1
|
He Q, Yang Q, Wu L, He Y, Zeng N, Wang Z. Neurotoxic effects of per- and polyfluoroalkyl substances (PFAS) mixture exposure in mice: Accumulations in brain and associated changes of behaviors, metabolome, and transcriptome. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137699. [PMID: 39987740 DOI: 10.1016/j.jhazmat.2025.137699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Humans are exposed to complex per- and polyfluoroalkyl substances (PFAS) mixtures, yet their neurotoxicity and mechanisms remains unclear. This study exposed male mice to 17 PFAS mixtures at low levels (0.2-20 µg/L) for 49 days via drinking water. Perfluoropentanoic acid (PFPeA), perfluoroheptanoic acid (PFHpA), 6:2 fluorotelomer sulfonic acid (6:2 FTS), and perfluorooctane Sulfonate (PFOS) accumulated in brain tissues, with brain/plasma ratios of 2.03-5.87, 2.94-12.88, 1.90-3.19, and 0.62-0.93, respectively. Electroencephalogram (EEG) results showed significant alterations, including a reduction in beta spectral edge (21.47-13.85 Hz) and an increase in gamma spectral edge (57.64-79.07 Hz). Histopathological analysis revealed necrosis in the hippocampus, contributing to the observed anxiety-like behaviors and memory impairments in exposed mice. Plasma metabolomics highlighted disrupted osmoprotectants, impaired glutamatergic synapse function, and tryptophan metabolism. Brain metabolomics demonstrated suppression of purine metabolism and activation of arachidonic acid metabolism, suggesting involvement in neurotoxic effects. Transcriptomic profiling further identified dysregulation in neuroactive ligand-receptor interactions, cholinergic and GABAergic synapses, and calcium signaling pathways, with oxytocin signaling highlighted as a critical mechanism. This study, for the first time, links PFAS mixture to neurotoxicity via neurotransmitter-related pathways, underscoring the need for public health policies and preventive strategies to mitigate PFAS exposure risks.
Collapse
Affiliation(s)
- Qiurong He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qingkun Yang
- West China School of Public Health, Sichuan University, Chengdu 610041, PR China
| | - Lin Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuhang He
- West China School of Public Health, Sichuan University, Chengdu 610041, PR China
| | - Ni Zeng
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Argoul CM, Dauwe Y, Lakhal L, Toutain PL, Picard-Hagen N, Gayrard V, Lacroix MZ. Development of an LC-MS/MS method for the simultaneous quantification of 11 perfluoroalkyl compounds in mouse plasma for toxicokinetic applications. J Pharm Biomed Anal 2025; 255:116596. [PMID: 39644679 DOI: 10.1016/j.jpba.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Following regulatory pressure, the manufacture of long-chain per- and polyfluoroalkyl substances (PFAS) has been phased out, and alternatives such as short-chain homologs and ether-PFAS have replaced the bioaccumulative long-chain PFAS. However, data are lacking regarding the toxicokinetic (TK) properties of certain PFAS, particularly emergent substitutes for long-chain compounds. Additionally, the existing analytical methods used for TK studies measure a single compound or only a few simultaneously. For this reason, an LC-MS/MS method was developed for the simultaneous quantification in mouse plasma of 11 PFAS representative of some of the most important categories of these compounds, for application in TK studies. The method was successfully validated in the range of 0.5-1000 ng/mL, in accordance with the European Medicines Agency guidelines, and applied to a 24-h pilot TK study conducted in mice. All compounds were monitored over 24 hours in the pilot study. The present method is therefore suitable for the simultaneous quantification of PFAS in plasma samples and can be applied for future TK studies.
Collapse
Affiliation(s)
- Chloé Ml Argoul
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France; ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Yannick Dauwe
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Laïla Lakhal
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France; The Royal Veterinary College, University of London, London, United Kingdom.
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | | |
Collapse
|
3
|
Zhu Y, Qu Z, Yang L, Jia Y, Zhang Y, Zhu L. Hexafluoropropylene Oxide Trimer Acid Is an Unsafe Substitute to Perfluorooctanoic Acid Due to Its Remarkable Liver Accumulation in Mice Disclosed by Comprehensive Toxicokinetic Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:245-255. [PMID: 39754569 DOI: 10.1021/acs.est.4c10349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA, C2F5(CF2OCF(CF3))2COOH) is widely used as an alternative to perfluorooctanoic acid (PFOA), but whether it is a safe alternative requires further evaluation. In this study, male mice were exposed to three dosages (0.56, 2.8, and 14 mg/kg) of HFPO-TA via single oral gavage or intravenous injection for 28 days. HFPO-TA was rapidly absorbed into the blood and tissues within 15 min postexposure, with a volume of distribution approximately 3 times higher than PFOA, indicating a greater propensity for tissue distribution. Notably, HFPO-TA was distinctly more accumulated in liver compared to plasma and other tissues and very poorly excreted, with only 2.23% in urine and 7.26% in feces on the 21st day after oral exposure. A physiologically based toxicokinetic model, extrapolated to long-term low-dose exposure, revealed a lower bile clearance rate (8-fold) and higher liver partition coefficient (7-fold) than PFOA, and a higher hepatic first-pass effect of HFPO-TA (5-fold) than PFOA, contributing to its remarkable liver accumulation (5-fold). Molecular docking analysis reveals strong binding affinity of HFPO-TA with typical enterohepatic circulation transport proteins due to its strong hydrophobicity, flexible chain structure, and formation of additional hydrogen bonds, favoring HFPO-TA accumulation in the liver. The results suggest that HFPO-TA may not be a safe substitute for legacy PFAS, and further human exposure risk assessments are warranted.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zhiqian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
4
|
Mei J, Jiang J, Li Z, Pan Y, Xu K, Gao X, Yuan J, Li L, Wang Y, Wang L, Zhao A, Jiang S, Wang X, Yi S, Li S, Xue Y, Ma Y, Liu Y, Wang Y, Li J, Chen C, Liu Y. Increased perfluorooctanoic acid accumulation facilitates the migration and invasion of lung cancer cells via remodeling cell mechanics. Proc Natl Acad Sci U S A 2024; 121:e2408575121. [PMID: 39665760 DOI: 10.1073/pnas.2408575121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely used in industrial and household products, raising serious concerns due to their environmental persistence and mobility. Epidemiological studies have reported potential carcinogenic risks of PFAS based on their widespread occurrence and population exposure. In this study, we observed that perfluorooctanoic acid (PFOA), a common PFAS, functions as a mechanical regulator in lung cancer cells. PFOA exposure reduces cell stiffness, thereby decreasing cell adhesion and enhancing immune evasion, ultimately exacerbating tumor metastasis. In various lung cancer models, more aggressive tumor metastases have been observed in the PFOA exposure group. Additionally, serum PFOA levels in patients with advanced lung adenocarcinoma were significantly higher than those in patients with early-stage disease. Mechanistically, the interaction between PFOA and transmembrane integrins in cancer cells triggers changes in cellular mechanical properties, leading to the reorganization of the cytoskeleton, and activation of the intracellular FAK-PI3K-Akt signaling pathway. Our findings demonstrate that in individuals with lung adenocarcinoma, PFOA can increase the risk of cancer metastasis even at daily exposure levels.
Collapse
Affiliation(s)
- Jie Mei
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jipeng Jiang
- Department of Thoracic Surgery, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Pan
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ke Xu
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglong Gao
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yuan
- Department of Pathology, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lili Li
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yufei Wang
- Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Liuxiang Wang
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ailin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shasha Jiang
- Department of Thoracic Surgery, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xinlian Wang
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqiong Yi
- National Center for Protein Sciences, Beijing 102206, China
| | - Shilin Li
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Yueguang Xue
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Yongfu Ma
- Department of Thoracic Surgery, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yang Liu
- Department of Thoracic Surgery, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Claus Henn B, Leonard ER, Doherty BT, Byrne S, Hartmann N, Ptolemy AS, Ayanian S, Crawford KA. Serum per- and polyfluoroalkyl substance (PFAS) levels and health-related biomarkers in a pilot study of skiers in New England. ENVIRONMENTAL RESEARCH 2024; 263:120122. [PMID: 39389198 DOI: 10.1016/j.envres.2024.120122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), synthetic chemicals with adverse health effects, are used extensively in consumer products. Ski waxes, applied to the base of skis, contain up to 100% PFAS by mass, but exposure and health effects are poorly characterized. OBJECTIVES Our objectives were to quantify serum PFAS concentrations among skiers and explore associations with reported ski wax use and biomarkers of cardiometabolic, thyroid, and immune health. METHODS We recruited 30 active adult skiers to provide non-fasting blood samples and complete questionnaires. We quantified 18 PFAS using mass spectrometry, and measured serum lipids, thyroid hormones, and immunoglobulins. We explored associations of individual and aggregate measures of serum PFAS with wax use indicators and health biomarkers using multivariable regression models, adjusted for age and gender identity. RESULTS Nine PFAS (PFBS, PFHpS, PFHxS, Sm-PFOS, n-PFOS, PFDA, PFNA, PFUnDA, n-PFOA) were detected in 100% of participants, and MeFOSAA in 93%. Compared to NHANES, median serum concentrations (ng/ml) were similar, but higher in coaches (e.g., PFOAall: 1.1, PFOAcoaches: 2.7, PFOANHANES: 1.2; PFNAall: 0.5, PFNAcoaches: 1.7, PFNANHANES: 0.4). Factors reflecting wax exposure were positively associated with PFAS: e.g., >10 years as a snow sport athlete, compared to ≤10 years, was associated with 3.2 (95% CI: 0.7, 5.6) ng/ml higher aggregate PFAS, as defined by National Academies of Science, Engineering, and Medicine (NASEM). An IQR (6.3 ng/ml) increase in NASEM PFAS was associated with 32.1 (95% CI: 7.0, 57.2), 35.5 (13.5, 57.5), and 12.8 (0.6, 25.1) mg/dl higher total cholesterol, LDL-C, and sdLDL-C, respectively. DISCUSSION Our study provides early evidence that recreational skiers, particularly coaches, are exposed to PFAS through ski wax. Several PFAS were associated with higher serum lipids among these physically active adults. Interventions to remove PFAS from fluorinated wax could decrease direct exposure to skiers and reduce PFAS release into the environment.
Collapse
Affiliation(s)
- Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Emily R Leonard
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Sam Byrne
- Biology Department, Middlebury College, Middlebury, VT, USA; Global Health Program, Middlebury College, Middlebury, VT, USA
| | - Nicola Hartmann
- Global Health Program, Middlebury College, Middlebury, VT, USA; Program in Molecular Biology & Biochemistry, Middlebury College, Middlebury, VT, USA
| | - Adam S Ptolemy
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Shaké Ayanian
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
6
|
Collier GE, Lavado R. An in-depth examination of Per- and Polyfluoroalkyl (PFAS) effects on transporters, with emphasis on the ABC superfamily: A critical review. Toxicology 2024; 508:153901. [PMID: 39094918 DOI: 10.1016/j.tox.2024.153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Per- and polyfluoroalkyl (PFAS) substances are a type of chemical compound unique for their multiple carbon-fluorine bonds, imbuing them with strength and environmental permanence. While legacy substances have been phased out due to human health risks, short-chain and alternative PFAS remain omnipresent. However, a detailed explanation for the pathways through which PFAS interact on a cellular and molecular level is still largely unknown, and the human health effects remain mechanistically unexplained. Of particular interest when focusing on this topic are the interactions between these exogenous chemicals and plasma and membrane proteins. Such proteins include serum albumin which can transport PFAS throughout the body, solute carrier proteins (SLC) and ATP binding cassette (ABC) transporters which are able to move PFAS into and out of cells, and proteins and nuclear receptors which interact with PFAS intracellularly. ABC transporters as a family have little available human data despite being responsible for the export of endogenous substances and drugs throughout the body. The multifactorial regulation of these crucial transporters is affected directly and indirectly by PFAS. Changes, which can include alterations to membrane transport activity and differences in protein expression, vary greatly depending on the specific PFAS and protein of interest. Together, the myriad of changes caused by understudied PFAS exposure to a class of understudied proteins crucial to cellular function and drug treatments has not been fully explored regarding human health and presents room for further exploration. This critical work aims to provide a novel framework of existing human data on PFAS and ABC transporters, allowing for future advancement and investigation into human transporter activity, mechanisms of regulation, and interactions with emerging contaminants.
Collapse
Affiliation(s)
- Gracen E Collier
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
7
|
Cao J, Lei Y, Jiang X, Kannan K, Li M. Biotransformation, Bioaccumulation, and Bioelimination of Triphenyl Phosphate and Its Dominant Metabolite Diphenyl Phosphate In Vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15486-15496. [PMID: 39167085 DOI: 10.1021/acs.est.4c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Aryl phosphorus flame retardants (aryl-PFRs), such as triphenyl phosphate (TPHP) and diphenyl phosphate (DPHP), are widely used worldwide. Understanding the fates of aryl-PFRs in vivo is crucial to assessing their toxicity and the risks they pose. Seven TPHP metabolites, including Phase I hydrolysis and hydroxylation and Phase II glucuronidation products, were identified in C57BL/6J male mice following subacute dietary exposure to aryl-PFRs (70 μg/kg body weight (bw)/day) for 7 days. TPHP was almost completely metabolized by mice (∼97%), with DPHP the major metabolite formed (34%-58%). In addition, mice were exposed to aryl-PFRs (7 μg/kg bw/day) for 12 weeks. Both TPHP and DPHP occurred at higher concentrations in the digestive tract (intestine and stomach), liver and heart. The total concentration of DPHP in all organs was 3.55-fold greater than that of TPHP. Recovery analysis showed that the rate of TPHP elimination from mouse organs reached 38%, while only 3%-5% of DPHP was removed, suggesting that the rates of degradation and elimination of DPHP were slower than TPHP and its bioaccumulation potential was higher. These results highlight the critical role of DPHP in the biotransformation, bioaccumulation, and bioelimination of TPHP, providing valuable insights into the fate of aryl-PFRs in vivo.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York 12237, United States
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Chen Q, Yi S, Sun Y, Zhu Y, Ma K, Zhu L. Contribution of Continued Dermal Exposure of PFAS-Containing Sunscreens to Internal Exposure: Extrapolation from In Vitro and In Vivo Tests to Physiologically Based Toxicokinetic Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39155535 DOI: 10.1021/acs.est.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely present in sunscreen products as either active ingredients or impurities. They may penetrate the human skin barrier and then pose potential health risks. Herein, we aimed to develop a physiologically based toxicokinetic (PBTK) model capable of predicting the body loading of PFASs after repeated, long-term dermal application of commercial sunscreens. Ten laboratory-prepared sunscreens, generally falling into two categories of water-in-oil (W/O) and oil-in-water (O/W) sunscreens, were subject to in vitro percutaneous penetration test to assess the impacts of four sunscreen ingredients on PFAS penetration. According to the results, two sunscreen formulas representing W/O and O/W types that mostly enhanced PFAS dermal absorption were then selected for a subsequent 30 day in vivo exposure experiment in mice. PBTK models were successfully established based on the time-dependent PFAS concentrations in mouse tissues (R2 = 0.885-0.947) and validated through another 30 day repeated exposure experiment in mice using two commercially available sunscreens containing PFASs (R2 = 0.809-0.835). The PBTK model results suggest that applying sunscreen of the same amount on a larger skin area is more conducive to PFAS permeation, thus enhancing the exposure risk. This emphasizes the need for caution in practical sunscreen application scenarios, particularly during the summer months.
Collapse
Affiliation(s)
- Qiaoying Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kaiyuan Ma
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
9
|
Wang Y, Zhang J, Zhang J, Hou M, Kong L, Lin X, Xu J, Yan C, Lin F, Ke S. Association between per- and polyfluoroalkyl substances exposure and prevalence of chronic obstructive pulmonary disease: The mediating role of serum albumin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171742. [PMID: 38494022 DOI: 10.1016/j.scitotenv.2024.171742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND No study has examined the association between per- and polyfluoroalkyl substances (PFAS) exposure and chronic obstructive pulmonary disease (COPD) risk. This study aims to explore this relationship. METHODS This study enrolled 4541 individuals who had available data on PFAS, COPD, and covariates from NHANES 2007-2018. Serum PFAS including perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) were analyzed, because of high detective rates. Considering the skew distribution of PFAS levels, the natural logarithm-transformed PFAS (Ln-PFAS) was used. Logistic regression analysis, restricted cubic spline (RCS), and weighted quantile sum (WQS) regression were performed to explore the single, nonlinear, and mixed effects. A mediating analysis was used to evaluate the mediated effects of albumin. RESULTS Individuals with COPD had higher levels of PFHxS, PFNA, PFOA, and PFOS compared to those without COPD. Ln-PFNA (OR males: 1.92, 95 % CI:1.31 to 2.80, P: <0.001; OR females: 1.07, 95 % CI: 0.81 to 1.40, P: 0.636) and ln-PFOA (OR males: 2.17, 95 % CI:1.38 to 3.41, P: <0.001; OR females: 1.49, 95 % CI: 1.08 to 2.05, P: 0.016) were associated with COPD risk especially in males. The interaction between PFNA exposure and sex on COPD risk was significant (P interaction: <0.001). The RCS curve demonstrated the nonlinear relationship between the ln-PFOA (P nonlinear:0.001), ln-PFNA (P nonlinear:0.045), and COPD risk in males. WQS analysis showed mixed PFAS exposure was correlated with COPD risk in males (OR: 1.44, 95 % CI:1.18 to 1.75, P: <0.001). Albumin mediated the relationship between PFOA and COPD (mediated proportion: -17.94 %). CONCLUSION This study concludes PFOA and PFNA are linked to a higher COPD risk in males, and serum albumin plays a mediating role in the relationship between PFOA and COPD. Thess findings are beneficial for the prevention of COPD. Further studies are required to explore potential mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingwen Zhang
- Department of Psychological Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Jiaxian Zhang
- Department of Plastic and Aesthetic Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Miao Hou
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Lingkun Kong
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiong Lin
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Jinxin Xu
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Chun Yan
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Fan Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
Green MP, Shearer C, Patrick R, Kabiri S, Rivers N, Nixon B. The perils of poly- and perfluorinated chemicals on the reproductive health of humans, livestock, and wildlife. Reprod Fertil Dev 2024; 36:RD24034. [PMID: 38744493 DOI: 10.1071/rd24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a prominent class of persistent synthetic compound. The widespread use of these substances in various industrial applications has resulted in their pervasive contamination on a global scale. It is therefore concerning that PFAS have a propensity to accumulate in bodily tissues whereupon they have been linked with a range of adverse health outcomes. Despite this, the true extent of the risk posed by PFAS to humans, domestic animals, and wildlife remains unclear. Addressing these questions requires a multidisciplinary approach, combining the fields of chemistry, biology, and policy to enable meaningful investigation and develop innovative remediation strategies. This article combines the perspectives of chemists, soil scientists, reproductive biologists, and health policy researchers, to contextualise the issue of PFAS contamination and its specific impact on reproductive health. The purpose of this article is to describe the challenges associated with remediating PFAS-contaminated soils and waters and explore the consequences of PFAS contamination on health and reproduction. Furthermore, current actions to promote planetary health and protect ecosystems are presented to instigate positive social change among the scientific community.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Cameron Shearer
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, SA 5005, Australia
| | - Rebecca Patrick
- School of Health and Social Development, Faculty of Health, Deakin University, Geelong, Vic. 3220, Australia
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, Glen Osmond, SA 5064, Australia
| | - Nicola Rivers
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Vic. 3168, Australia
| | - Brett Nixon
- Hunter Medical Research Institute Research Program in Infertility and Reproduction, New Lambton Heights, NSW 2305, Australia; and School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
11
|
Yu H, Wu L, Xuan D, Peng Q, Qu W, Zhou Y. Development and validation of a GC-MS/MS method for the determination of iodoacetic acid in biological samples. Anal Bioanal Chem 2024; 416:3185-3194. [PMID: 38568233 DOI: 10.1007/s00216-024-05266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 05/05/2024]
Abstract
Iodoacetic acid (IAA) is a halogenated disinfection by-product of growing concern due to its high cytotoxicity, genotoxicity, endocrine disruptor effects, and potential carcinogenicity. However, the data on distribution and excretion of IAA after ingestion by mammals are still scarce. Here, we developed a reliable and validated method for detecting IAA in biological specimens (plasma, urine, feces, liver, kidney, and tissues) based on modified QuEChERS sample preparation combined with gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS). The detection method for IAA exhibited satisfactory recovery rates (62.6-108.0%) with low relative standard deviations (RSD < 12.3%) and a low detection limit for all biological matrices ranging from 0.007 to 0.032 ng/g. The study showed that the proposed method was reliable and reproducible for analyzing IAA in biological specimens. It was successfully used to detect IAA levels in biological samples from rats given gavage administration. The results indicated that IAA was found in various tissues and organs, including plasma, thyroid, the liver, the kidney, the spleen, gastrointestinal tract, and others, 6 h after exposure. This study provides the first data on the in vivo distribution in and excretion of IAA by mammals following oral exposure.
Collapse
Affiliation(s)
- Hanning Yu
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Linying Wu
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Dongliang Xuan
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Qian Peng
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Weidong Qu
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China.
- School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Ying Zhou
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China.
- School of Public Health, Fudan University, Shanghai, 200032, China.
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China.
- Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China.
| |
Collapse
|