure concentrations ranged from 399 microg/m3 to 3613 microg/m3 for fCAP and from 269 microg/m3 to 556 microg/m3 for u+fCAP. RESULTS Ammonium, nitrate, and sulphate ions accounted for 56 +/- 16% of the total fCAP mass concentrations, but only 17 +/- 6% of the u+fCAP mass concentrations. Unambiguous particle uptake in alveolar macrophages was only seen after u+fCAP exposures. Neither fCAP nor u+fCAP induced significant changes of cytotoxicity or inflammation in the lung. However, markers of oxidative stress (heme oxygenase-1 and malondialdehyde) were affected by both fCAP and u+fCAP exposure, although not always significantly. Additional analysis revealed heme oxygenase-1 (HO-1) levels that followed a nonmonotonic function with an optimum at around 600 microg/m3 for fCAP. As a systemic response, exposure to u+fCAP and fCAP resulted in significant decreases of the white blood cell concentrations. CONCLUSION Minor pulmonary and systemic effects are observed after both fine and ultrafine + fine PM exposure. These effects do not linearly correlate with the CAP mass. A greater component of traffic CAP and/or a larger proportion ultrafine PM does not strengthen the absolute effects.
Collapse
Affiliation(s)
- Ingeborg M Kooter
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - A John F Boere
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Paul HB Fokkens
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Daan LAC Leseman
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jan AMA Dormans
- Laboratory of Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Flemming R Cassee
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
21
|
Kim YM, Reed W, Wu W, Bromberg PA, Graves LM, Samet JM. Zn2+-induced IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1028-35. [PMID: 16373669 DOI: 10.1152/ajplung.00479.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zinc. In this study, we examined the cellular mechanisms responsible for Zn2+-induced IL-8 expression. Zn2+ stimulation resulted in pronounced increases in both IL-8 mRNA and protein expression in the human airway epithelial cell line (BEAS-2B). IL-8 promoter activity was significantly increased by Zn2+ exposure in BEAS-2B cells, indicating that Zn2+-induced IL-8 expression is transcriptionally mediated. Mutation of the activating protein (AP)-1 response element in an IL-8 promoter-enhanced green fluorescent protein construct reduced Zn2+-induced IL-8 promoter activity. Moreover, Zn2+ exposure of BEAS-2B cells induced the phosphorylation of the AP-1 proteins c-Fos and c-Jun. We observed that Zn2+ exposure induced the phosphorylation of ERK, JNK, and p38 MAPKs, whereas inhibition of ERK or JNK activity blocked IL-8 mRNA and protein expression in BEAS-2B cells treated with Zn2+. In addition, we investigated the role of protein tyrosine phosphatases in the activation of signaling by Zn2+. Zn2+ treatment inhibited ERK- and JNK-directed phosphatase activities in BEAS-2B cells. These results suggested that Zn2+-induced inhibition of phosphatase activity is an initiating event in MAPK and AP-1 activation that leads to enhanced IL-8 expression by human airway epithelial cells.
Collapse
Affiliation(s)
- Yu-Mee Kim
- Department of Environmental Sciences and Engineering, US Environmental Protection Agency, Human Studies Facility, 104 Mason Farm Road, Chapel Hill, NC 27514, USA
| | | | | | | | | | | |
Collapse
|
22
|
Inoue KI, Takano H, Yanagisawa R, Hirano S, Kobayashi T, Ichinose T, Yoshikawa T. Effects of organic chemicals derived from ambient particulate matter on lung inflammation related to lipopolysaccharide. Arch Toxicol 2006; 80:833-8. [PMID: 16639588 DOI: 10.1007/s00204-006-0105-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
The effects of components of ambient particulate matter (PM) on individuals with predisposing respiratory disorders are not well defined. We have previously demonstrated that airway exposure to diesel exhaust particles (DEP) or organic chemicals (OC) extracted from DEP (DEP-OC) enhances lung inflammation related to bacterial endotoxin (lipopolysaccharide, LPS). The present study aimed to examine the effects of airway exposure to OC extracted from urban PM (PM-OC) on lung inflammation related to LPS. ICR mice were divided into four experimental groups that intratracheally received vehicle, LPS (2.5 mg/kg), PM-OC (4 mg/kg), or PM-OC + LPS. Lung inflammation, lung water content, and lung expression of cytokines were evaluated 24 h after intratracheal administration. LPS challenge elicited lung inflammation evidenced by cellular profiles of bronchoalveolar lavage fluid and lung histology, which was further aggravated by the combined challenge with PM-OC. The combination with PM-OC and LPS did not significantly exaggerate LPS-elicited pulmonary edema. LPS instillation induced elevated lung expression of interleukin-1beta, macrophage inflammatory protein-1alpha, macrophage chemoattractant protein-1, and keratinocyte chemoattractant, whereas the combined challenge with PM-OC did not influence these levels. All the results were consistent with our previous reports on DEP-OC. These results suggest that the extracted organic chemicals from PM exacerbate infectious lung inflammation. The mechanisms underlying the enhancing effects are not mediated via the enhanced local expression of proinflammatory cytokines.
Collapse
Affiliation(s)
- Ken-ichiro Inoue
- Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Gutiérrez-Castillo ME, Roubicek DA, Cebrián-García ME, De Vizcaya-Ruíz A, Sordo-Cedeño M, Ostrosky-Wegman P. Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:199-211. [PMID: 16355389 DOI: 10.1002/em.20186] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Airborne particulate matter (PM) contains a large number of genotoxic substances capable of endangering human health. In the present study, we have investigated the ability of chemically characterized water-soluble and organic-soluble fractions of two particle sizes (PM2.5 and PM10) from different regions of Mexico City to induce DNA damage in a human lung epithelial cell line. We also evaluated associations between the physicochemical parameters of the PM and its genotoxicity. The airborne particulate samples were collected from four regions of the city; a HiVol air sampler was used to collect PM10 on glass fiber filters and a tapered element oscillating system coupled to an automatic cartridge collection unit was used to collect PM2.5 on teflon filters. PM mass was determined by gravimetric analysis of the filters. Filters containing PM2.5 and one section of each PM10 filter were agitated either with deionized water to extract water-soluble compound, or with dichloromethane to prepare organic-soluble compounds. The chemical composition of the extracts was determined by ion and gas chromatography and atomic adsorption spectroscopy. A549 human type II alveolar epithelial cells were exposed to different concentrations of the PM2.5 and PM10 extracts, and alkaline single cell gel electrophoresis or the Comet assay was performed to measure DNA damage and repair. These analyses indicated that soluble transition metals and the organic-soluble PM fractions are crucial factors in the DNA damage induced by PM. PM composition was more important than PM mass for producing genotoxicity. The results of this study showed that the constituents of the water-soluble PM extract are more likely to induce DNA damage than the organic compounds.
Collapse
|
24
|
Kodavanti UP, Schladweiler MC, Ledbetter AD, McGee JK, Walsh L, Gilmour PS, Highfill JW, Davies D, Pinkerton KE, Richards JH, Crissman K, Andrews D, Costa DL. Consistent pulmonary and systemic responses from inhalation of fine concentrated ambient particles: roles of rat strains used and physicochemical properties. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1561-8. [PMID: 16263512 PMCID: PMC1310919 DOI: 10.1289/ehp.7868] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Several studies have reported health effects of concentrated ambient particles (CAP) in rodents and humans; however, toxicity end points in rodents have provided inconsistent results. In 2000 we conducted six 1-day exposure studies where spontaneously hypertensive (SH) rats were exposed to filtered air or CAPs (< or = 2.5 microm, 1,138-1,765 microg/m3) for 4 hr (analyzed 1-3 hr afterward). In seven 2-day exposure studies in 2001, SH and Wistar Kyoto (WKY) rats were exposed to filtered air or CAP (< or = 2.5 microm, 144-2,758 microg/m3) for 4 hr/day times 2 days (analyzed 1 day afterward). Despite consistent and high CAP concentrations in the 1-day exposure studies, no biologic effects were noted. The exposure concentrations varied among the seven 2-day exposure studies. Except in the first study when CAP concentration was highest, lavageable total cells and macrophages decreased and neutrophils increased in WKY rats. SH rats demonstrated a consistent increase of lavage fluid gamma-glutamyltransferase activity and plasma fibrinogen. Inspiratory and expiratory times increased in SH but not in WKY rats. Significant correlations were found between CAP mass (microgram per cubic meter) and sulfate, organic carbon, or zinc. No biologic effects correlated with CAP mass. Despite low chamber mass in the last six of seven 2-day exposure studies, the levels of zinc, copper, and aluminum were enriched severalfold, and organic carbon was increased to some extent when expressed per milligram of CAP. Biologic effects were evident in those six studies. These studies demonstrate a pattern of rat strain-specific pulmonary and systemic effects that are not linked to high mass but appear to be dependent on CAP chemical composition.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Pulmonary Toxicology Branch, Experimental Toxicology Division, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cassee FR, Boere AJF, Fokkens PHB, Leseman DLAC, Sioutas C, Kooter IM, Dormans JAMA. Inhalation of concentrated particulate matter produces pulmonary inflammation and systemic biological effects in compromised rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2005; 68:773-96. [PMID: 16020176 DOI: 10.1080/15287390590930171] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although significant progress has been made over the past few years, there is still debate on the causal fractions that are responsible for particulate matter (PM)-associated adverse health effects. A series of 1-d inhalation exposures to concentrated ambient particles (CAPs) were performed in compromised rats, focusing on pulmonary inflammation and changes in blood factors as biological outcomes. Studies were carried out in The Netherlands at an urban background location in Bilthoven, an industrialized location in the city of Utrecht, as well as at a location that is heavily dominated by freeway emissions. It was hypothesized that exposure to CAPs resulted in oxidative stress in the lung, producing a release of inflammatory mediators, which in turn can result in cardiovascular effects. Both spontaneously hypertensive rats and rats preexposed to ozone were studied. The effects were studied at 2d postexposure, focusing on pathology and cell proliferation, bronchoalveolar lavage fluid (BALF) analysis (including cytokines, biochemistry, cell differentials, cell viability and proliferation, and Clara-cell 16 protein), and blood analyses (fibrinogen, Clara-cell 16 protein, Von Willebrand factor, and cell differentials). Using CAPs exposures as a binary term, mild inflammation (increased numbers of neutrophils) and increased lung permeability (protein and albumin leakage in BALF) were evident. In addition, CAPs also produced increased fibrinogen concentrations in blood of spontaneously hypertensive rats. In conclusion, inhalation up to 3700 microg/m3 CAPs in the size range of 0.15-2.5 microm did induce statistically significant effects in the lung and blood, but the effects observed may not potentially be very biologically relevant. PM mass concentrations and lung permeability were weakly associated. This suggests that other PM metrics might be more appropriate.
Collapse
Affiliation(s)
- Flemming R Cassee
- Center of Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Baulig A, Poirault JJ, Ausset P, Schins R, Shi T, Baralle D, Dorlhene P, Meyer M, Lefevre R, Baeza-Squiban A, Marano F. Physicochemical characteristics and biological activities of seasonal atmospheric particulate matter sampling in two locations of Paris. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:5985-5992. [PMID: 15573597 DOI: 10.1021/es049476z] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fine particulate matter present in urban areas seems to be incriminated in respiratory disorders. The aim of this study was to relate physicochemical characteristics of PM2.5 (particulate matter collected with a 50% efficiency for particles with an aerodynamic diameter of 2.5 microm) to their biological activities toward a bronchial epithelial cell line 16-HBE. Two seasonal sampling campaigns of particles were realized, respectively, in a kerbside and an urban background station in Paris. Sampled-PM2.5 mainly consist of particles with a size below 1 microm and are mainly composed of soot as assessed by analytical scanning electron microscopy. The different PM2.5 samples contrasted in their PAH content, which was the highest in the kerbside station in winter, as well as in their metal content. Kerbside station samples were characterized by the highest Fe and Cu content, which appears correlated to their hydroxyl radical generating properties measured by electron paramagnetic resonance. Particles were compared by their capacity to induce cytotoxicity, intracellular ROS production, and proinflammatory cytokine release (GM-CSF and TNF-alpha). At a concentration of 10 microg/cm2, all samples induced peroxide production and cytokine release to the similar extent in the absence of cytotoxicity. In conclusion, whereas the PM2.5 samples differ by their PAH and metal composition, they induce the same biological responses likely either due to components bioavailability and/ or interactions between PM components.
Collapse
Affiliation(s)
- Augustin Baulig
- Laboratoire de Cytophysiologie et Toxicologie Cellulaire, Université Paris 7, Case Courrier 7073, 75251 Paris Cédex 05, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|