1
|
González I, Maldonado-Agurto R. The role of cellular senescence in endothelial dysfunction and vascular remodelling in arteriovenous fistula maturation. J Physiol 2025. [PMID: 39977444 DOI: 10.1113/jp287387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Haemodialysis (HD) is often required for patients with end-stage renal disease. Arteriovenous fistulas (AVFs), a surgical procedure connecting an artery to a vein, are the preferred vascular access for HD due to their durability and lower complication rates. The aim of AVFs is to promote vein remodelling to accommodate increased blood flow needed for dialysis. However, many AVFs fail to mature properly, making them unsuitable for dialysis. Successful maturation requires remodelling, resulting in an increased luminal diameter and thickened walls to support the increased blood flow. After AVF creation, haemodynamic changes due to increased blood flow on the venous side of the AVF initiate a cascade of events that, when successful, lead to the proper maturation of the AVF, making it suitable for cannulation. In this process, endothelial cells play a crucial role since they are in direct contact with the frictional forces exerted by the blood, known as shear stress. Patients requiring HD often have other conditions that increase the burden of senescent cells, such as ageing, diabetes and hypertension. These senescent cells are characterized by irreversible growth arrest and the secretion of pro-inflammatory and pro-thrombotic factors, collectively known as the senescence-associated secretory phenotype (SASP). This accumulation can impair vascular function by promoting inflammation, reducing vasodilatation, and increasing thrombosis risk, thus hindering proper AVF maturation and function. This review explores the contribution of senescent endothelial cells to AVF maturation and explores potential therapeutic strategies to alleviate the effects of senescent cell accumulation, aiming to improve AVF maturation rates.
Collapse
Affiliation(s)
- Ignacia González
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
2
|
Ricardo-da-Silva FY, Armstrong-Jr R, Ramos MMDA, Vidal-Dos-Santos M, Jesus Correia C, Ottens PJ, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. Male versus female inflammatory response after brain death model followed by ex vivo lung perfusion. Biol Sex Differ 2024; 15:11. [PMID: 38287395 PMCID: PMC10826050 DOI: 10.1186/s13293-024-00581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) is a useful tool for assessing lung grafts quality before transplantation. Studies indicate that donor sex is as an important factor for transplant outcome, as females present higher inflammatory response to brain death (BD) than males. Here, we investigated sex differences in the lungs of rats subjected to BD followed by EVLP. METHODS Male and female Wistar rats were subjected to BD, and as controls sham animals. Arterial blood was sampled for gas analysis. Heart-lung blocks were kept in cold storage (1 h) and normothermic EVLP carried out (4 h), meanwhile ventilation parameters were recorded. Perfusate was sampled for gas analysis and IL-1β levels. Leukocyte infiltration, myeloperoxidase presence, IL-1β gene expression, and long-term release in lung culture (explant) were evaluated. RESULTS Brain dead females presented a low lung function after BD, compared to BD-males; however, at the end of the EVLP period oxygenation capacity decreased in all BD groups. Overall, ventilation parameters were maintained in all groups. After EVLP lung infiltrate was higher in brain dead females, with higher neutrophil content, and accompanied by high IL-1β levels, with increased gene expression and concentration in the culture medium (explant) 24 h after EVLP. Female rats presented higher lung inflammation after BD than male rats. Despite maintaining lung function and ventilation mechanics parameters for 4 h, EVLP was not able to alter this profile. CONCLUSION In this context, further studies should focus on therapeutic measures to control inflammation in donor or during EVLP to increase lung quality.
Collapse
Affiliation(s)
- Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
| | - Roberto Armstrong-Jr
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Mayara Munhoz de Assis Ramos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marina Vidal-Dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Cristiano Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
| | - Petra J Ottens
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil.
| |
Collapse
|
3
|
Shu L, Yuan Z, Li F, Cai Z. Oxidative stress and valvular endothelial cells in aortic valve calcification. Biomed Pharmacother 2023; 163:114775. [PMID: 37116353 DOI: 10.1016/j.biopha.2023.114775] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
Calcified aortic valve disease (CAVD) is a common cardiovascular disease in elderly individuals. Although it was previously considered a degenerative disease, it is, in fact, a progressive disease involving multiple mechanisms. Aortic valve endothelial cells, which cover the outermost layer of the aortic valve and are directly exposed to various pathogenic factors, play a significant role in the onset and progression of CAVD. Hemodynamic changes can directly damage the structure and function of valvular endothelial cells (VECs). This leads to inflammatory infiltration and oxidative stress, which promote the progression of CAVD. VECs can regulate the pathological differentiation of valvular interstitial cells (VICs) through NO and thus affect the process of CAVD. Under the influence of pathological factors, VECs can also be transformed into VICs through EndMT, and then the pathological differentiation of VICs eventually leads to the formation of calcification. This review discusses the role of VECs, especially the role of oxidative stress in VECs, in the process of aortic valve calcification.
Collapse
Affiliation(s)
- Li Shu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Zhen Yuan
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Zhejun Cai
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
4
|
The Haemodynamic and Pathophysiological Mechanisms of Calcific Aortic Valve Disease. Biomedicines 2022; 10:biomedicines10061317. [PMID: 35740339 PMCID: PMC9220142 DOI: 10.3390/biomedicines10061317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
|
5
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
7
|
Loppi S, Kolosowska N, Kärkkäinen O, Korhonen P, Huuskonen M, Grubman A, Dhungana H, Wojciechowski S, Pomeshchik Y, Giordano M, Kagechika H, White A, Auriola S, Koistinaho J, Landreth G, Hanhineva K, Kanninen K, Malm T. HX600, a synthetic agonist for RXR-Nurr1 heterodimer complex, prevents ischemia-induced neuronal damage. Brain Behav Immun 2018; 73:670-681. [PMID: 30063972 PMCID: PMC8543705 DOI: 10.1016/j.bbi.2018.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 01/16/2023] Open
Abstract
Ischemic stroke is amongst the leading causes of death and disabilities. The available treatments are suitable for only a fraction of patients and thus novel therapies are urgently needed. Blockage of one of the cerebral arteries leads to massive and persisting inflammatory reaction contributing to the nearby neuronal damage. Targeting the detrimental pathways of neuroinflammation has been suggested to be beneficial in conditions of ischemic stroke. Nuclear receptor 4A-family (NR4A) member Nurr1 has been shown to be a potent modulator of harmful inflammatory reactions, yet the role of Nurr1 in cerebral stroke remains unknown. Here we show for the first time that an agonist for the dimeric transcription factor Nurr1/retinoid X receptor (RXR), HX600, reduces microglia expressed proinflammatory mediators and prevents inflammation induced neuronal death in in vitro co-culture model of neurons and microglia. Importantly, HX600 was protective in a mouse model of permanent middle cerebral artery occlusion and alleviated the stroke induced motor deficits. Along with the anti-inflammatory capacity of HX600 in vitro, treatment of ischemic mice with HX600 reduced ischemia induced Iba-1, p38 and TREM2 immunoreactivities, protected endogenous microglia from ischemia induced death and prevented leukocyte infiltration. These anti-inflammatory functions were associated with reduced levels of brain lysophosphatidylcholines (lysoPCs) and acylcarnitines, metabolites related to proinflammatory events. These data demonstrate that HX600 driven Nurr1 activation is beneficial in ischemic stroke and propose that targeting Nurr1 is a novel candidate for conditions involving neuroinflammatory component.
Collapse
Affiliation(s)
- S. Loppi
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - N. Kolosowska
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - O. Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - P. Korhonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - M. Huuskonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - A. Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia
| | - H. Dhungana
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - S. Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Y. Pomeshchik
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - M. Giordano
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - H. Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - A. White
- Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Qld 4006, Australia
| | - S. Auriola
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - J. Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - G. Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - K. Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - K. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - T. Malm
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland,Corresponding author at: A. I. Virtanen Institute for Molecular Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland. (T. Malm)
| |
Collapse
|
8
|
Abstract
SIGNIFICANCE Currently, calcific aortic valve disease (CAVD) is only treatable through surgical intervention because the specific mechanisms leading to the disease remain unclear. In this review, we explore the forces and structure of the valve, as well as the mechanosensors and downstream signaling in the valve endothelium known to contribute to inflammation and valve dysfunction. RECENT ADVANCES While the valvular structure enables adaptation to dynamic hemodynamic forces, these are impaired during CAVD, resulting in pathological systemic changes. Mechanosensing mechanisms-proteins, sugars, and membrane structures-at the surface of the valve endothelial cell relay mechanical signals to the nucleus. As a result, a large number of mechanosensitive genes are transcribed to alter cellular phenotype and, ultimately, induce inflammation and CAVD. Transforming growth factor-β signaling and Wnt/β-catenin have been widely studied in this context. Importantly, NADPH oxidase and reactive oxygen species/reactive nitrogen species signaling has increasingly been recognized to play a key role in the cellular response to mechanical stimuli. In addition, a number of valvular microRNAs are mechanosensitive and may regulate the progression of CAVD. CRITICAL ISSUES While numerous pathways have been described in the pathology of CAVD, no treatment options are available to avoid surgery for advanced stenosis and calcification of the aortic valve. More work must be focused on this issue to lead to successful therapies for the disease. FUTURE DIRECTIONS Ultimately, a more complete understanding of the mechanisms within the aortic valve endothelium will lead us to future therapies important for treatment of CAVD without the risks involved with valve replacement or repair. Antioxid. Redox Signal. 25, 401-414.
Collapse
Affiliation(s)
- Joan Fernández Esmerats
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| | - Jack Heath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| | - Hanjoong Jo
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
9
|
The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys 2015; 591:111-31. [PMID: 26686737 DOI: 10.1016/j.abb.2015.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is the leading cause of morbidity and mortality in the U.S., and is a multifactorial disease that preferentially occurs in regions of the arterial tree exposed to disturbed blood flow. The detailed mechanisms by which d-flow induces atherosclerosis involve changes in the expression of genes, epigenetic patterns, and metabolites of multiple vascular cells, especially endothelial cells. This review presents an overview of endothelial mechanobiology and its relation to the pathogenesis of atherosclerosis with special reference to the anatomy of the artery and the underlying fluid mechanics, followed by a discussion of a variety of experimental models to study the role of fluid mechanics and atherosclerosis. Various in vitro and in vivo models to study the role of flow in endothelial biology and pathobiology are discussed in this review. Furthermore, strategies used for the global profiling of the genome, transcriptome, miR-nome, DNA methylome, and metabolome, as they are important to define the biological and pathophysiological mechanisms of atherosclerosis. These "omics" approaches, especially those which derive data based on a single animal model, provide unprecedented opportunities to not only better understand the pathophysiology of atherosclerosis development in a holistic and integrative manner, but also to identify novel molecular and diagnostic targets.
Collapse
|
10
|
Ehnes DD, Price FD, Shrive NG, Hart DA, Rancourt DE, zur Nieden NI. Embryonic stem cell-derived osteocytes are capable of responding to mechanical oscillatory hydrostatic pressure. J Biomech 2015; 48:1915-21. [PMID: 25936968 DOI: 10.1016/j.jbiomech.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 11/28/2022]
Abstract
Osteoblasts can be derived from embryonic stem cells (ESCs) by a 30 day differentiation process, whereupon cells spontaneously differentiate upon removal of LIF and respond to exogenously added 1,25α(OH)2 vitamin D3 with enhanced matrix mineralization. However, bone is a load-bearing tissue that has to perform under dynamic pressure changes during daily movement, a capacity that is executed by osteocytes. At present, it is unclear whether ESC-derived osteogenic cultures contain osteocytes and whether these are capable of responding to a relevant cyclic hydrostatic compression stimulus. Here, we show that ESC-osteoblastogenesis is followed by the generation of osteocytes and then mechanically load ESC-derived osteogenic cultures in a compression chamber using a cyclic loading protocol. Following mechanical loading of the cells, iNOS mRNA was upregulated 31-fold, which was consistent with a role for iNOS as an immediate early mechanoresponsive gene. Further analysis of matrix and bone-specific genes suggested a cellular response in favor of matrix remodeling. Immediate iNOS upregulation also correlated with a concomitant increase in Ctnnb1 and Tcf7l2 mRNAs along with increased nuclear TCF transcriptional activity, while the mRNA for the repressive Tcf7l1 was downregulated, providing a possible mechanistic explanation for the noted matrix remodeling. We conclude that ESC-derived osteocytes are capable of responding to relevant mechanical cues, at least such that mimic oscillatory compression stress, which not only provides new basic understanding, but also information that likely will be important for their use in cell-based regenerative therapies.
Collapse
Affiliation(s)
- D D Ehnes
- University of California Riverside, Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - F D Price
- The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - N G Shrive
- McCaig Institute for Bone and Joint Health, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - D A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - D E Rancourt
- The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - N I zur Nieden
- University of California Riverside, Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, 1113 Biological Sciences Building, Riverside, CA 92521, USA; The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
11
|
Davis CA, Zambrano S, Anumolu P, Allen ACB, Sonoqui L, Moreno MR. Device-Based In Vitro Techniques for Mechanical Stimulation of Vascular Cells: A Review. J Biomech Eng 2015; 137:040801. [DOI: 10.1115/1.4029016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/07/2014] [Indexed: 01/19/2023]
Abstract
The most common cause of death in the developed world is cardiovascular disease. For decades, this has provided a powerful motivation to study the effects of mechanical forces on vascular cells in a controlled setting, since these cells have been implicated in the development of disease. Early efforts in the 1970 s included the first use of a parallel-plate flow system to apply shear stress to endothelial cells (ECs) and the development of uniaxial substrate stretching techniques (Krueger et al., 1971, “An in Vitro Study of Flow Response by Cells,” J. Biomech., 4(1), pp. 31–36 and Meikle et al., 1979, “Rabbit Cranial Sutures in Vitro: A New Experimental Model for Studying the Response of Fibrous Joints to Mechanical Stress,” Calcif. Tissue Int., 28(2), pp. 13–144). Since then, a multitude of in vitro devices have been designed and developed for mechanical stimulation of vascular cells and tissues in an effort to better understand their response to in vivo physiologic mechanical conditions. This article reviews the functional attributes of mechanical bioreactors developed in the 21st century, including their major advantages and disadvantages. Each of these systems has been categorized in terms of their primary loading modality: fluid shear stress (FSS), substrate distention, combined distention and fluid shear, or other applied forces. The goal of this article is to provide researchers with a survey of useful methodologies that can be adapted to studies in this area, and to clarify future possibilities for improved research methods.
Collapse
Affiliation(s)
- Caleb A. Davis
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120 e-mail:
| | - Steve Zambrano
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120 e-mail:
| | - Pratima Anumolu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120 e-mail:
| | - Alicia C. B. Allen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1801 e-mail:
| | - Leonardo Sonoqui
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120 e-mail:
| | - Michael R. Moreno
- Department of Mechanical Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3123 e-mail:
| |
Collapse
|
12
|
Yousfi N, Pruvot B, Lopez T, Magadoux L, Franche N, Pichon L, Salvadori F, Solary E, Garrido C, Laurens V, Chluba J. The impact of tumor nitric oxide production on VEGFA expression and tumor growth in a zebrafish rat glioma xenograft model. PLoS One 2015; 10:e0120435. [PMID: 25768009 PMCID: PMC4359111 DOI: 10.1371/journal.pone.0120435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 12/17/2022] Open
Abstract
To investigate the effect of nitric oxide on tumor development, we established a rat tumor xenograft model in zebrafish embryos. The injected tumor cells formed masses in which nitric oxide production could be detected by the use of the cell-permeant DAF-FM-DA (diaminofluorophore 4-amino-5-methylamino-2’-7’-difluorofluorescein diacetate) and DAR-4M-AM (diaminorhodamine-4M). This method revealed that nitric oxide production could be co-localized with the tumor xenograft in 46% of the embryos. In 85% of these embryos, tumors were vascularized and blood vessels were observed on day 4 post injection. Furthermore, we demonstrated by qRT-PCR that the transplanted glioma cells highly expressed Nos2, Vegfa and Cyclin D1 mRNA. In the xenografted embryos we also found increased zebrafish vegfa expression. Glioma and zebrafish derived Vegfa and tumor Cyclin D1 expression could be down regulated by the nitric oxide scavenger 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or CPTIO. We conclude that even if there is a heterogeneous nitric oxide production by the xenografted glioma cells that impacts Vegfa and Cyclin D1 expression levels, our results suggest that reduction of nitric oxide levels by nitric oxide scavenging could be an efficient approach to treat glioma.
Collapse
Affiliation(s)
- Nadhir Yousfi
- INSERM, UMR 866, 'Equipe Labellisée Ligue Contre le Cancer’, Dijon, France
- University of Burgundy, UFR SVTE, Dijon, France
| | | | - Tatiana Lopez
- INSERM, UMR 866, 'Equipe Labellisée Ligue Contre le Cancer’, Dijon, France
- University of Burgundy, UFR SVTE, Dijon, France
| | - Lea Magadoux
- EA 7269, Ecole Pratique des Hautes Etudes, Dijon, France
| | | | | | | | - Eric Solary
- INSERM U1009, Institut Gustave Roussy, Paris, France
| | - Carmen Garrido
- INSERM, UMR 866, 'Equipe Labellisée Ligue Contre le Cancer’, Dijon, France
| | - Véronique Laurens
- University of Burgundy, UFR SVTE, Dijon, France
- EA 7269, Ecole Pratique des Hautes Etudes, Dijon, France
| | - Johanna Chluba
- INSERM, UMR 866, 'Equipe Labellisée Ligue Contre le Cancer’, Dijon, France
- University of Burgundy, UFR SVTE, Dijon, France
- * E-mail:
| |
Collapse
|
13
|
Mao X, Xie L, Greenberg RB, Greenberg JB, Peng B, Mieling I, Jin K, Greenberg DA. Flow-induced regulation of brain endothelial cells in vitro. Vascul Pharmacol 2014; 62:82-7. [DOI: 10.1016/j.vph.2014.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/31/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
14
|
Firasat S, Hecker M, Binder L, Asif AR. Advances in endothelial shear stress proteomics. Expert Rev Proteomics 2014; 11:611-9. [DOI: 10.1586/14789450.2014.933673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Perfusion flow enhances osteogenic gene expression and the infiltration of osteoblasts and endothelial cells into three-dimensional calcium phosphate scaffolds. Int J Biomater 2012; 2012:915620. [PMID: 22988460 PMCID: PMC3440867 DOI: 10.1155/2012/915620] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/04/2012] [Indexed: 01/08/2023] Open
Abstract
Maintaining cellular viability in vivo and in vitro is a critical issue in three-dimensional bone tissue engineering. While the use of osteoblast/endothelial cell cocultures on three-dimensional constructs has shown promise for increasing in vivo vascularization, in vitro maintenance of cellular viability remains problematic. This study used perfusion flow to increase osteogenic and angiogenic gene expression, decrease hypoxic gene expression, and increase cell and matrix coverage in osteoblast/endothelial cell co-cultures. Mouse osteoblast-like cells (MC3T3-E1) were cultured alone and in co-culture with mouse microvascular endothelial cells (EOMA) on three-dimensional scaffolds for 1, 2, 7, and 14 days with or without perfusion flow. mRNA levels were determined for several osteogenic, angiogenic, and hypoxia-related genes, and histological analysis was performed. Perfusion flow downregulated hypoxia-related genes (HIF-1α, VEGF, and OPN) at early timepoints, upregulated osteogenic genes (ALP and OCN) at 7 days, and downregulated RUNX-2 and VEGF mRNA at 14 days in osteoblast monocultures. Perfusion flow increased cell number, coverage of the scaffold perimeter, and matrix area in the center of scaffolds at 14 days. Additionally, perfusion flow increased the length of endothelial cell aggregations within co-cultures. These suggest perfusion stimulated co-cultures provide a means of increasing osteogenic and angiogenic activity.
Collapse
|
16
|
Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 2012; 125:3061-73. [PMID: 22797927 DOI: 10.1242/jcs.093005] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Viaro F, Capellini VK, Celotto AC, Carlotti CG, Rodrigues AJ, Reis GS, dos Santos Augusto V, Evora PRB. Immunohistochemical evaluation of three nitric oxide synthase isoforms in human saphenous vein exposed to different degrees of distension pressures. Cardiovasc Pathol 2010; 19:e211-20. [DOI: 10.1016/j.carpath.2009.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 10/19/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022] Open
|
18
|
Aoki T, Nishimura M. Molecular mechanism of cerebral aneurysm formation focusing on NF-κB as a key mediator of inflammation. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12573-010-0021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Guo X, Kassab GS. Role of shear stress on nitrite and NOS protein content in different size conduit arteries of swine. Acta Physiol (Oxf) 2009; 197:99-106. [PMID: 19432590 DOI: 10.1111/j.1748-1716.2009.01999.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Inherent fundamental difference exists among arteries of different sizes. The purpose of this study was to evaluate the relation between regional difference of wall shear stress (WSS) in various sizes arteries and contents of nitrite and NO synthase (NOS) isoforms. METHODS Five different conduit arteries in a wide range of diameter (1-8 mm) were examined in the hind limbs of 13 pigs. Blood flow rate and outer diameter were measured in vivo to determine WSS. Arterial tissues were harvested for the measurement of nitrite and NOS protein contents. The concentration of nitrite, a product of NO synthesis, was determined by high-performance liquid chromatography method. Western blot analysis was used to assess the protein contents of endothelial NOS (eNOS), inducible NOS (iNOS) and neuronal NOS (nNOS). RESULTS Our data show that WSS increases with a decrease in artery diameter. Nitrite level increases with increasing WSS and hence decreases with artery diameter. The eNOS protein contents decrease with an increase in diameter. No significant difference for iNOS and nNOS protein contents was found with different artery diameter. A significant positive correlation between tissue nitrite and eNOS protein contents was also observed. Finally, the WSS-normalized eNOS is not significantly different in various size vessels. CONCLUSION Regional difference in blood flow has no effect on iNOS and nNOS protein contents in these conduit arteries. Regional difference in eNOS expression and nitrite contents may be related to the WSS-induced NO by the endothelium under normal physiological conditions.
Collapse
Affiliation(s)
- X Guo
- Department of Biomedical Engineering, Surgery, and Cellular and Integrative Physiology, IUPUI, Indianapolis, IN, USA
| | | |
Collapse
|
20
|
|
21
|
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009; 89:481-534. [PMID: 19342613 DOI: 10.1152/physrev.00042.2007] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production in response to flow-dependent shear forces applied on the surface of endothelial cells is a fundamental mechanism of regulation of vascular tone, peripheral resistance, and tissue perfusion. This implicates the concerted action of multiple upstream "mechanosensing" molecules reversibly assembled in signalosomes recruiting endothelial nitric oxide synthase (eNOS) in specific subcellular locales, e.g., plasmalemmal caveolae. Subsequent short- and long-term increases in activity and expression of eNOS translate this mechanical stimulus into enhanced NO production and bioactivity through a complex transcriptional and posttranslational regulation of the enzyme, including by shear-stress responsive transcription factors, oxidant stress-dependent regulation of transcript stability, eNOS regulatory phosphorylations, and protein-protein interactions. Notably, eNOS expressed in cardiac myocytes is amenable to a similar regulation in response to stretching of cardiac muscle cells and in part mediates the length-dependent increase in cardiac contraction force. In addition to short-term regulation of contractile tone, eNOS mediates key aspects of cardiac and vascular remodeling, e.g., by orchestrating the mobilization, recruitment, migration, and differentiation of cardiac and vascular progenitor cells, in part by regulating the stabilization and transcriptional activity of hypoxia inducible factor in normoxia and hypoxia. The continuum of the influence of eNOS in cardiovascular biology explains its growing implication in mechanosensitive aspects of integrated physiology, such as the control of blood pressure variability or the modulation of cardiac remodeling in situations of hemodynamic overload.
Collapse
Affiliation(s)
- J-L Balligand
- Unit of Pharmacology and Therapeutics, Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
22
|
Sun Y, Carretero OA, Xu J, Rhaleb NE, Yang JJ, Pagano PJ, Yang XP. Deletion of inducible nitric oxide synthase provides cardioprotection in mice with 2-kidney, 1-clip hypertension. Hypertension 2008; 53:49-56. [PMID: 19001185 DOI: 10.1161/hypertensionaha.108.121822] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible NO synthase (iNOS) has been implicated in the pathogenesis of hypertension and target organ damage. We hypothesized that induction of iNOS contributes to left ventricular (LV) hypertrophy and dysfunction in mice with 2-kidney, 1-clip hypertension. Deletion of iNOS diminishes oxidative stress, thereby attenuating LV hypertrophy and enhancing cardiac performance. 2-Kidney, 1-clip hypertension was induced in mice lacking iNOS and wild-type controls (C57BL/6J). Sham-clipped mice served as controls. Systolic blood pressure was measured weekly by tail cuff. Left ventricular ejection fraction (by echocardiography) and cardiac response (maximum and minimum dP/dt, as well as an indicator of isovolumic contraction) to isoproterenol (50 ng per mouse, i.v.) were studied at the end of the experiment. 4-Hydroxy-2-nonenal (a byproduct of lipid peroxidation and an indicator of oxidative stress) was measured by immunohistochemical staining. gp91(phox), endothelial NO synthase, and iNOS protein expression were determined by Western blot. We found that systolic blood pressure, LV weight, myocyte cross-sectional area, interstitial collagen fraction, ejection fraction, and cardiac response to isoproterenol did not differ between strains with sham clipping. 2-Kidney, 1-clip hypertension increased systolic blood pressure, LV weight, myocyte cross-sectional area, and interstitial collagen fraction similarly in both strains. However, in mice lacking iNOS, maximum and minimum dP/dt, as well as an indicator of isovolumic contraction, markedly increased in response to isoproterenol, associated with decreased cardiac 4-hydroxy-2-nonenal expression and urinary nitrate/nitrite. We concluded that deletion of iNOS does not seem to play a significant role in preventing 2-kidney, 1-clip hypertension-induced hypertension and cardiac hypertrophy; however, it does enhance preservation of cardiac function, probably because of a reduction of iNOS-induced oxidative stress.
Collapse
Affiliation(s)
- Ying Sun
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Mich 48202-2689, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Successful lower extremity angioplasty improves brachial artery flow-mediated dilation in patients with peripheral arterial disease. J Vasc Surg 2008; 48:1211-6. [DOI: 10.1016/j.jvs.2008.06.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 12/22/2022]
|
24
|
Abstract
The most common and widely transplanted tissue worldwide is blood. But concerns about safety and adequacy of blood transfusion have fostered 20 years of research into blood substitutes such as oxygen carriers based on modified hemoglobin (Hb). Chemically modified or genetically engineered Hb developed as oxygen therapeutics are designed to restore blood volume and to correct oxygen deficit due to ischemia in a variety of clinical settings. Uncontrolled oxidative reactions mediated by large amounts of cell-free Hb and their reactions with various oxidant/antioxidant and cell signalling systems emerge as an important pathway of toxicity. Hemoglobin can react with oxygen and NO, leading to the production of reactive oxygen or nitrogen species. Inside the bloodstream, oxidized Hb and ROS/RNS are in direct contact with endothelial cells (EC). Thus, chain reactions may trigger molecular and cellular biology, causing oxidative stress-related pathologies. This editorial presents an overview of interactions between Hb (modified or not) and EC. We also propose a wide range of techniques and methods to assess oxidative stress and inflammation responses of EC after exposure to Hb. This editorial can serve as a guide to evaluate in vitro toxicity of new Hb molecules.
Collapse
|
25
|
Riganti C, Costamagna C, Doublier S, Miraglia E, Polimeni M, Bosia A, Ghigo D. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress. Toxicol Appl Pharmacol 2008; 228:277-85. [DOI: 10.1016/j.taap.2007.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/01/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
|
26
|
Wang XL, Fu A, Raghavakaimal S, Lee HC. Proteomic analysis of vascular endothelial cells in response to laminar shear stress. Proteomics 2007; 7:588-596. [PMID: 17309104 DOI: 10.1002/pmic.200600568] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Isotope-coded affinity tags (cICAT) coupled with mass spectrometric analysis is one of the leading technologies for quantitative proteomic profiling and protein quantification. We performed proteomic analysis of bovine aortic endothelial cells (BAEC) in response to laminar shear stress using cICAT labeling coupled with LC-MS/MS. Protein expressions in BAEC under 15 dynes/cm2 of shear stress for 10 min, 3 h, and 6 h were compared with matched stationary controls. Analysis of each sample produced 1800-2400 proteins at >or=75% confidence level. We found 142, 213, and 186 candidate proteins that were up- or down-regulated by at least two-fold after 10 min, 3 h, and 6 h of shear stress, respectively. Some of these proteins have known cellular functions and they encompass many signaling pathways. The signaling pathways that respond to shear stress include those of integrins, G-protein-coupled receptors, glutamate receptors, PI3K/AKT, apoptosis, Notch and cAMP-mediated signaling pathways. The validity of the mass spectrometric analysis was also confirmed by Western blot and confocal immunofluorescence microscopy. The present quantitative proteomic analysis suggests novel potential regulatory mechanisms in vascular endothelial cells in response to shear stress. These results provide preliminary footprints for further studies on the signaling mechanisms induced by shear stress.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alex Fu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Hon-Chi Lee
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
27
|
Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C. Assessment of vascular wall shear stress and implications for atherosclerotic disease. Int J Cardiol 2006; 113:12-8. [PMID: 16889847 DOI: 10.1016/j.ijcard.2006.03.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 01/14/2006] [Accepted: 03/11/2006] [Indexed: 11/30/2022]
Abstract
Mechanical characteristics of circulation and vasculature, such as blood flow in combination with geometrical features, participate in the generation of several pathophysiological processes, such as development of blood vessel structure, chronic vessel tone regulation, atherosclerosis and others. We aim to briefly describe the basic mechanical and haemodynamic phenomena related to the forces applied to arterial walls, especially shear stresses and the shear-induced physiologic and pathophysiologic processes focusing on those related to atherosclerotic disease.
Collapse
Affiliation(s)
- Theodore G Papaioannou
- Unit of Biomedical Engineering, First Department of Cardiology, Hippocration Hospital, Medical School, National and Kapodistrian University of Athens, Iak. Patatsou 13, Nea Kipseli, 113 63 Athens, Greece.
| | | | | | | | | |
Collapse
|
28
|
Galetta F, Franzoni F, Plantinga Y, Ghiadoni L, Rossi M, Prattichizzo F, Carpi A, Taddei S, Santoro G. Ambulatory blood pressure monitoring and endothelium-dependent vasodilation in the elderly athletes. Biomed Pharmacother 2006; 60:443-7. [PMID: 16904861 DOI: 10.1016/j.biopha.2006.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AIM Regular exercise is a key component of cardiovascular risk prevention strategies, because it is associated with a variety of beneficial metabolic and vascular effects that reduce mortality and the incidence of cardiovascular adverse events. Endothelium plays an important role in the local regulation of vascular tone and structure, mainly by nitric oxide (NO) synthesis and action. Aim of the present study was to evaluate in elderly athletes the effect of regular aerobic exercise on arterial blood pressure (BP) and on endothelium-dependent flow-mediated dilation (FMD) of the brachial artery. METHODS The study population included 30 male subjects (mean age 65.6+/-5.6 years), who had practiced endurance running at a competitive level for at least 40 years, and 28 age- and sex-matched subjects (mean age 64.5+/-4.5 years) with sedentary lifestyle and free of cardiovascular disease. Athletes and control subjects underwent standard 12-lead ECG, clinic BP, 24-h ambulatory BP monitoring and endothelium-dependent FMD and endothelium-independent response to glyceryl trinitrate (GTN), 400 microg, in the brachial artery by high-resolution ultrasonography. RESULTS Systolic clinic and ambulatory 24-h BP were significantly lower in the athletes, than in the controls (P<0.001, respectively). Systolic and diastolic 24-h BP variability, when assessed either by the standard deviation (S.D.), or by the coefficient of variation (CV), were also significantly lower in the athletes (P<0.01). The athletes also had a lower 24-h, day-time and night-time heart rate (HR) (P<0.01), as well as a lower HR variability (P<0.01). As regards circadian BP change, the %Delta was statistically significant greater in athletes (P<0.05). Elderly athletes showed higher FMD than elderly sedentary subjects (P<0.001), whereas no differences were shown in the response to GTN. CONCLUSIONS Our results, suggest that long-term physical activity can counteract the age-related endothelial dysfunction that characterizes sedentary aging, preserving the capacity of the endothelium-dependent vasodilation and reduces BP values improving arterial pressure control.
Collapse
Affiliation(s)
- F Galetta
- Department of Internal Medicine, University of Pisa, Via Roma 67, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Prado CM, Ramos SG, Alves-Filho JCF, Elias J, Cunha FQ, Rossi MA. Turbulent flow/low wall shear stress and stretch differentially affect aorta remodeling in rats. J Hypertens 2006; 24:503-15. [PMID: 16467654 DOI: 10.1097/01.hjh.0000209987.51606.23] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The present investigation was carried out to evaluate the relationship between local hemodynamic forces and intimal and medial remodeling in the proximal and distal segments of the arterial walls of rats in relation to severe infradiaphragmatic stenosis of the aorta. METHODS Young male rats were divided randomly into an operated group, animals submitted to surgical abdominal aorta stenosis, and a sham-operated group, a control group of animals submitted to sham operation to simulate abdominal aorta stenosis. RESULTS AND CONCLUSIONS Constricted aortas showed two distinct adaptive remodeling responses to hemodynamic stimuli induced by infradiaphragmatic coarctation. The first is remodeling in the hypertensive prestenotic segment with increased circumferential wall tension (CWT), associated with normal tensile stress, laminar flow/normal wall shear stress characterized by enlarged heterogeneous endothelial cells, elongated in the direction of the blood flow, diffusely distributed neointimal plaques, appearing as discrete bulging towards the vascular lumen and medial thickening. Our findings suggest that increased CWT caused by hypertension play a pivotal role in the remodeling of the prestenotic segment through biomechanical effects on oxidative stress and increased expression of transforming growth factor beta. The second is remodeling in the normotensive poststenotic segment with turbulent flow/low wall shear stress and normal CWT and tensile stress characterized by groups of endothelial cells with phenotypic alterations and focally distributed neointimal plaques, similar but many of them larger than those found in the prestenotic segments. Further studies are needed to determine how the mechanical forces of turbulent flow/low shear stress are detected and transduced into chemical signaling by the cells of the artery walls and then converted into pathophysiologically relevant phenotypic changes.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Biomechanical Phenomena
- Blood Pressure
- Immunohistochemistry
- Male
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Video
- Random Allocation
- Rats
- Rats, Wistar
- Ultrasonography, Doppler, Color
Collapse
Affiliation(s)
- Cibele M Prado
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Although the pathobiology of atherosclerosis is a complex multifactorial process, blood flow-induced shear stress has emerged as an essential feature of atherogenesis. This fluid drag force acting on the vessel wall is mechanotransduced into a biochemical signal that results in changes in vascular behavior. Maintenance of a physiologic, laminar shear stress is known to be crucial for normal vascular functioning, which includes the regulation of vascular caliber as well as inhibition of proliferation, thrombosis and inflammation of the vessel wall. Thus, shear stress is atheroprotective. It is also recognized that disturbed or oscillatory flows near arterial bifurcations, branch ostia and curvatures are associated with atheroma formation. Additionally, vascular endothelium has been shown to have different behavioral responses to altered flow patterns both at the molecular and cellular levels and these reactions are proposed to promote atherosclerosis in synergy with other well-defined systemic risk factors. Nonlaminar flow promotes changes to endothelial gene expression, cytoskeletal arrangement, wound repair, leukocyte adhesion as well as to the vasoreactive, oxidative and inflammatory states of the artery wall. Disturbed shear stress also influences the site selectivity of atherosclerotic plaque formation as well as its associated vessel wall remodeling, which can affect plaque vulnerability, stent restenosis and smooth muscle cell intimal hyperplasia in venous bypass grafts. Thus, shear stress is critically important in regulating the atheroprotective, normal physiology as well as the pathobiology and dysfunction of the vessel wall through complex molecular mechanisms that promote atherogenesis.
Collapse
Affiliation(s)
- Kristopher S Cunningham
- Department of Pathology, Toronto General Research Institute, University Health Network, Canada
| | | |
Collapse
|
31
|
Moriguchi J, Itoh H, Harada S, Takeda K, Hatta T, Nakata T, Sasaki S. Low Frequency Regular Exercise Improves Flow-Mediated Dilatation of Subjects with Mild Hypertension. Hypertens Res 2005; 28:315-21. [PMID: 16138561 DOI: 10.1291/hypres.28.315] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although exercise is recommended for the primary prevention of hypertension, and although it is generally known to have a beneficial effect on endothelial function, working individuals often find it difficult to maintain a consistent exercise regimen. In the present study, therefore, we examined the effects of infrequently performed exercise on flow-mediated dilatation (FMD), which is an index of endothelial function, in 15 subjects with hypertension (mild hypertensives) and 10 normotensive subjects (normotensives). All subjects performed mild bicycle exercise twice a week for 12 weeks. To assess the FMD, the diameter of the brachial artery was measured using ultrasound at baseline, during reactive hyperemia, and following sublingual administration of nitroglycerin. Measurement of these parameters was performed twice, at the beginning and the end of the exercise program. At the baseline, FMD was significantly lower in the mild hypertensives than in the normotensives. Nitroglycerin-mediated dilatation (NTG-D) was similar in the two groups. The exercise decreased blood pressure in the mild hypertensives, and increased high-density lipoprotein (HDL) cholesterol in both groups. The exercise improved FMD without altering NTG-D in the mild hypertensives, but did not result in any change in the normotensives. Multiple regression analysis revealed that the elevation in FMD was positively associated with changes in HDL cholesterol, and negatively associated with changes in plasma norepinephrine and systolic blood pressure. These findings suggest that regular exercise at a low frequency improves FMD, and thereby endothelial function, and lowers blood pressure in mild hypertensives.
Collapse
|