1
|
Fathi MA, Abdelsalam AM, Elnagar W, Elwan H, Elnesr SS. Effect of in ovo lactoferrin injection in Fayoumi chicken eggs on immune response and some physiological parameters in posthatch chicks. J Anim Physiol Anim Nutr (Berl) 2024; 108:395-402. [PMID: 37908179 DOI: 10.1111/jpn.13901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
The effects of in ovo lactoferrin (Lf) injection on some physiological parameters and immune response of posthatch chicks were investigated. Live embryonated Fayoumi chicken eggs (n = 600) were randomly allocated into four groups. The first group as a control was noninjected eggs, the second group was only injected with 0.1 mL of NaCl 0.75% solution, and the third and fourth groups were injected with 50 and 100 µL Lf dissolved in 0.1 mL saline solution respectively. The eggs were injected on Day 15 of incubation in the amnion. The results illustrated that the hatchability of eggs in two Lf groups was significantly higher than in the control, NaCl groups. The residual yolk in chicks injected with Lf (100 µL/egg) was significantly lower than the control group (p < 0.05). In ovo Lf injection improved lipid profile, liver function, antioxidant indices, blood haematology, serum immunoglobulins and jejunum histomorphometry compared to the control group (p < 0.05). In ovo injection of Lf decreased significantly (p < 0.001) of pathogenic bacteria in residual yolk such as Salmonella, Shigella and Coliform compared to the control group. In conclusion, in ovo Lf injection can improve the hatchability, lipid profile, immune response and antioxidant indices and decline pathogens in the residual yolk, thus boosting the health status of newly hatched Fayoumi chicks.
Collapse
Affiliation(s)
- Mohamed A Fathi
- Agricultural Research Centre, Animal Production Research Institute, Giza, Egypt
| | - Adel M Abdelsalam
- Agricultural Research Centre, Animal Production Research Institute, Giza, Egypt
| | - Waleed Elnagar
- Agricultural Research Centre, Animal Production Research Institute, Giza, Egypt
| | - Hamada Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
2
|
Fan L, Wang F, Yao Q, Wu H, Wen F, Wang J, Li H, Zheng N. Lactoferrin could alleviate liver injury caused by Maillard reaction products with furan ring through regulating necroptosis pathway. Food Sci Nutr 2021; 9:3449-3459. [PMID: 34262705 PMCID: PMC8269604 DOI: 10.1002/fsn3.2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022] Open
Abstract
As classical MRPs, the toxic effects of furosine, pyralline, and 5-hydroxymethylfurfural (5-HMF) in liver tissue are evaluated and the related mechanism is investigated here, and the protective effects of lactoferrin on liver injury caused by Maillard reaction products (MRPs) with furan ring are proved in vitro and in vivo. First, we detect the concentrations of furosine, pyralline, and 5-HMF in several foods using ultrahigh-performance liquid chromatography (UHPLC). Then, the effects of the three MRPs on liver cells (HL-7702) viability, as well as liver tissue, are performed and evaluated. Furthermore, the regulations of three MRPs on necroptosis-related pathway in liver cells are investigated. Additionally, the effects of lactoferrin in alleviating liver injury, as well as regulating necroptosis pathway, were evaluated. Results elucidate that lactoferrin protects liver injury caused by MRPs with furan ring structure through activating RIPK1/RIPK3/p-MLKL necroptosis pathway and downstream inflammatory reaction.
Collapse
Affiliation(s)
- Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fengen Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Haoming Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Wen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Huiying Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
3
|
Ueda K, Shimizu M, Ohashi A, Murata D, Suzuki T, Kobayashi N, Baba J, Takeuchi T, Shiga Y, Nakamura M, Kagaya S, Sato A. Albumin fusion at the N-terminus or C-terminus of human lactoferrin leads to improved pharmacokinetics and anti-proliferative effects on cancer cell lines. Eur J Pharm Sci 2020; 155:105551. [PMID: 32946958 DOI: 10.1016/j.ejps.2020.105551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/23/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022]
Abstract
Human lactoferrin (hLF), a soluble factor of the innate immune system, exhibits various biological functions and therefore has potential as a therapeutic protein. However, the clinical applications of hLF are limited by its low stability in blood. We therefore attempted to resolve this by producing recombinant hLF fused to human serum albumin (HSA). Two HSA-fused hLFs with different fusion orientations (hLF-HSA and HSA-hLF) were produced in Chinese hamster ovary (CHO) DG44 cells. hLF-HSA revealed higher thermal stability, resistance to peptic degradation, and stability during the process of cellular uptake and release in an intestinal enterocyte model (Caco-2 cells) than HSA-hLF. The lower stability of HSA-hLF is presumably due to the steric hindrance imposed by HSA fusion to the N-terminus of hLF. Both HSA fusion proteins, especially HSA-hLF, displayed improved pharmacokinetic properties despite the lower protein stability of HSA-hLF. hLF-HSA and HSA-hLF exhibited approximately 3.3- and 20.7-fold longer half-lives (64.0 and 403.6 min), respectively, than holo-rhLF (19.5 min). Both HSA fusion proteins were found to exert enhanced growth inhibition effects on cancer cells in vitro, but not normal cells. Their enhanced growth inhibitory activities were considered to be due to the synergetic effects of hLF and HSA because hLF alone or HSA alone failed to exert such an effect. Altogether, Fusion of HSA to hLF yielded superior pharmacokinetics and anti-proliferative activities against cancer cells. HSA-fused hLF is a novel candidate for further application of hLF as biopharmaceuticals for intravenous administration.
Collapse
Affiliation(s)
- Keisuke Ueda
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Maya Shimizu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Aimi Ohashi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Daisuke Murata
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Takuo Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health, Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Natsuki Kobayashi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Junpei Baba
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Takashi Takeuchi
- Department of Veterinary Medicine, Tottori University, Koyama-Minami, Tottori, 680-8553, Japan
| | - Yuki Shiga
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Masao Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Shinji Kagaya
- NRL Pharma, Inc., Kawasaki, Kanagawa, 213-0012, Japan
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
4
|
Han C, Wei Y, Wang X, Cui Y, Bao Y, Shi W. Salvia miltiorrhiza polysaccharides protect against lipopolysaccharide-induced liver injury by regulating NF-κb and Nrf2 pathway in mice. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1652250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, People’s Republic of China
| | - Yuanyuan Wei
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, People’s Republic of China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, People’s Republic of China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, People’s Republic of China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, People’s Republic of China
- Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, People’s Republic of China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, People’s Republic of China
- Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, People’s Republic of China
| |
Collapse
|
5
|
Vaillard VA, Menegon M, Neuman NI, Vaillard SE. mPEG-NHS carbonates: Effect of alkyl spacers on the reactivity: Kinetic and mechanistic insights. J Appl Polym Sci 2018. [DOI: 10.1002/app.47028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Victoria A. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CCT Santa Fe CONICET-UNL; Colectora Ruta Nacional 168, Km 472, Paraje “El Pozo” (3000), Santa Fe Argentina
| | - Malen Menegon
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CCT Santa Fe CONICET-UNL; Colectora Ruta Nacional 168, Km 472, Paraje “El Pozo” (3000), Santa Fe Argentina
| | - Nicolás I. Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CCT Santa Fe CONICET-UNL; Colectora Ruta Nacional 168, Km 472, Paraje “El Pozo” (3000), Santa Fe Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CCT Santa Fe CONICET-UNL; Colectora Ruta Nacional 168, Km 472, Paraje “El Pozo” (3000), Santa Fe Argentina
| |
Collapse
|
6
|
A S, Xu Q, Zhou D, Gao Y, Vasquez JM, Greiser U, Wang W, Liu W, Wang W. Hyperbranched PEG-based multi-NHS polymer and bioconjugation with BSA. Polym Chem 2017. [DOI: 10.1039/c6py01719c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hyperbranched PEG-based polymer with multiple NHS functional groups (>12) was successfully synthesized, which can react easily with a BSA to form a PEG/protein hydrogel that displays great potential for biomedical applications.
Collapse
Affiliation(s)
- Sigen A
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| | - Qian Xu
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| | - Yongsheng Gao
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| | - Jeddah Marie Vasquez
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| | - Udo Greiser
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| | - Wei Wang
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| | - Wenguang Liu
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
7
|
Taguchi K, Yamasaki K, Seo H, Otagiri M. Potential Use of Biological Proteins for Liver Failure Therapy. Pharmaceutics 2015; 7:255-74. [PMID: 26404356 PMCID: PMC4588199 DOI: 10.3390/pharmaceutics7030255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023] Open
Abstract
Biological proteins have unlimited potential for use as pharmaceutical products due to their various biological activities, which include non-toxicity, biocompatibility, and biodegradability. Recent scientific advances allow for the development of novel innovative protein-based products that draw on the quality of their innate biological activities. Some of them hold promising potential for novel therapeutic agents/devices for addressing hepatic diseases such as hepatitis, fibrosis, and hepatocarcinomas. This review attempts to provide an overview of the development of protein-based products that take advantage of their biological activity for medication, and discusses possibilities for the therapeutic potential of protein-based products produced through different approaches to specifically target the liver (or hepatic cells: hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) in the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Hakaru Seo
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| |
Collapse
|
8
|
Kanwar JR, Roy K, Patel Y, Zhou SF, Singh MR, Singh D, Nasir M, Sehgal R, Sehgal A, Singh RS, Garg S, Kanwar RK. Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions. Molecules 2015; 20:9703-31. [PMID: 26016555 PMCID: PMC6272382 DOI: 10.3390/molecules20069703] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/13/2015] [Indexed: 02/08/2023] Open
Abstract
Lactoferrin (Lf), an iron-binding protein from the transferrin family has been reported to have numerous functions. Even though Lf was first isolated from milk, it is also found in most exocrine secretions and in the secondary granules of neutrophils. Antimicrobial and anti-inflammatory activity reports on lactoferrin identified its significance in host defense against infection and extreme inflammation. Anticarcinogenic reports on lactoferrin make this protein even more valuable. This review is focused on the structural configuration of iron-containing and iron-free forms of lactoferrin obtained from different sources such as goat, camel and bovine. Apart for emphasizing on the specific beneficial properties of lactoferrin from each of these sources, the general antimicrobial, immunomodulatory and anticancer activities of lactoferrin are discussed here. Implementation of nanomedicinial strategies that enhance the bioactive function of lactoferrin are also discussed, along with information on lactoferrin in clinical trials.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - Kislay Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - Yogesh Patel
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| | - Muhammad Nasir
- Department of Food Science & Human Nutrition, Faculty of Bio-Sciences, University of Veterinary & Animal Sciences, Lahore, Punjab 54000, Pakistan.
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India.
| | - Alka Sehgal
- Department of Obstetrics & Gynecology, Government Medical College & Hospital, Sector 32, Chandigarh 160031, India.
| | - Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, India.
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia.
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| |
Collapse
|
9
|
Shiga Y, Oshima Y, Kojima Y, Sugimoto A, Tamaki N, Murata D, Takeuchi T, Sato A. Recombinant human lactoferrin-Fc fusion with an improved plasma half-life. Eur J Pharm Sci 2015; 67:136-143. [DOI: 10.1016/j.ejps.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/11/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022]
|
10
|
Study on the Therapeutic Benefit on Lactoferrin in Patients with Colorectal Cancer Receiving Chemotherapy. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:184278. [PMID: 27350986 PMCID: PMC4897438 DOI: 10.1155/2014/184278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/21/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022]
Abstract
A double-blinded parallel randomized controlled clinical trial was conducted on two groups of colorectal cancer patients to study the therapeutic benefit of orally administered bovine lactoferrin (bLF) on colorectal cancer patients having age ranges from 20 to 71 years and who received 5-fluorouracil and leucovorin calcium. Test group (15 patients) received oral bLF 250 mg/day beside chemotherapy for three months. Control group (15 patients) received chemotherapy only. Serum lactoferrin (LF), serum glutathione-s-transferase enzyme (GST), interferon gamma (INF-γ), tumor marker carcinoembryonic antigen (CEA), renal function tests, hepatic function tests, and complete blood count were measured for both groups before and at the end of the trial. Although, there was a significant effect of oral bLF (250 mg/day) that indicated a significant improvement in mean percent of change of all parameters 3 months after treatment, there was no significant difference between results of patients in the test group and patients in the control group after treatment. This result suggests that oral bLF has significant therapeutic effect on colorectal cancer patients. Our study suggests that daily administration of bLF showed a clinically beneficial effect to colorectal cancer patients with better disease prognosis but that needs further looking into.
Collapse
|
11
|
Redwan EM, Uversky VN, El-Fakharany EM, Al-Mehdar H. Potential lactoferrin activity against pathogenic viruses. C R Biol 2014; 337:581-595. [PMID: 25282173 DOI: 10.1016/j.crvi.2014.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Lactoferrin (LF) is an 80-kDa globular glycoprotein with high affinity for metal ions, particularly for iron. This protein possesses many biological functions, including the binding and release of iron and serves as one of the important components of the innate immune system, where it acts as a potent inhibitor of several pathogens. LF has efficacious antibacterial and antiviral activities against a wide range of Gram-positive and Gram-negative bacteria and against both naked and enveloped DNA and RNA viruses. In its antiviral pursuit, LF acts predominantly at the acute phase of the viral infection or even at the intracellular stage, as in hepatitis C virus infection. LF inhibits the entry of viral particles into host cells, either by direct attachment to the viral particles or by blocking their cellular receptors. This wide range of activities may be attributed to the capacity of LF to bind iron and its ability to interfere with the cellular receptors of both hosts and pathogenic microbes.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Biology Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, New Borg EL-Arab 21394, Alexandria, Egypt.
| | - Vladimir N Uversky
- Biology Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | - Esmail M El-Fakharany
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, New Borg EL-Arab 21394, Alexandria, Egypt.
| | - Hussein Al-Mehdar
- Biology Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
12
|
Gao L, Wang JF, Xiang M, Fan YC, Zhang ZG, Wang K. Expression of human glucocorticoid receptor in T lymphocytes in acute-on-chronic hepatitis B liver failure. Dig Dis Sci 2011; 56:2605-2612. [PMID: 21380616 DOI: 10.1007/s10620-011-1656-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/17/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glucocorticoid receptor (GR) participates in the pathogenesis of liver inflammation. However, the potential role of GR in acute-on-chronic hepatitis B liver failure (ACHBLF) is still obscure. AIM This present study was aimed to determine peripheral GR expression in ACHBLF patients. METHODS Forty patients with ACHBLF, 20 patients with chronic hepatitis B (CHB) and 16 healthy controls were included in this retrospectively study. Flow cytometry was used to determine the peripheral expression of GR + T lymphocytes. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed for assessing relative mRNA levels of GR alpha and beta isoforms in peripheral blood mononuclear cells. Serum cortisol level was evaluated using radioimmunoassay. RESULTS The serum cortisol level and the percentage of GR + T lymphocytes in ACHBLF patients were significantly decreased compared with CHB patients and healthy controls. However, there were no significant differences in mean fluorescence intensity (MFI) of GR + T lymphocytes within three groups. The relative GR alpha mRNA expression in ACHBLF patients was significant decreased compared with healthy controls. However, the relative GR beta mRNA expression in ACHBLF patients was significantly increased compared with CHB patients and healthy controls. In ACHBLF patients, the percentage of GR + T lymphocyte was significantly positively associated with relative GR alpha expression, prothrombin activity, and HBV DNA level, but negatively correlated with serum cortisol level and MELD score. Furthermore, the percentage of GR + T lymphocytes was also obviously elevated in survivors than non-survivors. CONCLUSIONS It was strongly suggested that GR play an important role in the pathogenesis of ACHBLF.
Collapse
Affiliation(s)
- Ling Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
13
|
Kato K, Tamaki N, Saito Y, Fujimoto T, Sato A. Amino Group PEGylation of Bovine Lactoferrin by Linear Polyethylene Glycol-p-nitrophenyl Active Esters. Biol Pharm Bull 2010; 33:1253-5. [DOI: 10.1248/bpb.33.1253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kanako Kato
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Naomi Tamaki
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Yoshiki Saito
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Tomohito Fujimoto
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|