1
|
Yim G, Howe CG, Gallagher LG, Gilbert-Diamond D, Calafat AM, Botelho JC, Karagas MR, Romano ME. Prenatal per- and polyfluoroalkyl substance mixtures and weight for length from birth to 12 months: The New Hampshire Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179446. [PMID: 40311330 DOI: 10.1016/j.scitotenv.2025.179446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE To examine the joint associations of plasma concentrations of prenatal per- and polyfluoroalkyl substances (PFAS) mixtures with birth size and postnatal anthropometry measures. MATERIAL AND METHODS The current study included 641 mother-child dyads from the New Hampshire Birth Cohort Study. PFAS concentrations were quantified in maternal plasma samples collected during pregnancy (median: 28 weeks of gestation). Information on infant weight and length were abstracted from medical records and converted to sex- and age-standardized weight-for-length z-score according to the World Health Organization standard curves. Bayesian kernel machine regression (BKMR) was used to investigate the joint associations of multiple PFAS concentrations during pregnancy with weight-for-length z score at birth, 6-months, and 12-months. To account for longitudinal outcomes, we also fit linear mixed effect models between PFAS exposure burden score, a novel method to quantify total exposure burden to PFAS mixtures, and changes in weight-for-length from birth to 12 months of age. A multiplicative interaction term ("PFAS burden score × time [birth as a reference, 6 months, and 12 months of age]") was included to evaluate a potential time-varying relationship. All models were adjusted for maternal age, education, marital status, parity, smoking, seafood consumption, pre-pregnancy body mass index, and gestational week of blood draw. RESULTS In BKMR models, all 95 % credible intervals included the null value. In linear mixed effects models, PFAS exposure burden score was associated with a lower weight-for-length z-score (β = -0.20; 95 % confidence interval = -0.35, -0.04). The multiplicative interaction term was significant at both 6 and 12 months of age (P < 0.01 for both time points), particularly among female infants, suggesting a shift toward positive associations between the prenatal PFAS mixtures and weight-for-length z-score during infancy. CONCLUSIONS Prenatal PFAS mixtures may affect fetal and infant anthropometry measures differently by life stage and biological sex.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA.
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Lisa G Gallagher
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA; Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth-Hitchcock Weight and Wellness Center, Department of Medicine at Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
2
|
Shin MW, Kim SH. Hidden link between endocrine-disrupting chemicals and pediatric obesity. Clin Exp Pediatr 2025; 68:199-222. [PMID: 39608365 PMCID: PMC11884955 DOI: 10.3345/cep.2024.00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
The increasing prevalence of pediatric obesity has emerged as a significant public health concern. Among various contributing factors, exposure to endocrine-disrupting chemicals (EDCs) has gained recognition for its potential role. EDCs, including bisphenols, phthalates, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, and organochlorines, disrupt hormonal regulation and metabolic processes, contributing to alterations in fat storage, appetite regulation, and insulin sensitivity. This study offers a comprehensive review of the current research linking EDC exposure to pediatric obesity by integrating the findings from experimental and epidemiological studies. It also addresses the complexities of interpreting this evidence in the context of public health, highlighting the urgent need for further research.
Collapse
Affiliation(s)
- Min Won Shin
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
3
|
Huang Y, Chen W, Gan Y, Liu X, Tian Y, Zhang J, Li F. Prenatal exposure to per- and polyfluoroalkyl substances, genetic factors, and autistic traits: Evidence from the Shanghai birth cohort. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135857. [PMID: 39383700 DOI: 10.1016/j.jhazmat.2024.135857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
The epidemiological evidence regarding prenatal PFAS exposure and its interaction with genetic factors on the autistic traits risk is unclear. This study included 1610 mother-child pairs from the Shanghai Birth Cohort (SBC). Ten PFAS were quantified in blood serum collected in the first trimester. Child autistic traits were evaluated at age 4 using a Chinese version of the social responsiveness scale-short form (SRS-SF). We calculated the polygenic risk score (PRS) to evaluate the cumulative genetic effects of autism. Additive interaction models were established to explore whether genetic susceptibility modified the effects of prenatal PFAS exposure. After adjusting for confounders, we found prenatal PFOA exposure was associated with an increased risk of autistic traits in children (OR, 3.05; 95 % CI, 1.14-7.58), and the increased risk associated with PFOA was mitigated among women who reported pre-pregnancy folic acid supplementation. Additionally, an increased risk of autistic traits was observed in children with higher levels of prenatal PFHxS exposure and a high PRS (p for interaction = 0.021). Our findings suggest prenatal PFAS exposure may increase the risk of autistic traits in children, especially in those with a high genetic risk. Further research is warranted to confirm this association and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiran Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Łuszczki E, Wyszyńska J, Dymek A, Drożdż D, González-Ramos L, Hartgring I, García-Carbonell N, Mazur A, Erdine S, Parnarauskienė J, Alvarez-Pitti J. The Effect of Maternal Diet and Lifestyle on the Risk of Childhood Obesity. Metabolites 2024; 14:655. [PMID: 39728436 DOI: 10.3390/metabo14120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Childhood obesity is a global health problem that affects at least 41 million children under the age of five. Increased BMI in children is associated with serious long-term health consequences, such as type 2 diabetes, cardiovascular disease, and psychological problems, including depression and low self-esteem. Although the etiology of obesity is complex, research suggests that the diet and lifestyle of pregnant women play a key role in shaping metabolic and epigenetic changes that can increase the risk of obesity in their children. Excessive gestational weight gain, unhealthy dietary patterns (including the Western diet), and pregnancy complications (such as gestational diabetes) are some of the modifiable factors that contribute to childhood obesity. The purpose of this narrative review is to summarize the most important and recent information on the impact of the diet and lifestyle of pregnant women on the risk of childhood obesity. Methods: This article is a narrative review that aims to summarize the available literature on the impact of pregnant women's diet and lifestyle on the risk of obesity in their offspring, with a focus on metabolic and epigenetic mechanisms. Results/Conclusions: Current evidence suggests that a pregnant woman's lifestyle and diet can significantly contribute to lowering the risk of obesity in their offspring. However, further high-quality research is needed to understand better the metabolic and epigenetic relationships concerning maternal factors that predispose offspring to obesity.
Collapse
Affiliation(s)
- Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Justyna Wyszyńska
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Dymek
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Pediatric Institute, Jagiellonian University Medical College, 31-007 Krakow, Poland
| | - Laura González-Ramos
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
| | - Isa Hartgring
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
| | - Nuria García-Carbonell
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain
| | - Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Serap Erdine
- Cerrahpasa Faculty of Medicine, Department of Cardiology, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey
| | - Justė Parnarauskienė
- Pediatric Department, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Julio Alvarez-Pitti
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Wang Z, Zhang B, Zhang J, Xu S, Dai Y, Ding J, Guo J, Qi X, Chang X, Wu C, Zhou Z. Prenatal exposure to per- and polyfluoroalkyl substances and sex-specific associations with offspring adiposity at 10 years of age: Metabolic perturbation plays a role. ENVIRONMENT INTERNATIONAL 2024; 192:109037. [PMID: 39353210 DOI: 10.1016/j.envint.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been suspected as potential environmental obesogens, with several mechanisms being proposed, including the role of metabolomics. However, current epidemiological studies have yielded inconclusive findings. OBJECTIVES We aimed to estimate the associations of prenatal exposure to PFAS with offspring adiposity measures, and to explore the potential metabolic pathways underlying these associations. METHODS A total of 464 mother-child pairs from the Sheyang Mini Birth Cohort Study (SMBCS) were included in this study. Cord serum concentrations of 12 PFAS and urine metabolite profiles at age 10 were obtained from the SMBCS database. Adiposity-related anthropometric measurements and body composition estimates of children aged 10 were used to assess offspring obesity. Multiple linear regression models and quantile g-computation were conducted to estimate the associations of prenatal exposure to individual and multiple PFAS with obesity at 10 years old. Metabolomics analysis was performed to characterize the biological pathways associated with PFAS exposure or obesity, subsequently identifying the overlapping metabolic pathways underlying the PFAS-obesity relationship. RESULTS Prenatal exposure to several PFAS was significantly associated with elevated obesity-related markers in 10-year-old children. After stratification by sex, the effects were more pronounced in girls. Quantile g-computation results indicated that exposure to higher levels of PFAS mixtures during pregnancy was associated with increased odds of obesity in girls, with PFNA emerging as the predominant driving compound. Untargeted metabolomics results showed that several amino acid metabolic pathways were characterized as the overlapping pathways underlying the above associations. CONCLUSIONS Taken together, our findings suggested the potential obesogenic effects of prenatal exposure to PFAS and offered insight into the possible metabolic mechanisms underlying PFAS-related offspring obesity.
Collapse
Affiliation(s)
- Zheng Wang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Boya Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| | - Sinan Xu
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Lv Y, Jia Z, Wang Y, Huang Y, Li C, Chen X, Xia W, Liu H, Xu S, Li Y. Prenatal EDC exposure, DNA Methylation, and early childhood growth: A prospective birth cohort study. ENVIRONMENT INTERNATIONAL 2024; 190:108872. [PMID: 38986426 DOI: 10.1016/j.envint.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals (EDCs) has been found to be associated with growth and developmental abnormalities in children. However, the potential mechanisms by which exposure to EDCs during pregnancy increases the risk of obesity in children remain unclear. OBJECTIVE We aimed to explore associations between prenatal EDC exposure and the body mass index (BMI) of children at age two, and to further explore the potential impact of DNA methylation (DNAm). METHOD This study included 285 mother-child pairs from a birth cohort conducted in Wuhan, China. The BMI of each child was assessed at around 24 months of age. The concentrations of sixteen EDCs at the 1st, 2nd, and 3rd trimesters were measured using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The research utilized general linear models, weighted quantile sum regression, and Bayesian Kernel Machine Regression to assess the association between prenatal EDC exposure and childhood BMI z-scores (BMIz). Cord blood DNAm was measured using the Human Methylation EPIC BeadChip array. An epigenome-wide DNAm association study related to BMIz was performed using robust linear models. Mediation analysis was then applied to explore potential mediators of DNAm. RESULTS Urinary concentrations of seven EDCs were positively associated with BMIz in the 1st trimester, which remained significant in the WQS model. A total of 641 differential DNAm positions were associated with elevated BMIz. Twelve CpG positions (annotated to DUXA, TMEM132C, SEC13, ID4, GRM4, C2CD2, PRAC1&PRAC2, TSPAN6 and DNAH10) mediated the associations between urine BP-3/BPS/MEP/TCS and elevated BMIz (P < 0.05). CONCLUSION Our results revealed that prenatal exposure to EDCs was associated with a higher risk of childhood obesity, with specific DNAm acting as a partial mediator.
Collapse
Affiliation(s)
- Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengxi Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Makris KC, Chourdakis M. The Need for an Alternative Health Claim Process for Foods Based on Both Nutrient and Contaminant Profiles. Curr Dev Nutr 2024; 8:103764. [PMID: 38813480 PMCID: PMC11134546 DOI: 10.1016/j.cdnut.2024.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Most authorized health claims on foods have been established on the basis of single dietary components, mainly micronutrients, such as vitamins, minerals, and possibly bioactives. Failure to sufficiently define and characterize the nutritional profile of a food product is one of the main reasons for rejection or incomplete status for thousands of health claim applications, whereas the food's contaminant profile is simply not accounted for. The objective of this work was to highlight the accumulating scientific evidence supporting a reform of the health claim evaluation process for foods toward more holistic approaches. This would entail the characterization of multiple nutrient-contaminant pairs and contaminant mixture profiles at contaminant levels currently considered "safe," including their interactions that would impact human health outcome(s) in a net positive or negative direction. The notion of a stable nutritional profile in food commodities has been challenged by studies reporting a variable food contaminant content and a declining content of proteins/micronutrients in crops due to anthropogenic greenhouse gas emissions. A holistic approach in the health claim process for foods would entail the incorporation of cumulative risk assessment and/or risk-benefit protocols that effectively combine health risks and benefits associated with multiple nutritional and contaminant attributes of the food/diet under evaluation.
Collapse
Affiliation(s)
- Konstantinos Christos Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Michael Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Huang Q, Peng Z, Li S, Nan W, He B. Association between carotenoids and the prevalence of chronic obstructive pulmonary disease in the United States. Heart Lung 2024; 65:93-100. [PMID: 38457968 DOI: 10.1016/j.hrtlng.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Previous studies mainly concentrated on examining the correlation between single carotenoids and Chronic obstructive pulmonary disease (COPD). However, these findings have been inconsistent. OBJECTIVES This study aimed to evaluate both the individual and overall associations of carotenoids with the prevalence of COPD. METHODS This study comprised 2,939 participants chosen from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. The logistic regression, quantile-based G-computation regression (qgcomp), and Bayesian kernel machine regression (BKMR) models were employed to explore the association between carotenoids and the prevalence of COPD. Mediation analyses were also conducted to explore the underlying mechanism of carotenoids on COPD. RESULTS Individuals diagnosed with COPD had significantly lower serum carotenoid concentrations than those without COPD. We found a negative relationship between combined carotenoids and the prevalence of COPD, and lutein and zeaxanthin and alpha cryptoxanthin were identified as the main contributors to this negative association. Moreover, eosinophil acted as a mediator in the relationship between lutein and zeaxanthin, alpha cryptoxanthin, and the prevalence of COPD, with mediating proportions of 2.75 % and 3.67 %. CONCLUSION A negative association was observed between combined carotenoids and COPD prevalence, with lutein and zeaxanthin, and alpha cryptoxanthin identified as the main contributors. Eosinophils could potentially mediate the association between carotenoids and COPD.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenyu Peng
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenbin Nan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
9
|
Gao Y, Zhang Y, Luo J, Mao D, Lei X, Liu C, Zhang S, Yao Q, Li J, Zhang J, Yu X, Tian Y. Effect modification by maternal vitamin D status in the association between prenatal exposure to per- and polyfluoroalkyl substances and neurodevelopment in 2-year-old children. ENVIRONMENT INTERNATIONAL 2024; 185:108563. [PMID: 38461776 DOI: 10.1016/j.envint.2024.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Pregnant women in the Shanghai Birth Cohort (SBC) of China faced dual threats of per- and polyfluoroalkyl substances (PFAS) exposure and vitamin D (VD) insufficiency, potentially impacting offspring neurodevelopment. However, little is known about whether maternal VD status modifies PFAS-related neurodevelopment effect. OBJECTIVES To explore the modifying role of maternal VD status in the effect of prenatal PFAS exposure on childhood neurodevelopment. METHODS We included 746 mother-child pairs from the SBC. Ten PFAS congeners and VD levels were measured in maternal blood samples collected during the first and second trimester respectively. At 2 years of age, toddlers underwent neurodevelopment assessments using Bayley-III Scales. Multivariate linear, logistic regression, and weighted quantile sum approach were used to estimate associations of Bayley-III scores with individual and mixture PFAS. We stratified participants into VD sufficient and insufficient groups and further balanced PFAS differences between these groups by matching all PFAS levels. We fitted the same statistical models in each VD group before and after matching. RESULTS Nearly half (46.5 %) of pregnant women were VD insufficient (<30 ng/mL). In the overall population, PFAS exposure was associated with lower language scores and an increased risk for neurodevelopmental delay, but higher cognitive scores. However, adverse associations with PFAS were mainly observed in the VD sufficient group, while the VD insufficient group showed positive cognitive score associations. Higher PFAS concentrations were found in the VD sufficient group compared to the VD insufficient group. Post-matching, adverse associations in the VD sufficient group were nullified, whereas in the VD insufficient group, positive associations disappeared and adverse associations becoming more pronounced. CONCLUSION In this Chinese birth cohort, high prenatal PFAS exposure and low maternal VD levels collectively heighten the risk of adverse childhood neurodevelopment. However, disentangling PFAS and VD interrelationships is crucial to avoid paradoxical findings.
Collapse
Affiliation(s)
- Yu Gao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Jiajun Luo
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, United States
| | - Dandan Mao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Shanyu Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Qian Yao
- Clinical Research Unit, Shanghai Pulmonary Hospital, 200433 Shanghai, PR China
| | - Jiong Li
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Epidemiology, School of Public Health, Nanjing Medical University, 211166 Nanjing, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, PR China.
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
10
|
Miller ZC, Kang BK, Cooke SW, Ashley LW, Pories WJ. The Obesity Epidemic Is Not the Victims' Fault. Obes Surg 2024; 34:688-689. [PMID: 38194012 DOI: 10.1007/s11695-023-06978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
The Centers for Disease Control and Prevention recently issued two statements that 1) maintain that obesity causes diabetes and other expressions of the metabolic syndrome and 2) that imply obesity is the victim's fault. Both statements are incorrect and potentially harmful.
Collapse
Affiliation(s)
- Zachary C Miller
- Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Brian K Kang
- Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Spencer W Cooke
- Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Lucas W Ashley
- Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Walter J Pories
- Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA.
| |
Collapse
|
11
|
Nannaware M, Mayilswamy N, Kandasubramanian B. PFAS: exploration of neurotoxicity and environmental impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12815-12831. [PMID: 38277101 DOI: 10.1007/s11356-024-32082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread contaminants stemming from various industrial and consumer products, posing a grave threat to both human health and ecosystems. PFAS contamination arises from multiple sources, including industrial effluents, packaging, and product manufacturing, accumulating in plants and impacting the food chain. Elevated PFAS levels in water bodies pose significant risks to human consumption. This review focuses on PFAS-induced neurological effects, highlighting disrupted dopamine signalling and structural neuron changes in humans. Animal studies reveal apoptosis and hippocampus dysfunction, resulting in memory loss and spatial learning issues. The review introduces the BKMR model, a machine learning technique, to decipher intricate PFAS-neurotoxicity relationships. Epidemiological data underscores the vulnerability of young brains to PFAS exposure, necessitating further research. Stricter regulations, industry monitoring, and responsible waste management are crucial steps to reduce PFAS exposure.
Collapse
Affiliation(s)
- Mrunal Nannaware
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Marathwada Campus Jalna, Jalna, 431203, India
| | - Neelaambhigai Mayilswamy
- Department of Metallurgical and Material Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune, 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Material Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
12
|
Zhang J, Feng L, Liu Z, Chen L, Gu Q. Source apportionment of heavy metals in PM 2.5 samples and effects of heavy metals on hypertension among schoolchildren in Tianjin. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8451-8472. [PMID: 37639041 DOI: 10.1007/s10653-023-01689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
The prevalence of hypertension in children has increased significantly in recent years in China. The aim of this study was to provide scientific support to control ambient heavy metals (HMs) pollution and prevent childhood hypertension. In this study, ambient HMs in PM2.5 were collected, and 1339 students from Tianjin were randomly selected. Positive matrix factorization (PMF) was used to identify and determine the sources of HMs pollution. The generalized linear model, Bayesian kernel machine regression (BKMR) and the quantile g-computation method were used to analyze the relationships between exposure to HMs and the risk of childhood hypertension. The results showed that HMs in PM2.5 mainly came from four sources: soil dust, coal combustion, incineration of municipal waste and the metallurgical industry. The positive relationships between As, Se and Pb exposures and childhood hypertension risk were found. Coal combustion and incineration of municipal waste were important sources of HMs in the occurrence of childhood hypertension. Based on these accomplishments, this study could provide guidelines for the government and individuals to alleviate the damaging effects of HMs in PM2.5. The government must implement policies to control prime sources of HMs pollution.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Lihong Feng
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Zhonghui Liu
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Lu Chen
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Qing Gu
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China.
- School of Public Health, Tianjin Medical University, No.22 Qixiangtai Rd, Tianjin, China.
| |
Collapse
|
13
|
Jaacks L. Invited Perspective: Can Eating a Healthy Diet during Pregnancy Attenuate the Obesogenic Effects of Persistent Organic Pollutants? ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:31306. [PMID: 36927188 PMCID: PMC10019502 DOI: 10.1289/ehp12193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Lindsay Jaacks
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Midlothian, UK
| |
Collapse
|