1
|
Akuwudike P, López-Riego M, Marczyk M, Kocibalova Z, Brückner F, Polańska J, Wojcik A, Lundholm L. Short- and long-term effects of radiation exposure at low dose and low dose rate in normal human VH10 fibroblasts. Front Public Health 2023; 11:1297942. [PMID: 38162630 PMCID: PMC10755029 DOI: 10.3389/fpubh.2023.1297942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Experimental studies complement epidemiological data on the biological effects of low doses and dose rates of ionizing radiation and help in determining the dose and dose rate effectiveness factor. Methods Human VH10 skin fibroblasts exposed to 25, 50, and 100 mGy of 137Cs gamma radiation at 1.6, 8, 12 mGy/h, and at a high dose rate of 23.4 Gy/h, were analyzed for radiation-induced short- and long-term effects. Two sample cohorts, i.e., discovery (n = 30) and validation (n = 12), were subjected to RNA sequencing. The pool of the results from those six experiments with shared conditions (1.6 mGy/h; 24 h), together with an earlier time point (0 h), constituted a third cohort (n = 12). Results The 100 mGy-exposed cells at all abovementioned dose rates, harvested at 0/24 h and 21 days after exposure, showed no strong gene expression changes. DMXL2, involved in the regulation of the NOTCH signaling pathway, presented a consistent upregulation among both the discovery and validation cohorts, and was validated by qPCR. Gene set enrichment analysis revealed that the NOTCH pathway was upregulated in the pooled cohort (p = 0.76, normalized enrichment score (NES) = 0.86). Apart from upregulated apical junction and downregulated DNA repair, few pathways were consistently changed across exposed cohorts. Concurringly, cell viability assays, performed 1, 3, and 6 days post irradiation, and colony forming assay, seeded just after exposure, did not reveal any statistically significant early effects on cell growth or survival patterns. Tendencies of increased viability (day 6) and reduced colony size (day 21) were observed at 12 mGy/h and 23.4 Gy/min. Furthermore, no long-term changes were observed in cell growth curves generated up to 70 days after exposure. Discussion In conclusion, low doses of gamma radiation given at low dose rates had no strong cytotoxic effects on radioresistant VH10 cells.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Zuzana Kocibalova
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fabian Brückner
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joanna Polańska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Transcription Factor Homeobox D9 Drives the Malignant Phenotype of HPV18-Positive Cervical Cancer Cells via Binding to the Viral Early Promoter. Cancers (Basel) 2021; 13:cancers13184613. [PMID: 34572841 PMCID: PMC8470817 DOI: 10.3390/cancers13184613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Transcription factor homeobox D9 (HOXD9) was previously reported to bind to the P97 promoter of HPV16 to induce viral E6/E7 oncogenes. In this article, we investigated whether HOXD9 regulated the P105 promoter of HPV18 and examined the role of HOXD9 in intracellular signaling of cervical cancer (CC). HOXD9 was directly bound to the P105 promoter and regulated the expression of E6/E7 genes of HPV18. The HOXD9 knockdown suppressed the E6/E7 gene expression in HPV18-positive cervical cancer cells. It decreased the expression of E6, activated the p53 pathway, and induced apoptosis. In addition, downregulation of the E7 gene expression activated the Rb pathway, causing G1 arrest in the cell cycle and markedly suppressing cell proliferation. Our results indicate that HOXD9 has pivotal roles in the proliferation and immortalization of HPV18-positive cervical cancer cells through activating the P105 promoter. Abstract Persistent infections with two types of human papillomaviruses (HPV), HPV16 and HPV18, are the most common cause of cervical cancer (CC). Two viral early genes, E6 and E7, are associated with tumor development, and expressions of E6 and E7 are primarily regulated by a single viral promoter: P97 in HPV16 and P105 in HPV18. We previously demonstrated that the homeobox D9 (HOXD9) transcription factor is responsible for the malignancy of HPV16-positive CC cell lines via binding to the P97 promoter. Here, we investigated whether HOXD9 is also involved in the regulation of the P105 promoter using two HPV18-positive CC cell lines, SKG-I and HeLa. Following the HOXD9 knockdown, cell viability was significantly reduced, and E6 expression was suppressed and was accompanied by increased protein levels of P53, while mRNA levels of TP53 did not change. E7 expression was also downregulated and, while mRNA levels of RB1 and E2F were unchanged, mRNA levels of E2F-target genes, MCM2 and PCNA, were decreased, which indicates that the HOXD9 knockdown downregulates E7 expression, thus leading to an inactivation of E2F and the cell-cycle arrest. Chromatin immunoprecipitation and promoter reporter assays confirmed that HOXD9 is directly associated with the P105 promoter. Collectively, our results reveal that HOXD9 drives the HPV18 early promoter activity to promote proliferation and immortalization of the CC cells.
Collapse
|
3
|
Xu L, Wang Y, Wang J, Zhai J, Ren L, Zhu G. Radiation-Induced Osteocyte Senescence Alters Bone Marrow Mesenchymal Stem Cell Differentiation Potential via Paracrine Signaling. Int J Mol Sci 2021; 22:ijms22179323. [PMID: 34502232 PMCID: PMC8430495 DOI: 10.3390/ijms22179323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence and its senescence-associated secretory phenotype (SASP) are widely regarded as promising therapeutic targets for aging-related diseases, such as osteoporosis. However, the expression pattern of cellular senescence and multiple SASP secretion remains unclear, thus leaving a large gap in the knowledge for a desirable intervention targeting cellular senescence. Therefore, there is a critical need to understand the molecular mechanism of SASP secretion in the bone microenvironment that can ameliorate aging-related degenerative pathologies including osteoporosis. In this study, osteocyte-like cells (MLO-Y4) were induced to cellular senescence by 2 Gy γ-rays; then, senescence phenotype changes and adverse effects of SASP on bone marrow mesenchymal stem cell (BMSC) differentiation potential were investigated. The results revealed that 2 Gy irradiation could hinder cell viability, shorten cell dendrites, and induce cellular senescence, as evidenced by the higher expression of senescence markers p16 and p21 and the elevated formation of senescence-associated heterochromatin foci (SAHF), which was accompanied by the enhanced secretion of SASP markers such as IL-1α, IL-6, MMP-3, IGFBP-6, resistin, and adiponectin. When 0.8 μM JAK1 inhibitors were added to block SASP secretion, the higher expression of SASP was blunted, but the inhibition in osteogenic and adipogenic differentiation potential of BMSCs co-cultured with irradiated MLO-Y4 cell conditioned medium (CM- 2 Gy) was alleviated. These results suggest that senescent osteocytes can perturb BMSCs’ differential potential via the paracrine signaling of SASP, which was also demonstrated by in vivo experiments. In conclusion, we identified the SASP factor partially responsible for the degenerative differentiation of BMSCs, which allowed us to hypothesize that senescent osteocytes and their SASPs may contribute to radiation-induced bone loss.
Collapse
|
4
|
Herskind C, Sticht C, Sami A, Giordano FA, Wenz F. Gene Expression Profiles Reveal Extracellular Matrix and Inflammatory Signaling in Radiation-Induced Premature Differentiation of Human Fibroblast in vitro. Front Cell Dev Biol 2021; 9:539893. [PMID: 33681189 PMCID: PMC7930333 DOI: 10.3389/fcell.2021.539893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Fibroblasts are considered to play a major role in the development of fibrotic reaction after radiotherapy and premature radiation-induced differentiation has been proposed as a cellular basis. The purpose was to relate gene expression profiles to radiation-induced phenotypic changes of human skin fibroblasts relevant for radiogenic fibrosis. Materials and Methods Exponentially growing or confluent human skin fibroblast strains were irradiated in vitro with 1–3 fractions of 4 Gy X-rays. The differentiated phenotype was detected by cytomorphological scoring and immunofluorescence microscopy. Microarray analysis was performed on Human Genome U133 plus2.0 microarrays (Affymetrix) with JMP Genomics software, and pathway analysis with Reactome R-package. The expression levels and kinetics of selected genes were validated with quantitative real-time PCR (qPCR) and Western blotting. Results Irradiation of exponentially growing fibroblast with 1 × 4 Gy resulted in phenotypic differentiation over a 5-day period. This was accompanied by downregulation of cell cycle-related genes and upregulation of collagen and other extracellular matrix (ECM)-related genes. Pathway analysis confirmed inactivation of proliferation and upregulation of ECM- and glycosaminoglycan (GAG)-related pathways. Furthermore, pathways related to inflammatory reactions were upregulated, and potential induction and signaling mechanisms were identified. Fractionated irradiation (3 × 4 Gy) of confluent cultures according to a previously published protocol for predicting the risk of fibrosis after radiotherapy showed similar downregulation but differences in upregulated genes and pathways. Conclusion Gene expression profiles after irradiation of exponentially growing cells were related to radiation-induced differentiation and inflammatory reactions, and potential signaling mechanisms. Upregulated pathways by different irradiation protocols may reflect different aspects of the fibrogenic process thus providing a model system for further hypothesis-based studies of radiation-induced fibrogenesis.
Collapse
Affiliation(s)
- Carsten Herskind
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Centre for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ahmad Sami
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Klimanova EA, Sidorenko SV, Smolyaninova LV, Kapilevich LV, Gusakova SV, Lopina OD, Orlov SN. Ubiquitous and cell type-specific transcriptomic changes triggered by dissipation of monovalent cation gradients in rodent cells: Physiological and pathophysiological implications. CURRENT TOPICS IN MEMBRANES 2019; 83:107-149. [PMID: 31196602 DOI: 10.1016/bs.ctm.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevation of [Na+]i/[K+]i-ratio is considered as one of the major signals triggering transcriptomic changes in various cells types. In this study, we identified ubiquitous and cell type-specific [Formula: see text] -sensitive genes by comparative analysis of transcriptomic changes in ouabain-treated rat aorta smooth muscle cells and rat aorta endothelial cells (RASMC and RAEC, respectively), rat cerebellar granule cells (RCGC), and mouse C2C12 myoblasts. Exposure of the cells to ouabain increased intracellular Na+ content by ~14, 8, 7, and 6-fold and resulted in appearance of 7577, 2698, 2120, and 1146 differentially expressed transcripts in RAEC, RASMC, C2C12, and RCGC, respectively. Eighty-three genes were found as the intersection of the four sets of identified transcripts corresponding to each cell type and are classified as ubiquitous. Among the 10 top upregulated ubiquitous transcripts are the following: Dusp6, Plk3, Trib1, Ccl7, Mafk, Atf3, Ptgs2, Cxcl1, Spry4, and Coq10b. Unique transcripts whose expression is cell-specific include 4897, 1523, 789, and 494 transcripts for RAEC, RASMC, C2C12, and RCGC, respectively. The role of gene expression and signal pathways induced by dissipation of transmembrane gradient of monovalent cations in the development of various diseases is discussed with special attention to cardiovascular and pulmonary illnesses.
Collapse
Affiliation(s)
- Elizaveta A Klimanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia.
| | - Svetlana V Sidorenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Larisa V Smolyaninova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| | | | | | - Olga D Lopina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei N Orlov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
6
|
Yang B, Chou J, Tao Y, Wu D, Wu X, Li X, Li Y, Chu Y, Tang F, Shi Y, Ma L, Zhou T, Kaufmann W, Carey LA, Wu J, Hu Z. An assessment of prognostic immunity markers in breast cancer. NPJ Breast Cancer 2018; 4:35. [PMID: 30393759 PMCID: PMC6206135 DOI: 10.1038/s41523-018-0088-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) and immunity gene signatures have been reported to be significantly prognostic in breast cancer but have not yet been applied for calculation of risk of recurrence in clinical assays. A compact set of 17 immunity genes was derived herein from an Affymetrix-derived gene expression dataset including 1951 patients (AFFY1951). The 17 immunity genes demonstrated significant prognostic stratification of estrogen receptor (ER)-negative breast cancer patients with high proliferation gene expression. Further analysis of blood and breast cancer single-cell RNA-seq datasets revealed that the 17 immunity genes were derived from TIL that were inactive in the blood and became active in tumor tissue. Expression of the 17 immunity genes was significantly (p < 2.2E-16, n = 91) correlated with TILs percentage on H&E in triple negative breast cancer. To demonstrate the impact of tumor immunity genes on prognosis, we built a Cox model to incorporate breast cancer subtypes, proliferation score and immunity score (72 gene panel) with significant prediction of outcomes (p < 0.0001, n = 1951). The 72 gene panel and its risk evaluation model were validated in two other published gene expression datasets including Illumina beads array data METABRIC (p < 0.0001, n = 1997) and whole transcriptomic mRNA-seq data TCGA (p = 0.00019, n = 996) and in our own targeted RNA-seq data TARGETSEQ (p < 0.0001, n = 303). Further examination of the 72 gene panel in single cell RNA-seq of tumors demonstrated tumor heterogeneity with more than two subtypes observed in each tumor. In conclusion, immunity gene expression was an important parameter for prognosis and should be incorporated into current multi-gene assays to improve assessment of risk of distant metastasis in breast cancer. The elevated expression of 17 immunity-related genes is associated with better outcomes among women with aggressive forms of estrogen receptor–negative breast cancer. Zhiyuan Hu from the University of North Carolina at Chapel Hill, USA, and colleagues identified the 17-gene set by analyzing a larger expression dataset from close to 2,000 patients. Single-cell sequencing revealed that the genes were turned on in a group of cancer-fighting immune cells known as tumor-infiltrating lymphocytes, but were inactive in circulating blood cells. The researchers incorporated the immunity-related genes into a larger panel of genes involved in proliferation, invasion and other relevant biological processes. The resulting 72-gene test was an accurate predictor of the risk for developing distant metastases. The findings suggest that immunity-related genes should be incorporated into current multi-gene prognostic assays for women with breast cancer.
Collapse
Affiliation(s)
- Benlong Yang
- 1Department of Breast Surgery, Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Shanghai, China
| | - Jeff Chou
- 4Department of Biostatistics, Wake Forest Baptist Medical Center, Winston-Salem, NC USA
| | - Yaozhong Tao
- 5Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Dengbin Wu
- Department of Oncology, An-Steel Group Hospital, Anshan, Liaoning China
| | - Xinhong Wu
- 7Department of Breast Surgery, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xueqing Li
- 8Department of Thyroid and Breast Surgery at the Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yan Li
- 5Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Yiwei Chu
- 9Department of Immunology, Fudan University, Shanghai, China
| | - Feng Tang
- 10Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanxia Shi
- 11Department of Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Linlin Ma
- Shanghai Precision Diagnostics Co. Ltd., Shanghai, China
| | - Tong Zhou
- Shanghai Precision Diagnostics Co. Ltd., Shanghai, China
| | | | - Lisa A Carey
- 5Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,North Carolina Cancer Hospital, Chapel Hill, NC USA.,15Division of Hematology-Oncology UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Jiong Wu
- 1Department of Breast Surgery, Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Shanghai, China
| | - Zhiyuan Hu
- 5Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
7
|
Ngan Tran K, Choi JI. Gene expression profiling of rat livers after continuous whole-body exposure to low-dose rate of gamma rays. Int J Radiat Biol 2018; 94:434-442. [PMID: 29557699 DOI: 10.1080/09553002.2018.1455009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study gene expression modulation in response to continuous whole-body exposure to low-dose-rate gamma radiation and improve our understanding of the mechanism of this impact at the molecular basis. MATERIALS AND METHODS cDNA microarray method with complete pooling of samples was used to study expression changes in the transcriptome profile of livers from rats treated with prolonged low-dose-rate ionizing radiation (IR) relative to that of sham-irradiated rats. RESULTS Of the 209 genes that were two-fold-up or down-regulated, 143 were known genes of which 27 were found in previous literatures to be modulated by IR. Remarkably, there were a significant number of differentially expressed genes involved in hepatic lipid metabolism. CONCLUSION This study showed changes in transcriptome profile of livers from low-dose irradiated rats when compared with that of sham-irradiated ones. This study will be useful for studying the metabolic changes of human exposed for long term to cosmic ray such as in space and in polar regions.
Collapse
Affiliation(s)
- Kim Ngan Tran
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| | - Jong-Il Choi
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| |
Collapse
|
8
|
A molecular signature of dormancy in CD34 +CD38 - acute myeloid leukaemia cells. Oncotarget 2017; 8:111405-111418. [PMID: 29340063 PMCID: PMC5762331 DOI: 10.18632/oncotarget.22808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023] Open
Abstract
Dormant leukaemia initiating cells in the bone marrow niche are a crucial therapeutic target for total eradication of acute myeloid leukaemia. To study this cellular subset we created and validated an in vitro model employing the cell line TF-1a, treated with Transforming Growth Factor β1 (TGFβ1) and a mammalian target of rapamycin inhibitor. The treated cells showed decreases in total RNA, Ki-67 and CD71, increased aldehyde dehydrogenase activity, forkhead box 03A (FOX03A) nuclear translocation and growth inhibition, with no evidence of apoptosis or differentiation. Using human genome gene expression profiling we identified a signature enriched for genes involved in adhesion, stemness/inhibition of differentiation and tumour suppression as well as canonical cell cycle regulation. The most upregulated gene was the osteopontin-coding gene SPP1. Dormant cells also demonstrated significantly upregulated beta 3 integrin (ITGB3) and CD44, as well as increased adhesion to their ligands vitronectin and hyaluronic acid as well as to bone marrow stromal cells. Immunocytochemistry of bone marrow biopsies of AML patients confirmed the positive expression of osteopontin in blasts near the para-trabecular bone marrow, whereas osteopontin was rarely detected in mononuclear cell isolates. Unsupervised hierarchical clustering of the dormancy gene signature in primary acute myeloid leukaemia samples from the Cancer Genome Atlas identified a cluster enriched for dormancy genes associated with poor overall survival.
Collapse
|
9
|
Alghamian Y, Abou Alchamat G, Murad H, Madania A. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line. Adv Med Sci 2017; 62:330-337. [PMID: 28511071 DOI: 10.1016/j.advms.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. METHODS 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. RESULTS Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). TREATMENT with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. CONCLUSIONS 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest.
Collapse
|
10
|
Edmondson DA, Karski EE, Kohlgruber A, Koneru H, Matthay KK, Allen S, Hartmann CL, Peterson LE, DuBois SG, Coleman MA. Transcript Analysis for Internal Biodosimetry Using Peripheral Blood from Neuroblastoma Patients Treated with (131)I-mIBG, a Targeted Radionuclide. Radiat Res 2016; 186:235-44. [PMID: 27556353 DOI: 10.1667/rr14263.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calculating internal dose from therapeutic radionuclides currently relies on estimates made from multiple radiation exposure measurements, converted to absorbed dose in specific organs using the Medical Internal Radiation Dose (MIRD) schema. As an alternative biodosimetric approach, we utilized gene expression analysis of whole blood from patients receiving targeted radiotherapy. Collected blood from patients with relapsed or refractory neuroblastoma who received (131)I-labeled metaiodobenzylguanidine ((131)I-mIBG) at the University of California San Francisco (UCSF) was used to compare calculated internal dose with the modulation of chosen gene expression. A total of 40 patients, median age 9 years, had blood drawn at baseline, 72 and 96 h after (131)I-mIBG infusion. Whole-body absorbed dose was calculated for each patient based on the cumulated activity determined from injected mIBG activity and patient-specific time-activity curves combined with (131)I whole-body S factors. We then assessed transcripts that were the most significant for describing the mixed therapeutic treatments over time using real-time polymerase chain reaction (RT-PCR). Modulation was evaluated statistically using multiple regression analysis for data at 0, 72 and 96 h. A total of 10 genes were analyzed across 40 patients: CDKN1A; FDXR; GADD45A; BCLXL; STAT5B; BAX; BCL2; DDB2; XPC; and MDM2. Six genes were significantly modulated upon exposure to (131)I-mIBG at 72 h, as well as at 96 h. Four genes varied significantly with absorbed dose when controlling for time. A gene expression biodosimetry model was developed to predict absorbed dose based on modulation of gene transcripts within whole blood. Three transcripts explained over 98% of the variance in the modulation of gene expression over the 96 h (CDKN1A, BAX and DDB2). To our knowledge, this is a novel study, which uses whole blood collected from patients treated with a radiopharmaceutical, to characterize biomarkers that may be useful for biodosimetry. Our data indicate that transcripts, which have been previously identified as biomarkers of external exposures in ex vivo whole blood and in vivo radiotherapy patients, are also good early indicators of internal exposure. However, for internal sources of radiation, the biokinetics and physical decay of the radionuclide strongly influence the gene expression.
Collapse
Affiliation(s)
- David A Edmondson
- a School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Erin E Karski
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Ayano Kohlgruber
- c Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Harsha Koneru
- c Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Katherine K Matthay
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Shelly Allen
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | | | - Leif E Peterson
- d Center for Biostatistics, Houston Methodist Research Institute. Houston, Texas 77030; and
| | - Steven G DuBois
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Matthew A Coleman
- c Lawrence Livermore National Laboratory, Livermore, California 94550;,e Department of Radiation Oncology, University of California Davis, School of Medicine, Davis, California 95817
| |
Collapse
|
11
|
Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, Unger K, Detours V, Bogdanova T, Thomas G, Likhtarov I, Jaksik R, Kowalska M, Chmielik E, Jarzab M, Swierniak A, Jarzab B. Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging 2016; 43:1267-77. [PMID: 26810418 PMCID: PMC4869750 DOI: 10.1007/s00259-015-3303-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
Purpose Following the nuclear accidents in Chernobyl and later in Fukushima, the nuclear community has been faced with important issues concerning how to search for and diagnose biological consequences of low-dose internal radiation contamination. Although after the Chernobyl accident an increase in childhood papillary thyroid cancer (PTC) was observed, it is still not clear whether the molecular biology of PTCs associated with low-dose radiation exposure differs from that of sporadic PTC. Methods We investigated tissue samples from 65 children/young adults with PTC using DNA microarray (Affymetrix, Human Genome U133 2.0 Plus) with the aim of identifying molecular differences between radiation-induced (exposed to Chernobyl radiation, ECR) and sporadic PTC. All participants were resident in the same region so that confounding factors related to genetics or environment were minimized. Results There were small but significant differences in the gene expression profiles between ECR and non-ECR PTC (global test, p < 0.01), with 300 differently expressed probe sets (p < 0.001) corresponding to 239 genes. Multifactorial analysis of variance showed that besides radiation exposure history, the BRAF mutation exhibited independent effects on the PTC expression profile; the histological subset and patient age at diagnosis had negligible effects. Ten genes (PPME1, HDAC11, SOCS7, CIC, THRA, ERBB2, PPP1R9A, HDGF, RAD51AP1, and CDK1) from the 19 investigated with quantitative RT-PCR were confirmed as being associated with radiation exposure in an independent, validation set of samples. Conclusion Significant, but subtle, differences in gene expression in the post-Chernobyl PTC are associated with previous low-dose radiation exposure. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3303-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria Handkiewicz-Junak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Michal Swierniak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland.,Genomic Medicine, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Małgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Genevieve Dom
- Institute of Interdisciplinary Research, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Kristian Unger
- Human Cancer Studies Group, Division of Surgery and Cancer, Imperial College London Hammersmith Hospital, London, UK.,Research Unit Radiation Cytogenetics, Helmholtz-Zentrum, Munich, Germany
| | - Vincent Detours
- Institute of Interdisciplinary Research, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | | - Geraldine Thomas
- Human Cancer Studies Group, Division of Surgery and Cancer, Imperial College London Hammersmith Hospital, London, UK
| | - Ilya Likhtarov
- Radiation Protection Institute, Academy of Technological Sciences of Ukraine, Kiev, Ukraine
| | - Roman Jaksik
- Systems Engineering Group, Faculty of Automatic Control, Electronics and Informatics, Silesian University of Technology, Gliwice, Poland
| | - Malgorzata Kowalska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Ewa Chmielik
- Department of Tumour Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Michal Jarzab
- IIIrd Department of Radiation Therapy, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Andrzej Swierniak
- Department of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland.
| |
Collapse
|
12
|
Helmke C, Becker S, Strebhardt K. The role of Plk3 in oncogenesis. Oncogene 2016; 35:135-47. [PMID: 25915845 DOI: 10.1038/onc.2015.105] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
The polo-like kinases (Plks) encompass a family of five serine/threonine protein kinases that play essential roles in many cellular processes involved in the control of the cell cycle, including entry into mitosis, DNA replication and the response to different types of stress. Plk1, which has been validated as a cancer target, came into the focus of many pharmaceutical companies for the development of small-molecule inhibitors as anticancer agents. Recently, FDA (Food and Drug Administration) has granted a breakthrough therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. However, the various ATP-competitive inhibitors of Plk1 that are currently in clinical development also inhibit the activities of Plk2 and Plk3, which are considered as tumor suppressors. Plk3 contributes to the control and progression of the cell cycle while acting as a mediator of apoptosis and various types of cellular stress. The aberrant expression of Plk3 was found in different types of tumors. Recent progress has improved our understanding of Plk3 in regulating stress signaling and tumorigenesis. When using ATP-competitive Plk1 inhibitors, the biological roles of Plk1-related family members like Plk3 in cancer cells need to be considered carefully to improve treatment strategies against cancer.
Collapse
Affiliation(s)
- C Helmke
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - S Becker
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - K Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
13
|
Chastain PD, Brylawski BP, Zhou YC, Rao S, Chu H, Ibrahim JG, Kaufmann WK, Cordeiro-Stone M. DNA damage checkpoint responses in the S phase of synchronized diploid human fibroblasts. Photochem Photobiol 2014; 91:109-16. [PMID: 25316620 PMCID: PMC4303954 DOI: 10.1111/php.12361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/08/2014] [Indexed: 01/05/2023]
Abstract
We investigated the hypothesis that the strength of the activation of the intra-S DNA damage checkpoint varies within the S phase. Synchronized diploid human fibroblasts were exposed to either 0 or 2.5 J m−2 UVC in early, mid- and late-S phase. The endpoints measured were the following: (1) radio-resistant DNA synthesis (RDS), (2) induction of Chk1 phosphorylation, (3) initiation of new replicons and (4) length of replication tracks synthesized after irradiation. RDS analysis showed that global DNA synthesis was inhibited by approximately the same extent (30 ± 12%), regardless of when during S phase the fibroblasts were exposed to UVC. Western blot analysis revealed that the UVC-induced phosphorylation of checkpoint kinase 1 (Chk1) on serine 345 was high in early and mid S but 10-fold lower in late S. DNA fiber immunostaining studies indicated that the replication fork displacement rate decreased in irradiated cells at the three time points examined; however, replicon initiation was inhibited strongly in early and mid S, but this response was attenuated in late S. These results suggest that the intra-S checkpoint activated by UVC-induced DNA damage is not as robust toward the end of S phase in its inhibition of the latest firing origins in human fibroblasts.
Collapse
Affiliation(s)
- Paul D Chastain
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hu W, Pei H, Li H, Ding N, He J, Wang J, Furusawa Y, Hirayama R, Matsumoto Y, Liu C, Li Y, Kawata T, Zhou G. Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures. JOURNAL OF RADIATION RESEARCH 2014; 55:10-16. [PMID: 23728321 PMCID: PMC3885111 DOI: 10.1093/jrr/rrt078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
High atomic number and high-energy (HZE) particles in deep space are of low abundance but substantially contribute to the biological effects of space radiation. Shielding is so far the most effective way to partially protect astronauts from these highly penetrating particles. However, simulated calculations and measurements have predicted that secondary particles resulting from the shielding of cosmic rays produce a significant fraction of the total dose and dose equivalent. In this study, we investigated the biological effects of secondary radiation with two cell types, and with cells exposed in different phases of the cell cycle, by comparing the biological effects of a 200 MeV/u iron beam with a shielded beam in which the energy of the iron ion beam was decreased from 500 MeV/u to 200 MeV/u with PMMA, polyethylene (PE), or aluminum. We found that beam shielding resulted in increased induction of 53BP1 foci and micronuclei in a cell-type-dependent manner compared with the unshielded 200 MeV/u Fe ion beam. These findings provide experimental proof that the biological effects of secondary particles resulting from the interaction between HZE particles and shielding materials should be considered in shielding design.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Pei
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
| | - Nan Ding
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng He
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jufang Wang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-555, Japan
| | - Ryoichi Hirayama
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-555, Japan
| | - Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-555, Japan
| | - Cuihua Liu
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-555, Japan
| | - Yinghui Li
- State Key Laboratory of Space Medical Fundamentation and Application Astronaut Center of China, Beijing 100094, China
| | - Tetsuya Kawata
- Department of Radiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Guangming Zhou
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China
| |
Collapse
|
15
|
Ponnaiya B, Amundson SA, Ghandhi SA, Smilenov LB, Geard CR, Buonanno M, Brenner DJ. Single-cell responses to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:523-30. [PMID: 23995963 PMCID: PMC3812812 DOI: 10.1007/s00411-013-0488-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/13/2013] [Indexed: 05/07/2023]
Abstract
While gene expression studies have proved extremely important in understanding cellular processes, it is becoming more apparent that there may be differences in individual cells that are missed by studying the population as a whole. We have developed a qRT-PCR protocol that allows us to assay multiple gene products in small samples, starting at 100 cells and going down to a single cell, and have used it to study radiation responses at the single-cell level. Since the accuracy of qRT-PCR depends greatly on the choice of "housekeeping" genes used for normalization, initial studies concentrated on determining the optimal panel of such genes. Using an endogenous control array, it was found that for IMR90 cells, common housekeeping genes tend to fall into one of two categories-those that are relatively stably expressed regardless of the number of cells in the sample, e.g., B2M, PPIA, and GAPDH, and those that are more variable (again regardless of the size of the population), e.g., YWHAZ, 18S, TBP, and HPRT1. Further, expression levels in commonly studied radiation-response genes, such as ATF3, CDKN1A, GADD45A, and MDM2, were assayed in 100, 10, and single-cell samples. It is here that the value of single-cell analyses becomes apparent. It was observed that the expression of some genes such as FGF2 and MDM2 was relatively constant over all irradiated cells, while that of others such as FAS was considerably more variable. It was clear that almost all cells respond to ionizing radiation but the individual responses were considerably varied. The analyses of single cells indicate that responses in individual cells are not uniform and suggest that responses observed in populations are not indicative of identical patterns in all cells. This in turn points to the value of single-cell analyses.
Collapse
Affiliation(s)
- Brian Ponnaiya
- Center for Radiological Research, Columbia University, 630 West 168th Street, VC11-240, New York, NY, 10032, USA,
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang L, Simpson DA, Innes CL, Chou J, Bushel PR, Paules RS, Kaufmann WK, Zhou T. Gene expression signatures but not cell cycle checkpoint functions distinguish AT carriers from normal individuals. Physiol Genomics 2013; 45:907-16. [PMID: 23943852 PMCID: PMC3798780 DOI: 10.1152/physiolgenomics.00064.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022] Open
Abstract
Ataxia telangiectasia (AT) is a rare autosomal recessive disease caused by mutations in the ataxia telangiectasia-mutated gene (ATM). AT carriers with one mutant ATM allele are usually not severely affected although they carry an increased risk of developing cancer. There has not been an easy and reliable diagnostic method to identify AT carriers. Cell cycle checkpoint functions upon ionizing radiation (IR)-induced DNA damage and gene expression signatures were analyzed in the current study to test for differential responses in human lymphoblastoid cell lines with different ATM genotypes. While both dose- and time-dependent G1 and G2 checkpoint functions were highly attenuated in ATM-/- cell lines, these functions were preserved in ATM+/- cell lines equivalent to ATM+/+ cell lines. However, gene expression signatures at both baseline (consisting of 203 probes) and post-IR treatment (consisting of 126 probes) were able to distinguish ATM+/- cell lines from ATM+/+ and ATM-/- cell lines. Gene ontology (GO) and pathway analysis of the genes in the baseline signature indicate that ATM function-related categories, DNA metabolism, cell cycle, cell death control, and the p53 signaling pathway, were overrepresented. The same analyses of the genes in the IR-responsive signature revealed that biological categories including response to DNA damage stimulus, p53 signaling, and cell cycle pathways were overrepresented, which again confirmed involvement of ATM functions. The results indicate that AT carriers who have unaffected G1 and G2 checkpoint functions can be distinguished from normal individuals and AT patients by expression signatures of genes related to ATM functions.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Obstetrics & Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yunis R, Albrecht H, Kalanetra KM, WU S, Rocke DM. Genomic characterization of a three-dimensional skin model following exposure to ionizing radiation. JOURNAL OF RADIATION RESEARCH 2012; 53:860-75. [PMID: 22915785 PMCID: PMC3483859 DOI: 10.1093/jrr/rrs063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study aimed at characterizing the genomic response to low versus moderate doses of ionizing radiation (LDIR versus MDIR) in a three-dimensional (3D) skin model, which exhibits a closer tissue complexity to human skin than monolayer cell cultures. EpiDermFT skin plugs were exposed to 0, 0.1 and 1 Gy doses of X-rays and harvested at 5 min, 3, 8 and 24 h post-irradiation (post-IR). RNA was interrogated for global gene expression alteration. Our results show that MDIR modulated a larger number of genes over the course of 24 h compared to LDIR. However, immediately and throughout the first 3h post-IR, LDIR modulated a larger number of genes than MDIR, mostly associated with cell-cell signaling and survival promotion. Significant modulation of pathways was detected only at 3 h post-IR in MDIR with induction of genes promoting apoptosis. Collectively, the data show different dynamics in the response to LDIR versus MDIR, especially in cell-cycle distribution. LDIR-exposed tissues showed signs of attempted cell-cycle re-entry as early as 3 h post-IR, but were arrested beyond 8 h at the G1/S checkpoint. At 24 h, cells appeared to accumulate at the G2/M checkpoint. MDIR-exposed tissues did not exhibit a prolonged G1/S arrest but rather a prolonged G2/M arrest, which was sustained at least up to 24 h. By 24 h cells exhibited signs of recovery in both LDIR- and MDIR-exposed tissues. In summary, the most pronounced difference in the initial cellular response to LDIR versus MDIR is the promotion of protection and survival in LDIR versus the promotion of apoptosis in MDIR.
Collapse
|
18
|
Zhang L, Bushel PR, Chou J, Zhou T, Watkins PB. Identification of Identical Transcript Changes in Liver and Whole Blood during Acetaminophen Toxicity. Front Genet 2012; 3:162. [PMID: 22973295 PMCID: PMC3432993 DOI: 10.3389/fgene.2012.00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/09/2012] [Indexed: 12/11/2022] Open
Abstract
The ability to identify mechanisms underlying drug-induced liver injury (DILI) in man has been hampered by the difficulty in obtaining liver tissue from patients. It has recently been proposed that whole blood toxicogenomics may provide a non-invasive means for mechanistic studies of human DILI. However, it remains unclear to what extent changes in whole blood transcriptome mirror those in liver mechanistically linked to hepatotoxicity. To address this question, we applied the program Extracting Patterns and Identifying co-expressed Genes (EPIG) to publically available toxicogenomic data obtained from rats treated with both toxic and subtoxic doses of acetaminophen (APAP). In a training set of animals, we identified genes (760 at 6 h and 185 at 24 h post dose) with similar patterns of expression in blood and liver during APAP-induced hepatotoxicity. The pathways represented in the coordinately regulated genes largely involved mitochondrial and immune functions. The identified expression signatures were then evaluated in a separate set of animals for discernment of APAP exposure level or APAP-induced hepatotoxicity. At 6 h, the gene sets from liver and blood had equally sufficient classification of APAP exposure levels. At 24 h when toxicity was evident, the gene sets did not perform well in evaluating APAP exposure doses, but provided accurate classification of dose-independent liver injury that was evaluated by serum ALT elevation in the blood. Only 38 genes were common to both the 6 and 24-h gene sets, but these genes had the same capability as the parent gene sets to discern the exposure level and degree of liver injury. Some of the parallel transcript changes reflect pathways that are relevant to APAP hepatotoxicity, including mitochondria and immune functions. However, the extent to which these changes reflect similar mechanisms of action in both tissues remains to be determined.
Collapse
Affiliation(s)
- Liwen Zhang
- The Hamner Institutes for Health Sciences, Research Triangle Park NC, USA
| | | | | | | | | |
Collapse
|
19
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
20
|
Jeffries CD, Johnson CR, Zhou T, Simpson DA, Kaufmann WK. A flexible and qualitatively stable model for cell cycle dynamics including DNA damage effects. GENE REGULATION AND SYSTEMS BIOLOGY 2012; 6:55-66. [PMID: 22553421 PMCID: PMC3329186 DOI: 10.4137/grsb.s8476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper includes a conceptual framework for cell cycle modeling into which the experimenter can map observed data and evaluate mechanisms of cell cycle control. The basic model exhibits qualitative stability, meaning that regardless of magnitudes of system parameters its instances are guaranteed to be stable in the sense that all feasible trajectories converge to a certain trajectory. Qualitative stability can also be described by the signs of real parts of eigenvalues of the system matrix. On the biological side, the resulting model can be tuned to approximate experimental data pertaining to human fibroblast cell lines treated with ionizing radiation, with or without disabled DNA damage checkpoints. Together these properties validate a fundamental, first order systems view of cell dynamics. Classification Codes: 15A68
Collapse
Affiliation(s)
- Clark D Jeffries
- Renaissance Computing Institute, CB 3127, University of North Carolina at Chapel Hill, NC
| | | | | | | | | |
Collapse
|
21
|
Transcription profile of DNA damage response genes at G₀ lymphocytes exposed to gamma radiation. Mol Cell Biochem 2012; 364:271-81. [PMID: 22258824 DOI: 10.1007/s11010-012-1227-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/04/2012] [Indexed: 12/28/2022]
Abstract
Ionizing radiation induces a plethora of DNA damages in human cells which may alter the level of mRNA expression. We have analyzed mRNA expression profile of DNA damage response genes involved in G(0)/G(1) check point pathway in whole blood to assess their radio-adaptive response, if any, to gamma radiation. Blood samples were collected from twenty-five random, normal, and healthy male donors with written informed consent and irradiated at doses between 0.1 and 2.0 Gy (0.7 Gy/min). DNA strand breaks were studied using comet assay, whereas DNA double-strand breaks were visualized using γH2AX as a biomarker. Dose response if any, at transcriptional level was studied for all these dose groups at 1 and 5-h post-irradiation. Adaptive response at transcriptional level was studied at three different priming doses (0.1, 0.3, and 0.6 Gy) separately followed by a challenging dose of 2.0 Gy after 4 h. For both the experiments, total RNA was isolated from PBMCs obtained from irradiated whole blood and reverse transcribed to cDNA. The level of mRNA expression of ATM, ATR, GADD45A, CDKN1A, P53, CDK2, MDM2, and Cyclin E was studied using real-time quantitative PCR. A significant dose-dependant increase in the percentage of DNA damage in tail was observed using comet assay. Similarly, increased number of foci was observed at γH2AX with increasing dose. At transcriptional level, a significant dose-dependent up-regulation at GADD45A, CDKN1A, and P53 genes up to 1.0 Gy was observed at 5-h post-irradiation (P ≤ 0.05). Radio-adaptive response at mRNA expression level was observed at CDK2, Cyclin E, and P53, whereas ATM, ATR, GADD45A, MDM2, ATM, and ATR have not shown any radio-adaptive changes in the expression profile. DNA damage response genes involved in G(0)/G(1) checkpoint pathway has important implications in terms of radiosensitivity in vivo and changes in the transcriptional profile might throw some new insights to understand the mechanism of adaptive response.
Collapse
|
22
|
Smith-Roe SL, Patel SS, Zhou Y, Simpson DA, Rao S, Ibrahim JG, Cordeiro-Stone M, Kaufmann WK. Separation of intra-S checkpoint protein contributions to DNA replication fork protection and genomic stability in normal human fibroblasts. Cell Cycle 2012; 12:332-45. [PMID: 23255133 DOI: 10.4161/cc.23177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ATR-dependent intra-S checkpoint protects DNA replication forks undergoing replication stress. The checkpoint is enforced by ATR-dependent phosphorylation of CHK1, which are mediated by the TIMELESS-TIPIN complex and CLASPIN. Although loss of checkpoint proteins is associated with spontaneous chromosomal instability, few studies have examined the contribution of these proteins to unchallenged DNA metabolism in human cells that have not undergone carcinogenesis or crisis. Furthermore, the TIMELESS-TIPIN complex and CLASPIN may promote replication fork protection independently of CHK1 activation. Normal human fibroblasts (NHF) were depleted of ATR, CHK1, TIMELESS, TIPIN or CLASPIN and chromosomal aberrations, DNA synthesis, activation of the DNA damage response (DDR) and clonogenic survival were evaluated. This work demonstrates in NHF lines from two individuals that ATR and CHK1 promote chromosomal stability by different mechanisms that depletion of CHK1 produces phenotypes that resemble more closely the depletion of TIPIN or CLASPIN than the depletion of ATR, and that TIMELESS has a distinct contribution to suppression of chromosomal instability that is independent of its heterodimeric partner, TIPIN. Therefore, ATR, CHK1, TIMELESS-TIPIN and CLASPIN have functions for preservation of intrinsic chromosomal stability that is separate from their cooperation for activation of the intra-S checkpoint response to experimentally induced replication stress. These data reveal a complex and coordinated program of genome maintenance enforced by proteins known for their intra-S checkpoint function.
Collapse
Affiliation(s)
- Stephanie L Smith-Roe
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hegyesi H, Sándor N, Schilling B, Kis E, Lumniczky K, Sáfrány G. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation. RADIATION DAMAGE IN BIOMOLECULAR SYSTEMS 2012. [DOI: 10.1007/978-94-007-2564-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Smith-Roe SL, Patel SS, Simpson DA, Zhou YC, Rao S, Ibrahim JG, Kaiser-Rogers KA, Cordeiro-Stone M, Kaufmann WK. Timeless functions independently of the Tim-Tipin complex to promote sister chromatid cohesion in normal human fibroblasts. Cell Cycle 2011; 10:1618-24. [PMID: 21508667 PMCID: PMC3127161 DOI: 10.4161/cc.10.10.15613] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/24/2011] [Indexed: 12/22/2022] Open
Abstract
The Timeless-Tipin complex and Claspin are mediators of the ATR-dependent activation of Chk1 in the intra-S checkpoint response to stalled DNA replication forks. Tim-Tipin and Claspin also contribute to sister chromatid cohesion (SCC) in various organisms, likely through a replication-coupled process. Some models of the establishment of SCC posit that interactions between cohesin rings and replisomes could result in physiological replication stress requiring fork stabilization. The contributions of Timeless, Tipin, Claspin, Chk1 and ATR to SCC were investigated in genetically stable, human diploid fibroblast cell lines. Whereas Timeless, Tipin and Claspin showed similar contributions to UVC-induced activation of Chk1, siRNA-mediated knockdown of Timeless induced a 100-fold increase in sister chromatid discohesion, whereas the inductive effects of knocking down Tipin, Claspin and ATR were 4-20-fold. Knockdown of Chk1 did not significantly affect SCC. Consistent findings were obtained in two independently derived human diploid fibroblast lines and support a conclusion that SCC in human cells is strongly dependent on Timeless but independent of Chk1. Furthermore, the 10-fold difference in discohesion observed when depleting Timeless versus Tipin indicates that Timeless has a function in SCC that is independent of the Tim-Tipin complex, even though the abundance of Timeless is reduced when Tipin is targeted for depletion. A better understanding of how Timeless, Tipin and Claspin promote SCC will elucidate non-checkpoint functions of these proteins at DNA replication forks and inform models of the establishment of SCC.
Collapse
|
25
|
Bahassi EM. Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp Biol Med (Maywood) 2011; 236:648-57. [PMID: 21558091 DOI: 10.1258/ebm.2011.011011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that play a pivotal role in cell cycle progression and in cellular response to DNA damage. The Plks are highly conserved from yeast to mammals. There are five Plk family members (Plk1-5) in humans, of which Plk1, is the best characterized. The Plk1 isoform is being aggressively pursued as a target for cancer therapy, following observations that this protein is overexpressed in human tumors and is actively involved in malignant transformation. The roles of Plks in mitotic entry, spindle pole functions and cytokinesis are well established and have been the subject of several recent reviews. In this review, we discuss functions of Plks other than their classical roles in mitotic progression. When cells incur DNA damage, they activate checkpoint mechanisms that result in cell cycle arrest and allow time for repair. If the damage is extensive and cannot be repaired, cells will undergo cell death by apoptosis. If the damage is repaired, cells can resume cycling, as part of the process known as checkpoint recovery. If the damage is not repaired or incompletely repaired, cells can override the checkpoint and resume cycling with damaged DNA, a process called checkpoint adaptation. The Plks play a role in all three outcomes and their involvement in these processes will be the subject of this review.
Collapse
Affiliation(s)
- El Mustapha Bahassi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0562, USA.
| |
Collapse
|
26
|
Westbury CB, Sahlberg KK, Borresen-Dale AL, Isacke CM, Yarnold JR. Gene expression profiling of human dermal fibroblasts exposed to bleomycin sulphate does not differentiate between radiation sensitive and control patients. Radiat Oncol 2011; 6:42. [PMID: 21521514 PMCID: PMC3107791 DOI: 10.1186/1748-717x-6-42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background Gene expression profiling of the transcriptional response of human dermal fibroblasts to in vitro radiation has shown promise as a predictive test of radiosensitivity. This study tested if treatment with the radiomimetic drug bleomycin sulphate could be used to differentiate radiation sensitive patients and controls in patients who had previously received radiotherapy for early breast cancer. Findings Eight patients who developed marked late radiation change assessed by photographic breast appearance and 8 matched patients without any change were selected from women entered in a prospective randomised trial of breast radiotherapy fractionation. Gene expression profiling of primary skin fibroblasts exposed in vitro to bleomycin sulphate and mock treated fibroblast controls was performed. 973 genes were up-regulated and 923 down-reguated in bleomycin sulphate treated compared to mock treated control fibroblasts. Gene ontology analysis revealed enriched groups were cellular localisation, apoptosis, cell cycle and DNA damage response for the deregulated genes. No transcriptional differences were identified between fibroblasts from radiation sensitive cases and control patients; subgroup analysis using cases exhibiting severe radiation sensitivity or with high risk alleles present in TGF β1 also showed no difference. Conclusions The transcriptional response of human dermal fibroblasts to bleomycin sulphate has been characterised. No differences between clinically radiation sensitive and control patients were detected using this approach.
Collapse
Affiliation(s)
- Charlotte B Westbury
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | | | | | | | | |
Collapse
|
27
|
Mello SS, Fachin AL, Junta CM, Sandrin-Garcia P, Donadi EA, Passos GAS, Sakamoto-Hojo ET. Delayed effects of exposure to a moderate radiation dose on transcription profiles in human primary fibroblasts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:117-129. [PMID: 20839223 DOI: 10.1002/em.20591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Ionizing radiation (IR) is used in a wide variety of medical and nonmedical applications and poses a potential threat to human health. Knowledge of changes in gene expression in irradiated cells may be helpful for the establishment of effective paradigms for radiation protection. IR-induced DNA damage triggers a complex cascade of signal transduction. Recently, genome-wide approaches have allowed the detection of alterations in gene expression across a wide range of radiation doses. However, the delayed or long-term biological effects of mild-doses of IR remain largely unknown. The main objective of the present study was to investigate the effects of a moderate dose of gamma-rays (50 cGy) on gene expression 6 days post-irradiation. Gene expression using cDNA microarrays revealed statistically significant changes in the expression of 59 genes (FDR < 0.07), whose functions are related to cell-cycle control, protein trafficking, ubiquitin cycle, Rho-GTPAse pathway, protein phosphatase signalization, oxidoreductase control, and stress response. A set of 464 genes was also selected by a less stringent approach, and we demonstrate that this broader set of genes can efficiently distinguish the irradiated samples from the unirradiated, defining a long-term IR signature in human primary fibroblasts. Our findings support the existence of persistent responses to mild doses of IR detectable by changes in gene expression profiles. These results provide insight into delayed effects observed in human primary cells as well as the role of long-term response in neoplastic transformation. Environ.
Collapse
Affiliation(s)
- Stephano S Mello
- Departamento de Genética-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Wen Q, Hu Y, Zhang X, Kong P, Chen X. Gene expression signature of lymphocyte in acute lymphoblastic leukemia patients immediately after total body irradiation. Leuk Res 2011; 35:1044-51. [PMID: 21247631 DOI: 10.1016/j.leukres.2010.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/24/2010] [Accepted: 12/24/2010] [Indexed: 12/25/2022]
Abstract
Molecular mechanisms involved in TBI preconditioning before allogenetic transplantation remain unclear. To elucidate possible signaling pathway in it, gene expression profiles of peripheral lymphocytes were compared between samples 24h after each 4.5 Gy total body irradiation treatment (total 9 Gy) from 4 adult ALL patients. 478 significant expressed genes and three unique patterns were identified. Of these, a dominant progressively repressed expression of genes involved in ubiquitin-dependent process and repressed expression only at 9 Gy of genes involved in allograft rejection and graft-versus-host disease pathways were observed. The results suggest these pathways may play important roles for subsequent transplantation.
Collapse
Affiliation(s)
- Quan Wen
- Third Department of Oncology, The Second Affiliated Hospital of Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
29
|
Duma D, Collins JB, Chou JW, Cidlowski JA. Sexually dimorphic actions of glucocorticoids provide a link to inflammatory diseases with gender differences in prevalence. Sci Signal 2010; 3:ra74. [PMID: 20940427 DOI: 10.1126/scisignal.2001077] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Males and females show differences in the prevalence of many major diseases that have important inflammatory components to their etiology. These gender-specific diseases, which include autoimmune diseases, hepatocellular carcinoma, diabetes, and osteoporosis, are largely considered to reflect the actions of sex hormones on the susceptibility to inflammatory stimuli. However, inflammation reflects a balance between pro- and anti-inflammatory signals, and investigation of gender-specific responses to the latter has been neglected. Glucocorticoids are the primary physiological anti-inflammatory hormones in mammals, and synthetic derivatives of these hormones are prescribed as anti-inflammatory agents, irrespective of patient gender. We explored the possibility that sexually dimorphic actions of glucocorticoid regulation of gene expression may contribute to the dimorphic basis of inflammatory disease by evaluating the rat liver, a classic glucocorticoid-responsive organ. Surprisingly, glucocorticoid administration expanded the set of hepatic sexually dimorphic genes. Eight distinct patterns of glucocorticoid-regulated gene expression were identified, which included sex-specific genes. Our experiments also defined specific genes with altered expression in response to glucocorticoid treatment in both sexes, but in opposite directions. Pathway analysis identified sex-specific glucocorticoid-regulated gene expression in several canonical pathways involved in susceptibility to and progression of diseases with gender differences in prevalence. Moreover, a comparison of the number of genes involved in inflammatory disorders between sexes revealed 84 additional glucocorticoid-responsive genes in the male, suggesting that the anti-inflammatory actions of glucocorticoids are more effective in males. These gender-specific actions of glucocorticoids in liver were substantiated in vivo with a sepsis model of systemic inflammation.
Collapse
Affiliation(s)
- Danielle Duma
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, MD F3-07, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
30
|
Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 2010; 9:643-60. [PMID: 20671765 DOI: 10.1038/nrd3184] [Citation(s) in RCA: 549] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The polo-like kinase 1 (PLK1) acts in concert with cyclin-dependent kinase 1-cyclin B1 and Aurora kinases to orchestrate a wide range of critical cell cycle events. Because PLK1 has been preclinically validated as a cancer target, small-molecule inhibitors of PLK1 have become attractive candidates for anticancer drug development. Although the roles of the closely related PLK2, PLK3 and PLK4 in cancer are less well understood, there is evidence showing that PLK2 and PLK3 act as tumour suppressors through their functions in the p53 signalling network, which guards the cell against various stress signals. In this article, recent insights into the biology of PLKs will be reviewed, with an emphasis on their role in malignant transformation, and progress in the development of small-molecule PLK1 inhibitors will be examined.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
31
|
Bower JJ, Karaca GF, Zhou Y, Simpson DA, Cordeiro-Stone M, Kaufmann WK. Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene 2010; 29:4787-99. [PMID: 20562910 PMCID: PMC2928865 DOI: 10.1038/onc.2010.232] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerase IIalpha (topoIIalpha) is an essential mammalian enzyme that topologically modifies DNA and is required for chromosome segregation during mitosis. Previous research suggests that inhibition of topoII decatenatory activity triggers a G(2) checkpoint response, which delays mitotic entry because of insufficient decatenation of daughter chromatids. Here we examine the effects of both topoIIalpha and topoIIbeta on decatenatory activity in cell extracts, DNA damage and decatenation G(2) checkpoint function, and the frequencies of p16(INK4A) allele loss and gain. In diploid human fibroblast lines, depletion of topoIIalpha by small-interfering RNA was associated with severely reduced decatenatory activity, delayed progression from G(2) into mitosis and insensitivity to G(2) arrest induced by the topoII catalytic inhibitor ICRF-193. Furthermore, interphase nuclei of topoIIalpha-depleted cells showed increased frequencies of losses and gains of the tumor suppressor genetic locus p16(INK4A). This study shows that the topoIIalpha protein is required for decatenation G(2) checkpoint function, and inactivation of decatenation and the decatenation G(2) checkpoint leads to abnormal chromosome segregation and genomic instability.
Collapse
Affiliation(s)
- J J Bower
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bower JJ, Zhou Y, Zhou T, Simpson DA, Arlander SJ, Paules RS, Cordeiro-Stone M, Kaufmann WK. Revised genetic requirements for the decatenation G2 checkpoint: the role of ATM. Cell Cycle 2010; 9:1617-28. [PMID: 20372057 DOI: 10.4161/cc.9.8.11470] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The decatenation G2 checkpoint is proposed to delay cellular progression from G2 into mitosis when intertwined daughter chromatids are insufficiently decatenated. Previous studies indicated that the ATM- and Rad3-related (ATR) checkpoint kinase, but not the ataxia telangiectasia-mutated (ATM) kinase, was required for decatenation G2 checkpoint function. Here, we show that the method used to quantify decatenation G2 checkpoint function can influence the identification of genetic requirements for the checkpoint. Normal human diploid fibroblast (NHDF) lines responded to the topoisomerase II (topo II) catalytic inhibitor ICRF-193 with a stringent G2 arrest and a reduction in the mitotic index. While siRNA-mediated depletion of ATR and CHEK1 increased the mitotic index in ICRF-193 treated NHDF lines, depletion of these proteins did not affect the mitotic entry rate, indicating that the decatenation G2 checkpoint was functional. These results suggest that ATR and CHEK1 are not required for the decatenation G2 checkpoint, but may influence mitotic exit after inhibition of topo II. A re-evaluation of ataxia telangiectasia (AT) cell lines using the mitotic entry assay indicated that ATM was required for the decatenation G2 checkpoint. Three NHDF cell lines responded to ICRF-193 with a mean 98% inhibition of the mitotic entry rate. Examination of the mitotic entry rates in AT fibroblasts upon treatment with ICRF-193 revealed a significantly attenuated decatenation G2 checkpoint response, with a mean 59% inhibition of the mitotic entry rate. In addition, a normal lymphoblastoid line exhibited a 95% inhibition of the mitotic entry rate after incubation with ICRF-193, whereas two AT lymphoblastoid lines displayed only 36% and 20% inhibition of the mitotic entry rate. Stable depletion of ATM in normal human fibroblasts with short hairpin RNA also attenuated decatenation G2 checkpoint function by an average of 40%. Western immunoblot analysis demonstrated that treatment with ICRF-193 induced ATM autophosphorylation and ATM-dependent phosphorylation of Ser15-p53 and Thr68 in Chk2, but no appreciable phosphorylation of Ser139-H2AX or Ser345-Chk1. The results suggest that inhibition of topo II induces ATM to phosphorylate selected targets that contribute to a G2 arrest independently of DNA damage.
Collapse
Affiliation(s)
- Jacquelyn J Bower
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Antoccia A, Sgura A, Berardinelli F, Cavinato M, Cherubini R, Gerardi S, Tanzarella C. Cell cycle perturbations and genotoxic effects in human primary fibroblasts induced by low-energy protons and X/gamma-rays. JOURNAL OF RADIATION RESEARCH 2009; 50:457-468. [PMID: 19755805 DOI: 10.1269/jrr.09008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.
Collapse
|
34
|
Warters RL, Packard AT, Kramer GF, Gaffney DK, Moos PJ. Differential gene expression in primary human skin keratinocytes and fibroblasts in response to ionizing radiation. Radiat Res 2009; 172:82-95. [PMID: 19580510 DOI: 10.1667/rr1677.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation.
Collapse
Affiliation(s)
- Raymond L Warters
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
35
|
Matsumoto Y, Iwakawa M, Furusawa Y, Ishikawa K, Aoki M, Imadome K, Matsumoto I, Tsujii H, Ando K, Imai T. Gene expression analysis in human malignant melanoma cell lines exposed to carbon beams. Int J Radiat Biol 2009; 84:299-314. [DOI: 10.1080/09553000801953334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Chou JW, Bushel PR. Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes. BMC Genomics 2009; 10:272. [PMID: 19538742 PMCID: PMC2706894 DOI: 10.1186/1471-2164-10-272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 06/18/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hepatotoxicity is a form of liver injury caused by exposure to stressors. Genomic-based approaches have been used to detect changes in transcription in response to hepatotoxicants. However, there are no straightforward ways of using co-expressed genes anchored to a phenotype or constrained by the experimental design for discerning mechanisms of a biological response. RESULTS Through the analysis of a gene expression dataset containing 318 liver samples from rats exposed to hepatotoxicants and leveraging alanine aminotransferase (ALT), a serum enzyme indicative of liver injury as the phenotypic marker, we identified biological processes and molecular pathways that may be associated with mechanisms of hepatotoxicity. Our analysis used an approach called Coherent Co-expression Biclustering (cc-Biclustering) for clustering a subset of genes through a coherent (consistency) measure within each group of samples representing a subset of experimental conditions. Supervised biclustering identified 87 genes co-expressed and correlated with ALT in all the samples exposed to the chemicals. None of the over-represented pathways related to liver injury. However, biclusters with subsets of samples exposed to one of the 7 hepatotoxicants, but not to a non-toxic isomer, contained co-expressed genes that represented pathways related to a stress response. Unsupervised biclustering of the data resulted in 1) four to five times more genes within the bicluster containing all the samples exposed to the chemicals, 2) biclusters with co-expression of genes that discerned 1,4 dichlorobenzene (a non-toxic isomer at low and mid doses) from the other chemicals, pathways and biological processes that underlie liver injury and 3) a bicluster with genes up-regulated in an early response to toxic exposure. CONCLUSION We obtained clusters of co-expressed genes that over-represented biological processes and molecular pathways related to hepatotoxicity in the rat. The mechanisms involved in the response of the liver to the exposure to 1,4-dichlorobenzene suggest non-genotoxicity whereas the exposure to the hepatotoxicants could be DNA damaging leading to overall genomic instability and activation of cell cycle check point signaling. In addition, key pathways and biological processes representative of an inflammatory response, energy production and apoptosis were impacted by the hepatotoxicant exposures that manifested liver injury in the rat.
Collapse
Affiliation(s)
- Jeff W Chou
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | | |
Collapse
|
37
|
Reiter R, Deutschle T, Wiegel T, Riechelmann H, Bartkowiak D. Absence of inflammatory response from upper airway epithelial cells after X irradiation. Radiat Res 2009; 171:274-82. [PMID: 19267554 DOI: 10.1667/rr1535.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy of head and neck tumors causes adverse reactions in normal tissue, especially mucositis. The dose- and time-dependent response of upper airway cells to X radiation should be analyzed in terms of the pro-inflammatory potential. Immortalized BEAS-2B lung epithelial cells were treated with 2, 5 and 8 Gy. Out of 1232 genes, those that were transcribed differentially after 2, 6 and 24 h were assigned to biological themes according to the Gene Ontology Consortium. Enrichment of differentially regulated gene clusters was determined with GOTree ( http://bioinfo.vanderbilt.edu/gotm ). Eleven cytokines were measured in culture supernatants. The cell cycle response up to 24 h and induction of apoptosis up to 4 days after exposure were determined by flow cytometry. A significant dose- and time-dependent gene activation was observed for the categories response to DNA damage, oxidative stress, cell cycle arrest and cell death/apoptosis but not for immune/inflammatory response. This correlated with functional G(2) arrest and apoptosis. Pro-inflammatory cytokines accumulated in supernatants of control cells but not of X-irradiated cells. The complex gene expression pattern of X-irradiated airway epithelial cells is accompanied by cell cycle arrest and induction of apoptosis. In vivo, this may impair the epithelial barrier. mRNA and protein expression suggest at most an indirect contribution of epithelial cells to early radiogenic mucositis.
Collapse
Affiliation(s)
- R Reiter
- Department of Otorhinolaryngology, Section of Phoniatrics and Pedaudiology, University Hospital Center, 89075 Ulm, Germany.
| | | | | | | | | |
Collapse
|
38
|
Mizuno H, Nakanishi Y, Ishii N, Sarai A, Kitada K. A signature-based method for indexing cell cycle phase distribution from microarray profiles. BMC Genomics 2009; 10:137. [PMID: 19331659 PMCID: PMC2676301 DOI: 10.1186/1471-2164-10-137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/30/2009] [Indexed: 12/31/2022] Open
Abstract
Background The cell cycle machinery interprets oncogenic signals and reflects the biology of cancers. To date, various methods for cell cycle phase estimation such as mitotic index, S phase fraction, and immunohistochemistry have provided valuable information on cancers (e.g. proliferation rate). However, those methods rely on one or few measurements and the scope of the information is limited. There is a need for more systematic cell cycle analysis methods. Results We developed a signature-based method for indexing cell cycle phase distribution from microarray profiles under consideration of cycling and non-cycling cells. A cell cycle signature masterset, composed of genes which express preferentially in cycling cells and in a cell cycle-regulated manner, was created to index the proportion of cycling cells in the sample. Cell cycle signature subsets, composed of genes whose expressions peak at specific stages of the cell cycle, were also created to index the proportion of cells in the corresponding stages. The method was validated using cell cycle datasets and quiescence-induced cell datasets. Analyses of a mouse tumor model dataset and human breast cancer datasets revealed variations in the proportion of cycling cells. When the influence of non-cycling cells was taken into account, "buried" cell cycle phase distributions were depicted that were oncogenic-event specific in the mouse tumor model dataset and were associated with patients' prognosis in the human breast cancer datasets. Conclusion The signature-based cell cycle analysis method presented in this report, would potentially be of value for cancer characterization and diagnostics.
Collapse
Affiliation(s)
- Hideaki Mizuno
- Kamakura Research Laboratories, Chugai Pharmaceutical Co Ltd, Kamakura, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
39
|
Zhou T, Chou J, Watkins PB, Kaufmann WK. Toxicogenomics: transcription profiling for toxicology assessment. EXS 2009; 99:325-66. [PMID: 19157067 DOI: 10.1007/978-3-7643-8336-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
40
|
Maes OC, An J, Sarojini H, Wu H, Wang E. Changes in MicroRNA expression patterns in human fibroblasts after low-LET radiation. J Cell Biochem 2008; 105:824-34. [PMID: 18729083 DOI: 10.1002/jcb.21878] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure to radiation provokes cellular responses controlled in part by gene expression networks. MicroRNAs (miRNAs) are small non-coding RNAs which mostly regulate gene expression by degrading the messages or inhibiting translation. Here, we investigated changes in miRNA expression patterns after low (0.1 Gy) and high (2.0 Gy) doses of X-ray in human fibroblasts. At early (0.5 h) and late (6 and 24 h) time points, irradiation caused qualitative and quantitative differences in the down-regulation of miRNA levels, including miR-92b, 137, 660, and 656. A transient up-regulation of miRNAs was observed after 2 h post-irradiation following high doses of radiation, including miR-558 and 662. MicroRNA levels were inversely correlated with targets from mRNA and proteomic profiling after 2.0 Gy of radiation. MicroRNAs miR-579, 608, 548-3p, and 585 are noted for targeting genes involved in radioresponsive mechanisms, such as cell cycle checkpoint and apoptosis. We suggest here a model in which miRNAs may act as "hub" regulators of specific cellular responses, immediately down-regulated so as to stimulate DNA repair mechanisms, followed by up-regulation involved in suppressing apoptosis for cell survival. Taken together, miRNAs may mediate signaling pathways in sequential fashion in response to radiation, and may serve as biodosimetric markers of radiation exposure.
Collapse
Affiliation(s)
- Olivier C Maes
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
41
|
Zhang Y, Rohde LH, Emami K, Hammond D, Casey R, Mehta SK, Jeevarajan AS, Pierson DL, Wu H. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest. DNA Repair (Amst) 2008; 7:1835-45. [DOI: 10.1016/j.dnarep.2008.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/11/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
|
42
|
Barrera-Oro J, Liu TY, Gorden E, Kucherlapati R, Shao C, Tischfield JA. Role of the mismatch repair gene, Msh6, in suppressing genome instability and radiation-induced mutations. Mutat Res 2008; 642:74-9. [PMID: 18538799 DOI: 10.1016/j.mrfmmm.2008.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
Abstract
Mismatch repair (MMR) is critical for preserving genomic integrity. Failure of this system can accelerate somatic mutation and increase the risk of developing cancer. MSH6, in complex with MSH2, is the MMR protein that mediates DNA repair through the recognition of 1- and 2-bp mismatches. To evaluate the effects of MSH6 deficiency on genomic stability we compared the frequency of in vivo loss of heterozygosity (LOH) between MSH6-proficient and deficient, 129S2xC57BL/6 F1 hybrid mice that were heterozygous for our reporter gene Aprt. We recovered mutant cells that had functionally lost APRT protein activity and categorized the spectrum of mutations responsible for the LOH events. We also measured the mutant frequency at the X-linked gene, Hprt, as a second reporter for point mutation. In Msh6-/-Aprt+/- mice, mutation frequency at Aprt was elevated in both T cells and fibroblasts by 2.5-fold and 5.7-fold, respectively, over Msh6+/+Aprt+/- littermate controls. While a modest increase in mitotic recombination (MR) was observed in MSH6-deficient fibroblasts compared to wild type controls, point mutation was the predominant mechanism leading to APRT deficiency in both cell types. Base substitution, consisting of multiple types of transitions, accounted for all of the point mutations identified within the Aprt coding region. We also assessed the role of MSH6 in preventing mutations caused by a common environmental mutagen, ionizing radiation (IR). In Msh6-/-Aprt+/- mice, 4Gy of X-irradiation induced a significant increase in point mutations at both Aprt and Hprt in T cells, but not in fibroblasts. These findings indicate that MutS alpha reduces spontaneous and IR-induced mutation in a cell type-dependant manner.
Collapse
Affiliation(s)
- Julio Barrera-Oro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
To respond to potential adverse exposures properly, health care providers need accurate indicators of exposure levels. The indicators are particularly important in the case of acetaminophen (APAP) intoxication, the leading cause of liver failure in the U.S. We hypothesized that gene expression patterns derived from blood cells would provide useful indicators of acute exposure levels. To test this hypothesis, we used a blood gene expression data set from rats exposed to APAP to train classifiers in two prediction algorithms and to extract patterns for prediction using a profiling algorithm. Prediction accuracy was tested on a blinded, independent rat blood test data set and ranged from 88.9% to 95.8%. Genomic markers outperformed predictions based on traditional clinical parameters. The expression profiles of the predictor genes from the patterns extracted from the blood exhibited remarkable (97% accuracy) transtissue APAP exposure prediction when liver gene expression data were used as a test set. Analysis of human samples revealed separation of APAP-intoxicated patients from control individuals based on blood expression levels of human orthologs of the rat discriminatory genes. The major biological signal in the discriminating genes was activation of an inflammatory response after exposure to toxic doses of APAP. These results support the hypothesis that gene expression data from peripheral blood cells can provide valuable information about exposure levels, well before liver damage is detected by classical parameters. It also supports the potential use of genomic markers in the blood as surrogates for clinical markers of potential acute liver damage.
Collapse
|
44
|
Chou JW, Zhou T, Kaufmann WK, Paules RS, Bushel PR. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes. BMC Bioinformatics 2007; 8:427. [PMID: 17980031 PMCID: PMC2194742 DOI: 10.1186/1471-2105-8-427] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/02/2007] [Indexed: 01/03/2023] Open
Abstract
Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV) or ionizing radiation (IR)-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying biological processes affected by IR- and/or UV- induced DNA damage. Conclusion EPIG competed with CLICK and performed better than CAST in extracting patterns from simulated data. EPIG extracted more biological informative patterns and co-expressed genes from both C. elegans and IR/UV-treated human fibroblasts. Using Gene Ontology analysis of the genes in the patterns extracted by EPIG, several key biological categories related to p53-dependent cell cycle control were revealed from the IR/UV data. Among them were mitotic cell cycle, DNA replication, DNA repair, cell cycle checkpoint, and G0-like status transition. EPIG can be applied to data sets from a variety of experimental designs.
Collapse
Affiliation(s)
- Jeff W Chou
- Microarray Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | | | | | | | | |
Collapse
|
45
|
Puthawala K, Hadjiangelis N, Jacoby SC, Bayongan E, Zhao Z, Yang Z, Devitt ML, Horan GS, Weinreb PH, Lukashev ME, Violette SM, Grant KS, Colarossi C, Formenti SC, Munger JS. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med 2007; 177:82-90. [PMID: 17916808 DOI: 10.1164/rccm.200706-806oc] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE In experimental models, lung fibrosis is dependent on transforming growth factor (TGF)-beta signaling. TGF-beta is secreted in a latent complex with its propeptide, and TGF-beta activators release TGF-beta from this complex. Because the integrin alpha(v)beta6 is a major TGF-beta activator in the lung, inhibition of alpha(v)beta6-mediated TGF-beta activation is a logical strategy to treat lung fibrosis. OBJECTIVES To determine, by genetic and pharmacologic approaches, whether murine radiation-induced lung fibrosis is dependent on alpha(v)beta6. METHODS Wild-type mice, alpha(v)beta6-deficient (Itgb6-/-) mice, and mice heterozygous for a Tgfb1 mutation that eliminates integrin-mediated activation (Tgfb1(+/RGE)) were exposed to 14 Gy thoracic radiation. Some mice were treated with an anti-alpha(v)beta6 monoclonal antibody or a soluble TGF-beta receptor fusion protein. Alpha(v)beta6 expression was determined by immunohistochemistry. Fibrosis, inflammation, and gene expression patterns were assessed 20-32 weeks postirradiation. MEASUREMENTS AND MAIN RESULTS Beta6 integrin expression increased within the alveolar epithelium 18 weeks postirradiation, just before onset of fibrosis. Itgb6-/- mice were completely protected from fibrosis, but not from late radiation-induced mortality. Anti-alpha(v)beta6 therapy (1-10 mg/kg/wk) prevented fibrosis, but only higher doses (6-10 mg/kg/wk) caused lung inflammation similar to that in Itgb6-/- mice. Tgfb1-haploinsufficient mice were also protected from fibrosis. CONCLUSIONS Alpha(v)beta6-mediated TGF-beta activation is required for radiation-induced lung fibrosis. Together with previous data, our results demonstrate a robust requirement for alpha(v)beta6 in distinct fibrosis models. Inhibition of alphavbeta6-mediated TGF-beta activation is a promising new approach for antifibrosis therapy.
Collapse
Affiliation(s)
- Khalid Puthawala
- New York University School of Medicine, Department of Medicine, New York, NY 10282, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhou T, Chou J, Zhou Y, Simpson DA, Cao F, Bushel PR, Paules RS, Kaufmann WK. Ataxia telangiectasia-mutated dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts. Mol Cancer Res 2007; 5:813-22. [PMID: 17699107 PMCID: PMC3607384 DOI: 10.1158/1541-7786.mcr-07-0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6, and 24 h after treatment with 1.5-Gy IR or sham treatment and were compared with those previously recognized in normal human fibroblasts. Under basal conditions, 160 genes or expressed sequence tags were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. On DNA damage, 1,091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1,811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth, and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison with normal cells. The reduced change in DNA damage response genes and the attenuated repression of cell cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Jeff Chou
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Yingchun Zhou
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Dennis A. Simpson
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Feng Cao
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Pierre R. Bushel
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Richard S. Paules
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| |
Collapse
|
47
|
Plesca D, Crosby ME, Gupta D, Almasan A. E2F4 function in G2: maintaining G2-arrest to prevent mitotic entry with damaged DNA. Cell Cycle 2007; 6:1147-52. [PMID: 17507799 PMCID: PMC2596058 DOI: 10.4161/cc.6.10.4259] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian cells undergo cell cycle arrest in response to DNA damage through multiple checkpoint mechanisms. One such checkpoint pathway maintains genomic integrity by delaying mitotic progression in response to genotoxic stress. Transition though the G2 phase and entry into mitosis is considered to be regulated primarily by cyclin B1 and its associated catalytically active partner Cdk1. While not necessary for its initiation, the p130 and Rb-dependent target genes have emerged as being important for stable maintenance of a G2 arrest. It was recently demonstrated that by interacting with p130, E2F4 is present in the nuclei and plays a key role in the maintenance of this stable G2 arrest. Increased E2F4 levels and its translocation to the nucleus following genotoxic stress result in downregulation of many mitotic genes and as a result promote a G0-like state. Irradiation of E2F4-depleted cells leads to enhanced cellular DNA double-strand breaks that may be measured by comet assays. It also results in cell death that is characterized by caspase activation, sub-G1 and sub-G2 DNA content, and decreased clonogenic cell survival. Here we review these recent findings and discuss the mechanisms of G2 phase checkpoint activation and maintenance with a particular focus on E2F4.
Collapse
Affiliation(s)
- Dragos Plesca
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- School of Biomedical Sciences; Kent State University; Kent, Ohio USA
| | - Meredith E. Crosby
- Department of Environmental Health Sciences; Case Western Reserve University; Cleveland, Ohio USA
| | - Damodar Gupta
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- Department of Radiation Oncology; Cleveland Clinic; Cleveland, Ohio USA
| | - Alexandru Almasan
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- Department of Radiation Oncology; Cleveland Clinic; Cleveland, Ohio USA
- Correspondence to: Alexandru Almasan; Departments of Cancer Biology and Radiation Oncology; Lerner Research Institute; Cleveland Clinic; 9500 Euclid Avenue, Cleveland, Ohio 44195 USA; Tel.: 216.444.9970; Fax: 216.445.6269;
| |
Collapse
|
48
|
Zhou T, Chou J, Mullen TE, Elkon R, Zhou Y, Simpson DA, Bushel PR, Paules RS, Lobenhofer EK, Hurban P, Kaufmann WK. Identification of primary transcriptional regulation of cell cycle-regulated genes upon DNA damage. Cell Cycle 2007; 6:972-81. [PMID: 17404513 PMCID: PMC2117899 DOI: 10.4161/cc.6.8.4106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Jeff Chou
- Department of Health and Human Services; National Institute of Environmental Health Sciences; Research Triangle Park, North Carolina USA
| | - Thomas E. Mullen
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Rani Elkon
- Department of Human Genetics; Sackler School of Medicine; Tel Aviv University, Tel Aviv, Israel
| | - Yingchun Zhou
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Dennis A. Simpson
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Pierre R. Bushel
- Department of Health and Human Services; National Institute of Environmental Health Sciences; Research Triangle Park, North Carolina USA
| | - Richard S. Paules
- Department of Health and Human Services; National Institute of Environmental Health Sciences; Research Triangle Park, North Carolina USA
| | | | - Patrick Hurban
- Cogenics, a Division of Clinical Data; Morrisville, North Carolina USA
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
- *Correspondence to: William K. Kaufmann, PhD; Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina 27599 USA; Tel.: 919.966.8209; Fax: 919.966.3015;
| |
Collapse
|
49
|
Auman JT, Chou J, Gerrish K, Huang Q, Jayadev S, Blanchard K, Paules RS. Identification of genes implicated in methapyrilene-induced hepatotoxicity by comparing differential gene expression in target and nontarget tissue. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:572-8. [PMID: 17450226 PMCID: PMC1852695 DOI: 10.1289/ehp.9396] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 01/17/2007] [Indexed: 05/15/2023]
Abstract
BACKGROUND Toxicogenomics experiments often reveal thousands of transcript alterations that are related to multiple processes, making it difficult to identify key gene changes that are related to the toxicity of interest. OBJECTIVES The objective of this study was to compare gene expression changes in a nontarget tissue to the target tissue for toxicity to help identify toxicity-related genes. METHODS Male rats were given the hepatotoxicant methapyrilene at two dose levels, with livers and kidneys removed 24 hr after one, three, and seven doses for gene expression analysis. To identify gene changes likely to be related to toxicity, we analyzed genes on the basis of their temporal pattern of change using a program developed at the National Institute of Environmental Health Sciences, termed "EPIG" (extracting gene expression patterns and identifying co-expressed genes). RESULTS High-dose methapyrilene elicited hepatic damage that increased in severity with the number of doses, whereas no treatment-related lesions were observed in the kidney. High-dose methapyrilene elicited thousands of gene changes in the liver at each time point, whereas many fewer gene changes were observed in the kidney. EPIG analysis identified patterns of gene expression correlated to the observed toxicity, including genes associated with endoplasmic reticulum stress and the unfolded protein response. CONCLUSIONS By factoring in dose level, number of doses, and tissue into the analysis of gene expression elicited by methapyrilene, we were able to identify genes likely to not be implicated in toxicity, thereby allowing us to focus on a subset of genes to identify toxicity-related processes.
Collapse
Affiliation(s)
- J. Todd Auman
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Jeff Chou
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kevin Gerrish
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Qihong Huang
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Supriya Jayadev
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Kerry Blanchard
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Richard S. Paules
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Address correspondence to R.S. Paules, NIEHS, 111 T.W. Alexander Dr., P.O. Box 12233, Mail Drop D2-03, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-3710. Fax: (919) 316-4771. E-mail:
| |
Collapse
|
50
|
Cao F, Zhou T, Simpson D, Zhou Y, Boyer J, Chen B, Jin T, Cordeiro-Stone M, Kaufmann W. p53-Dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts. Toxicol Appl Pharmacol 2007; 218:174-85. [PMID: 17174997 PMCID: PMC1864945 DOI: 10.1016/j.taap.2006.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 02/08/2023]
Abstract
This study focused on the activation of cell cycle checkpoint responses in diploid human fibroblasts that were treated with cadmium chloride and the potential roles of ATM and p53 signaling pathways in cadmium-induced responses. The alkaline comet assay indicated that cadmium caused a dose-dependent increase in DNA damage. Cells that were rendered p53-defective by expression of a dominant-negative p53 allele or knockdown of p53 mRNA were more resistant to cadmium-induced inactivation of colony formation than normal and ataxia telangiectasia (AT) cells. Synchronized fibroblasts in S were more sensitive to cadmium toxicity than cells in G1, suggesting that cadmium may target some element of DNA replication. Cadmium produced a dose- and time-dependent inhibition of DNA synthesis. An immediate inhibition was associated with severe delay in progression through S phase and a delayed inhibition seen 24 h after treatment was associated with accumulation of cells in G2. AT and normal cells displayed similar patterns of inhibition of DNA synthesis and G2 delay after treatment with cadmium, while p53-defective cells displayed significantly less of the delayed inhibition of DNA synthesis and accumulation in G2 post-treatment. Total p53 protein and ser15-phosphorylated p53 were induced by cadmium in normal and AT cells. The p53 transactivation target Gadd45alpha was induced in both p53-effective and p53-defective cells after 4 h cadmium treatment, and this was associated with an acute inhibition of mitosis. Cadmium produced a very unusual pattern of toxicity in human fibroblasts, inhibiting DNA replication and inducing p53-dependent growth arrest but without induction of p21(Cip1/Waf1) or activation of Chk1.
Collapse
Affiliation(s)
- Feng Cao
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Tong Zhou
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dennis Simpson
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yingchun Zhou
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jayne Boyer
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Bo Chen
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Taiyi Jin
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
| | - Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - William Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|