1
|
Cardillo NM, Villarino NF, Lacy PA, Doggett JS, Riscoe MK, Suarez CE, Ueti MW, Chung CJ. Enhanced Anti-Babesia Efficacy of Buparvaquone and Imidocarb When Combined with ELQ-316 In Vitro Culture of Babesia bigemina. Pharmaceuticals (Basel) 2025; 18:218. [PMID: 40006032 PMCID: PMC11858768 DOI: 10.3390/ph18020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives:B. bigemina is a highly pathogenic and widely distributed tick-borne disease parasite responsible for bovine babesiosis. The development of effective and safe therapies is urgently needed for global disease control. The aim of this study is to compare the effects of endochin-like quinolone (ELQ-316), buparvaquone (BPQ), imidocarb (ID), and the combinations of ID + ELQ-316 and BPQ + ELQ-316, on in vitro survival of B. bigemina.Methods: Parasites at a starting parasitemia level of 2%, were incubated with each single drug and a combination of drugs, ranging from 25 to 1200 nM of concentration over four consecutive days. The inhibitory concentrations, 50% (IC50%) and 99% (IC99%), were estimated. Parasitemia levels were evaluated daily using microscopic examination. Data were statistically compared using the non-parametrical Kruskall-Wallis test. Results: All drugs tested significantly inhibited (p < 0.05) the growth of B. bigemina at 2% parasitemia. The combination of ID + ELQ-316 exhibited a lower mean (IC50%: 9.2; confidence interval 95%: 8.7-9.9) than ID (IC50%: 61.5; confidence interval 95%: 59.54-63.46), ELQ-316 (IC50%: 48.10; confidence interval 95%: 42.76-58.83), BPQ (IC50%: 44.66; confidence interval 95%: 43.56-45.81), and BPQ + ELQ-316 (IC50%: 27.59; confidence interval: N/A). Parasites were no longer viable in cultures treated with the BPQ + ELQ-316 combination, as well as with BPQ alone at a concentration of 1200 nM, on days 2 and 3 of treatment, respectively. Conclusions: BPQ and ID increase the babesiacidal effect of ELQ-316. The efficacy of these combinations deserves to be evaluated in vivo, which could lead to a promising and safer treatment option for B. bigemina.
Collapse
Affiliation(s)
- Natalia M. Cardillo
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Nicolas F. Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Paul A. Lacy
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.)
| | - Joseph S. Doggett
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA; (J.S.D.); (M.K.R.)
- School of Medicine, Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael K. Riscoe
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA; (J.S.D.); (M.K.R.)
- Department of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Massaro W. Ueti
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Chungwon J. Chung
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
2
|
MATSUDA N, ITO M, NUKADA Y, TOYOMA M, NAGAI K, MOTEGI T, MORITA T, YAMASAKI M. Analysis of gene expression of Babesia gibsoni cultured with diminazene aceturate using RNA sequencing. J Vet Med Sci 2025; 87:181-188. [PMID: 39756884 PMCID: PMC11830443 DOI: 10.1292/jvms.24-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025] Open
Abstract
A comprehensive and quantitative method to compare gene expression may be useful for investigating the mechanisms responsible for diminazene aceturate (DA) resistance in Babesia gibsoni. Therefore, the gene expression of B. gibsoni cultured with DA was compared with those without DA using RNA sequencing (RNA-seq). Total RNA extracted from the parasites cultured with or without DA was examined using two next-generation sequencers, the 454 GS Junior and MiniSeq systems. We aimed to detect the genes differentially expressed between parasites cultured with and without DA by mapping the reads against de novo assembled contigs. The contigs, the amounts of which were more than five-fold higher in the parasite with DA than that without DA, were searched using BLAST®, and two contigs were found as parasite genes. Real-time quantitative reverse transcription-PCR (qRT-PCR) indicated that the expression levels of both genes were significantly higher in the parasites cultured with DA than those without DA. The nucleotide sequences of two contigs established using RNA-seq were similar to those found using direct sequencing, although the 5'- and 3'-end of those sequences were different between the two sequencing methods. In conclusion, we successfully utilized RNA-seq analysis to compare gene expression between parasites cultured with and without DA. RNA-seq can be used for comprehensive and quantitative analyses of gene expression in Babesia parasites.
Collapse
Affiliation(s)
- Nami MATSUDA
- Laboratory of Veterinary Small Animal Internal Medicine,
Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate,
Japan
| | - Minori ITO
- Laboratory of Veterinary Small Animal Internal Medicine,
Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate,
Japan
| | - Yuka NUKADA
- Laboratory of Veterinary Small Animal Internal Medicine,
Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate,
Japan
| | - Miyuki TOYOMA
- Laboratory of Veterinary Small Animal Internal Medicine,
Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate,
Japan
| | - Kazuya NAGAI
- Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Tomoki MOTEGI
- Section of Computational Biomedicine, Department of
Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA,
USA
| | - Tomoya MORITA
- Laboratory of Veterinary Small Animal Internal Medicine,
Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate,
Japan
| | - Masahiro YAMASAKI
- Laboratory of Veterinary Small Animal Internal Medicine,
Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate,
Japan
| |
Collapse
|
3
|
Cardillo NM, Villarino NF, Lacy PA, Riscoe MK, Doggett JS, Ueti MW, Chung CJ, Suarez CE. The Combination of Buparvaquone and ELQ316 Exhibit a Stronger Effect than ELQ316 and Imidocarb Against Babesia bovis In Vitro. Pharmaceutics 2024; 16:1402. [PMID: 39598526 PMCID: PMC11597495 DOI: 10.3390/pharmaceutics16111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Bovine babesiosis is a vector-borne disease transmitted by ticks that causes important losses in livestock worldwide. Recent research performed on the drugs currently used to control bovine babesiosis reported several issues including drug resistance, toxicity impact, and residues in edible tissue, suggesting the need for developing novel effective therapies. The endochin-like quinolones ELQ-316 and buparvaquone (BPQ) act as cytochrome bc1 inhibitors and have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp. and Babesia microti, without showing toxicity in mammals. The objectives of this study are investigating whether ELQ-316, BPQ, and their combination treatment could be effective against Babesia bovis in an in vitro culture model and comparing with imidocarb (ID), the routinely used drug. Methods: In vitro cultured parasites starting at 2% percentage of parasitemia (PPE) were treated with BPQ, ELQ-316, ID, and the combinations of BPQ + ELQ-316 and ID + ELQ-316 at drug concentrations that ranged from 25 to 1200 nM, during four consecutive days. The IC50% and IC99% were reported. Parasitemia levels were evaluated daily using microscopic examination. Data were compared using the non-parametrical Mann-Whitney and Kruskall-Wallis test. Results: All drugs tested, whether used alone or in combination, significantly decreased the survival (p < 0.05) of B. bovis in in vitro cultures. The combination of BPQ + ELQ-316 had the lowest calculated inhibitory concentration 50% (IC50%) values, 31.21 nM (IC95%: 15.06-68.48); followed by BPQ, 77.06 nM (IC95%: 70.16-86.01); ID + ELQ316, 197 nM (IC95%:129.0-311.2); ID, 635.1 nM (IC95%: 280.9-2119); and ELQ316, 654.9 nM (IC95%: 362.3-1411). Conclusions: The results reinforce the higher efficacy of BPQ at affecting B. bovis survival and the potential synergistic effects of its combination with ELQ-316, providing a promising treatment option against B. bovis.
Collapse
Affiliation(s)
- Natalia M. Cardillo
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Estación Experimental INTA Paraná, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 2290, Argentina
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Nicolas F. Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Paul A. Lacy
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
| | - Michael K. Riscoe
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA (J.S.D.)
- Department of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joseph Stone Doggett
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA (J.S.D.)
- School of Medicine, Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Massaro W. Ueti
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Chungwon J. Chung
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Keroack CD, Elsworth B, Tennessen JA, Paul AS, Hua R, Ramirez-Ramirez L, Ye S, Moreira CK, Meyers MJ, Zarringhalam K, Duraisingh MT. Comparative chemical genomics in Babesia species identifies the alkaline phosphatase PhoD as a determinant of antiparasitic resistance. Proc Natl Acad Sci U S A 2024; 121:e2312987121. [PMID: 38377214 PMCID: PMC10907312 DOI: 10.1073/pnas.2312987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024] Open
Abstract
Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.
Collapse
Affiliation(s)
- Caroline D. Keroack
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Jacob A. Tennessen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Aditya S. Paul
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Renee Hua
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Luz Ramirez-Ramirez
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Sida Ye
- Department of Mathematics, University of Massachusetts, Boston, MA02125
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA02125
| | - Cristina K. Moreira
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Marvin J. Meyers
- Department of Chemistry, Saint Louis University, St. Louis, MO63103
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts, Boston, MA02125
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA02125
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
5
|
Koonyosying P, Srichairatanakool S, Tiwananthagorn S, Sthitmatee N. Inhibitory effects on bovine babesial infection by iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2-methylpyridin-4-one (CM1), and antimalarial drugs. Vet Parasitol 2023; 324:110055. [PMID: 37931475 DOI: 10.1016/j.vetpar.2023.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Babesiosis is an infectious disease caused by protozoa of the apicomplexan phylum, genus Babesia. It is a malaria-like parasitic disease that can be transmitted via tick bites. The apicomplexan phylum of eukaryotic microbial parasites has had detrimental impacts on human and veterinary medicine. There are only a few drugs currently available to treat this disease; however, parasitic strains that are resistant to these commercial drugs are increasing in numbers. Plasmodium and Babesia are closely related as they share similar biological features including mechanisms for host cell invasion and metabolism. Therefore, antimalarial drugs may be useful in the treatment of Babesia infections. In addition to antimalarials, iron chelators also inhibit parasite growth. In this study, we aimed to evaluate the in vitro inhibitory efficacy of iron chelator and different antimalarials in the treatment of Babesia bovis. METHODS Cytotoxicity of antimalarial drugs; pyrimethamine, artefenomel, chloroquine, primaquine, dihydroarthemisinine, and the iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1), were evaluated against Madin Darby Bovine Kidney (MDBK) cells and compared to diminazene aceturate, which is the currently available drug for animal babesiosis using an MTT solution. Afterwards, an evaluation of the in vitro growth-inhibitory effects of antimalarial drug concentrations was performed and monitored using a flow cytometer. Half maximal inhibitory concentrations (IC50) of each antimalarial and iron chelator were determined and compared to the antibabesial drug, diminazine aceturate, by interpolation using a curve-fitting technique. Subsequently, the effect of the drug combination was assessed by constructing an isobologram. Values of the sum of fractional inhibitions at 50% inhibition were then estimated. RESULTS Results indicate that all drugs tested could safely inhibit babesia parasite growth, as high as 2500 μM were non-toxic to mammalian cells. Although no drugs inhibited B. bovis more effectively than diminazine aceturate in this experiment, in vitro growth inhibition results with IC50 values of pyrimethamine 6.25 ± 2.59 μM, artefenomel 2.56 ± 0.67 μM, chloroquine 2.14 ± 0.76 μM, primaquine 22.61 ± 6.72 μM, dihydroarthemisinine 4.65 ± 0.22 μM, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1) 9.73 ± 1.90 μM, and diminazine aceturate 0.42 ± 0.01 μM, confirm that all drugs could inhibit B. bovis and could be used as alternative treatments for bovine babesial infection. Furthermore, the efficacy of a combination of the iron chelator, CM1, in combination with artefenomel dihydroarthemisinin or chloroquine, and artefenomel in combination with the iron chelator, CM1, dihydroarthemisinin or chloroquine, exhibited synergism against B. bovis in vitro. CONCLUSION Our evaluation of the inhibitory efficacy of the iron chelator CM1, antimalarial drugs, and a combination of these drugs against B. bovis could be potentially useful in the development and discovery of a novel drug for the treatment of B. bovis in the future.
Collapse
Affiliation(s)
- Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saruda Tiwananthagorn
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
6
|
Rizk MA, El-Sayed SAES, Igarashi I. Diminazene aceturate and imidocarb dipropionate-based combination therapy for babesiosis – A new paradigm. Ticks Tick Borne Dis 2023; 14:102145. [PMID: 37011497 DOI: 10.1016/j.ttbdis.2023.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 04/04/2023]
Abstract
In the present study, the effect of a combination therapy consisting of diminazene aceturate (DA) and imidocarb dipropionate (ID) on the in vitro growth of several parasitic piroplasmids, and on Babesia microti in BALB/c mice was evaluated using a fluorescence-based SYBR Green I test. We evaluated the structural similarities between the regularly used antibabesial medications, DA and ID, and the recently found antibabesial drugs, pyronaridine tetraphosphate, atovaquone, and clofazimine, using atom pair fingerprints (APfp). The Chou-Talalay approach was used to determine the interactions between the two drugs. A Celltac MEK-6450 computerized hematology analyzer was used to detect hemolytic anemia every 96 hours in mice infected with B. microti and in those treated with either mono- or combination therapy. According to the APfp results, DA and ID have the most structural similarities (MSS). DA and ID had synergistic and additive interactions against the in vitro growth of Babesia bigemina and Babesia bovis, respectively. Low dosages of DA (6.25 mg kg-1) and ID (8.5 mg kg-1) in conjunction with each other inhibited B. microti growth by 16.5 %, 32 %, and 4.5 % more than 25 mg kg-1 DA, 6.25 mg kg-1 DA, and 8.5 mg kg-1 ID monotherapies, respectively. In the blood, kidney, heart, and lung tissues of mice treated with DA/ID, the B. microti small subunit rRNA gene was not detected. The obtained findings suggest that DA/ID could be a promising combination therapy for treating bovine babesiosis. Also, such combination may overcome the potential problems of Babesia resistance and host toxicity induced by utilizing full doses of DA and ID.
Collapse
Affiliation(s)
- Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
7
|
Keroack CD, Elsworth B, Tennessen JA, Paul AS, Hua R, Ramirez-Ramirez L, Ye S, Moreira CM, Meyers MJ, Zarringhalam K, Duraisingh MT. Comparative chemical genomics in Babesia species identifies the alkaline phosphatase phoD as a novel determinant of resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544849. [PMID: 37398106 PMCID: PMC10312741 DOI: 10.1101/2023.06.13.544849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of evolutionarily-related Babesia spp. ( B. bovis and B. divergens ). We identified a potent antibabesial inhibitor from the Malaria Box, MMV019266. We were able to select for resistance to this compound in two species of Babesia, achieving 10-fold or greater resistance after ten weeks of intermittent selection. After sequencing of multiple independently derived lines in the two species, we identified mutations in a single conserved gene in both species: a membrane-bound metallodependent phosphatase (putatively named PhoD). In both species, the mutations were found in the phoD-like phosphatase domain, proximal to the predicted ligand binding site. Using reverse genetics, we validated that mutations in PhoD confer resistance to MMV019266. We have also demonstrated that PhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of PhoD alter the sensitivity to MMV019266 in the parasite: overexpression of PhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting PhoD is a resistance mechanism. Together, we have generated a robust pipeline for identification of resistance loci, and identified PhoD as a novel determinant of resistance in Babesia species. Highlights Use of two species for in vitro evolution identifies a high confidence locus associated with resistance Resistance mutation in phoD was validated using reverse genetics in B. divergens Perturbation of phoD using function genetics results in changes in the level of resistance to MMV019266Epitope tagging reveals localization to the ER/apicoplast, a conserved localization with a similar protein in diatoms Together, phoD is a novel resistance determinant in multiple Babesia spp .
Collapse
|
8
|
Rizk MA, El-Sayed SAES, El-Alfy ES, Igarashi I. Imidazo[1,2-a]pyridine: a Highly Potent Therapeutic Agent Clears Piroplasm Infection In Vitro. Acta Parasitol 2023; 68:249-256. [PMID: 36637693 DOI: 10.1007/s11686-022-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE The imidazo[1,2-a] pyridines have huge applications in medicinal chemistry with potent activity against wide spectrum of infectious agents. The efficacy of imidazo[1,2-a]pyridine on the in vitro growth of different piroplasms, including Babesia bovis, B. bigemina, B. divergens, B. caballi, and Theileria equi, was investigated in this study. METHODS The anti-piroplasm efficacy of imidazo[1,2-a] pyridines was assessed using a fluorescence-based SYBR Green I assay. Furthermore, efficacy of imidazo[1,2-a]pyridine against piroplasms following discontinuation of treatment was also assessed using a viability assay. In vitro cultures of B. bovis and T. equi were used to assess the imidazo[1,2-a]pyridine and diminazene aceturate (DA) interaction. RESULTS In vitro, imidazo[1,2-a]pyridine inhibited the growth of B. bovis, B. bigemina, B. caballi, and T. equi in a dose-dependent manner. The highest inhibitory effects of imidazo[1,2-a]pyridine were detected on the growth of B. caballi with IC50 value of 0.47 ± 0.07. Interestingly, the efficacy of imidazo[1,2-a]pyridine was higher against B. bigemina (IC50: 1.37 ± 0.15) compared to the positive-control DA (IC50: 2.29 ± 0.06). The viability test findings indicate that imidazo[1,2-a]pyridine had a long-lasting inhibitory effect on bovine Babesia parasites in vitro growth up to 4 days after treatment. Notably, when coupled with DA at 0.75 or 0.50 IC50, a high concentration (0.75 IC50) of imidazo[1,2-a]pyridine produced additive suppression of B. bovis growth which suggest that imidazo[1,2-a]pyridine/DA could be a promising combination therapy for the treatment of B. bovis. CONCLUSION The obtained encouraging findings pave the way for in vitro and in vivo efficacy trials of imidazo[1,2-a]pyridine derivatives against several piroplasmids.
Collapse
Affiliation(s)
- Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan. .,Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan. .,Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
9
|
Measurement of Babesia bovis infected red blood cells using flow cytometry. J Microbiol Methods 2023; 204:106641. [PMID: 36460090 DOI: 10.1016/j.mimet.2022.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Rapid and accurate tools are needed for high-throughput in vitro antibabesial drug testing. In this study, flow cytometry for the measuring of Babesia bovis in vitro culture, was developed using SYBR Green I and compared against the results of fluorescence-based assay and microscopic assay. A high correlation of measured parasitemia was observed with high R2 value (R2 = 0.9991) between flow cytometry and microscopic analysis. The degree of antibabesial drug sensitivity against B. bovis determined by flow cytometry was 0.424 ± 0.173 μM. Similar to the results of previously published studies involving fluorescence spectrometry-based assay (0.408 ± 0.011 μM) and microscopy-based assay (0.400 ± 0.017 μM). The outcomes of this present study suggest that flow cytometry assay using SYBR Green I can potentially be useful in determining parasitemia and can serve as a rapid alternative method to antibabesial drug testing.
Collapse
|
10
|
Rizk MA, Baghdadi HB, El-Sayed SAES, Eltaysh R, Igarashi I. Repurposing of the Malaria Box for Babesia microti in mice identifies novel active scaffolds against piroplasmosis. Parasit Vectors 2022; 15:329. [PMID: 36123705 PMCID: PMC9487043 DOI: 10.1186/s13071-022-05430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background An innovative approach has been introduced for identifying and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. In the present study, we evaluated the inhibitory effects of Malaria Box (MBox) compounds (n = 8) against the growth of Babesia microti in mice and conducted bioinformatics analysis between the selected hits and the currently used antibabesial drugs, with far-reaching implications for potent combinations. Methods A fluorescence assay was used to evaluate the in vivo inhibitory effects of the selected compounds. Bioinformatics analysis was conducted using hierarchical clustering, distance matrix and molecular weight correlation, and PubChem fingerprint. The compounds with in vivo potential efficacy were selected to search for their target in the piroplasm parasites using quantitative PCR (qPCR). Results Screening the MBox against the in vivo growth of the B. microti parasite enabled the discovery of potent new antipiroplasm drugs, including MMV396693 and MMV665875. Interestingly, statistically significant (P < 0.05) downregulation of cysteine protease mRNA levels was observed in MMV665875-treated Theileria equi in vitro culture in comparison with untreated cultures. MMV396693/clofazimine and MMV665875/atovaquone (AV) showed maximum structural similarity (MSS) with each other. The distance matrix results indicate promising antibabesial efficacy of combination therapies consisting of either MMV665875 and AV or MMV396693 and imidocarb dipropionate (ID). Conclusions Inhibitory and hematology assay results suggest that MMV396693 and MMV665875 are potent antipiroplasm monotherapies. The structural similarity results indicate that MMV665875 and MMV396693 have a similar mode of action as AV and ID, respectively. Our findings demonstrated that MBox compounds provide a promising lead for the development of new antibabesial therapeutic alternatives. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05430-4.
Collapse
Affiliation(s)
- Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan. .,Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, Egypt.
| | - Hanadi B Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan.,Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Rasha Eltaysh
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
11
|
Rizk MA, El-Sayed SAES, Igarashi I. Ascorbic acid co-administration with a low dose of diminazene aceturate inhibits the in vitro growth of Theileria equi, and the in vivo growth of Babesia microti. Parasitol Int 2022; 90:102596. [DOI: 10.1016/j.parint.2022.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
12
|
Li Y, Rizk MA, Galon EM, Liu M, Li J, Ringo AE, Ji S, Zafar I, Tumwebaze MA, Benedicto B, Yokoyama N, Igarashi I, Chahan B, Xuan X. Discovering the Potent Inhibitors Against Babesia bovis in vitro and Babesia microti in vivo by Repurposing the Natural Product Compounds. Front Vet Sci 2021; 8:762107. [PMID: 34912876 PMCID: PMC8666878 DOI: 10.3389/fvets.2021.762107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, we screened 502 natural product compounds against the in vitro growth of Babesia (B.) bovis. Then, the novel and potent identified compounds were further evaluated for their in vitro efficacies using viability and cytotoxicity assays. The in vivo inhibitory effects of the selected compounds were evaluated using B. microti “rodent strain” in mice model. Three potent compounds, namely, Rottlerin (RL), Narasin (NR), Lasalocid acid (LA), exhibited the lowest IC50 (half-maximal inhibitory concentration) as follows: 5.45 ± 1.20 μM for RL, 1.86 ± 0.66 μM for NR, and 3.56 ± 1.41 μM for LA. The viability result revealed the ability of RL and LA to prevent the regrowth of treated parasite at 4 × IC50 and 2 × IC50, respectively, while 4 × IC50 of NR was sufficient to stop the regrowth of parasite. The hematology parameters of B. microti in vivo were different in the NR-treated groups as compared to the infected/untreated group. Interestingly, intraperitoneal administration of NR exhibiting inhibition in the growth of B. microti in mice was similar to that observed after administration of the commonly used antibabesial drug, diminazene aceturate (DA) (76.57% for DA, 74.73% for NR). Our findings indicate the richness of natural product compounds by novel potent antibabesial candidates, and the identified potent compounds, especially NR, might be used for the treatment of animal babesiosis.
Collapse
Affiliation(s)
- Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Ürümqi, China
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Microbiology and Immunology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Maria Agnes Tumwebaze
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Byamukama Benedicto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Ürümqi, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
13
|
Ogata S, Pereira JAC, Jhonny LVA, Carolina HPG, Matsuno K, Orba Y, Sawa H, Kawamori F, Nonaka N, Nakao R. Molecular Survey of Babesia and Anaplasma Infection in Cattle in Bolivia. Vet Sci 2021; 8:vetsci8090188. [PMID: 34564582 PMCID: PMC8473379 DOI: 10.3390/vetsci8090188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023] Open
Abstract
Latin American countries produce more than a quarter of the world's beef and are a major global supplier of livestock protein. Tick-borne diseases (TBDs) are a major constraint to the livestock industry worldwide, including in Latin America. The aim of this study was to detect and characterise tick-borne pathogens in cattle from Santa Cruz, Bolivia, where no detailed epidemiological data are available. Blood samples were collected from 104 cattle. Apicomplexan parasites were detected by nested PCR amplification of the 18S ribosomal RNA gene (rDNA), and Anaplasmataceae was screened by the PCR amplification of 16S rDNA, followed by characterisation based on the heat shock protein and citrate synthase gene sequences. Babesia infection was observed in nine cattle (one Babesia bovis and eight Babesia bigemina), while Anaplasmataceae infection was detected in thirty-two cattle. A sequencing analysis confirmed the presence of Anaplasma marginale and Anaplasma platys-like. These results provide the first molecular evidence for the four above-mentioned tick-borne pathogens in cattle in Bolivia. This information improves our understanding of the epidemiology of TBDs and will help in formulating appropriate and improved pathogen control strategies.
Collapse
Affiliation(s)
- Shohei Ogata
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (S.O.); (N.N.)
| | - Juan Antonio Cristian Pereira
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Av. 26 de Febrero Entre Av. Busch y Av. Centenario, Ciudad Universitaria, Modulo 228, Santa Cruz de la Sierra, Bolivia; (J.A.C.P.); (L.V.A.J.); (H.P.G.C.); (F.K.)
| | - Loza Vega Ariel Jhonny
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Av. 26 de Febrero Entre Av. Busch y Av. Centenario, Ciudad Universitaria, Modulo 228, Santa Cruz de la Sierra, Bolivia; (J.A.C.P.); (L.V.A.J.); (H.P.G.C.); (F.K.)
| | - Herbas Perez Gladys Carolina
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Av. 26 de Febrero Entre Av. Busch y Av. Centenario, Ciudad Universitaria, Modulo 228, Santa Cruz de la Sierra, Bolivia; (J.A.C.P.); (L.V.A.J.); (H.P.G.C.); (F.K.)
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan;
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.O.); (H.S.)
- One Health Research Center, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuko Orba
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.O.); (H.S.)
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.O.); (H.S.)
- One Health Research Center, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan
| | - Fumihiko Kawamori
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Av. 26 de Febrero Entre Av. Busch y Av. Centenario, Ciudad Universitaria, Modulo 228, Santa Cruz de la Sierra, Bolivia; (J.A.C.P.); (L.V.A.J.); (H.P.G.C.); (F.K.)
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (S.O.); (N.N.)
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (S.O.); (N.N.)
- Correspondence: ; Tel.: +81-11-706-5196
| |
Collapse
|
14
|
Yamasaki M, Idaka N, Abe M, Takiguchi M. Reduced expression levels of heat shock protein 90 in a diminazene aceturate-resistant Babesia gibsoni isolate. Exp Parasitol 2020; 221:108050. [PMID: 33307095 DOI: 10.1016/j.exppara.2020.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperon and an essential component for stage differentiation and intracellular growth inside the host cells of many protozoans. HSP90 of Babesia gibsoni (BgHSP90) was suggested to function in the development of diminazene aceturate (DA)-resistance. Therefore, we examined the expression level of BgHSP90 in a DA-resistant B. gibsoni isolate. Transcription of the BgHSP90 gene in the DA-resistant isolate and wild-type B. gibsoni was assessed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). As a result, the copy number and relative amount of BgHSP90 transcripts in the DA-resistant isolate were significantly lower than those in the wild-type. Moreover, a rabbit anti-recombinant BgHSP90 antibody was developed, and the protein synthesis of BgHSP90 in the DA-resistant isolate was compared with that in the wild-type by Western blot analysis and indirect fluorescence assay. There was significantly less BgHSP90 protein than in the wild-type. Additionally, the relative intensity of BgHSP70 in DA-resistant isolate was also lower than that in the wild-type. This suggested that the expression of BgHSP90 and BgHSP70 in the DA-resistant B. gibsoni isolate was suppressed and that the reduced amount of BgHSP90 and BgHSP70 might cause the weak proliferation of the DA-resistant isolate. Further studies are necessary to elucidate the function of BgHSP90.
Collapse
Affiliation(s)
- Masahiro Yamasaki
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 202-8550, Japan.
| | - Natsuki Idaka
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Moeko Abe
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
15
|
Rizk MA, El-Sayed SAES, Nassif M, Mosqueda J, Xuan X, Igarashi I. Assay methods for in vitro and in vivo anti-Babesia drug efficacy testing: Current progress, outlook, and challenges. Vet Parasitol 2019; 279:109013. [PMID: 32070899 DOI: 10.1016/j.vetpar.2019.109013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Absence of an effective high-throughput drug-screening system for Babesia parasites is considered one of the main causes for the presence of a wide gap in the treatment of animal babesiosis when compared with other hemoprotozoan diseases, such as malaria. Recently, a simple, accurate, and automatic fluorescence assay was established for large-scale anti-Babesia (B. bovis, B. bigemina, B. divergens, B. caballi and T. equi) drug screening. Such development will facilitate anti-Babesia drug discovery, especially in the post-genomic era, which will bring new chemotherapy targets with the completion of the Babesia genome sequencing project currently in progress. In this review, we present the current progress in the various assays for in vitro and in vivo anti-Babesia drug testing, as well as the challenges, highlighting new insights into the future of anti-Babesia drug screening.
Collapse
Affiliation(s)
- Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Medhat Nassif
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Juan Mosqueda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan.
| |
Collapse
|
16
|
Yu L, Shen Z, Liu Q, Zhan X, Luo X, An X, Sun Y, Li M, Wang S, Nie Z, Ao Y, Zhao Y, Peng G, Mamoun CB, He L, Zhao J. Crystal structures of Babesia microti lactate dehydrogenase BmLDH reveal a critical role for Arg99 in catalysis. FASEB J 2019; 33:13669-13682. [PMID: 31585506 DOI: 10.1096/fj.201901259r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tick- and transfusion-transmitted human pathogen Babesia microti infects host erythrocytes to cause the pathologic symptoms associated with human babesiosis, an emerging disease with worldwide distribution and potentially fatal clinical outcome. Drugs currently recommended for the treatment of babesiosis are associated with a high failure rate and significant adverse events, highlighting the urgent need for more-effective and safer babesiosis therapies. Unlike other apicomplexan parasites, B. microti lacks a canonical lactate dehydrogenase (LDH) but instead expresses a unique enzyme, B. microti LDH (BmLDH), acquired through evolution by horizontal transfer from a mammalian host. Here, we report the crystal structures of BmLDH in apo state and ternary complex (enzyme-NADH-oxamate) solved at 2.79 and 1.89 Å. Analysis of these structures reveals that upon binding to the coenzyme and substrate, the active pocket of BmLDH undergoes a major conformational change from an opened and disordered to a closed and stabilized state. Biochemical assays using wild-type and mutant B. microti and human LDHs identified Arg99 as a critical residue for the catalytic activity of BmLDH but not its human counterpart. Interestingly, mutation of Arg99 to Ala had no impact on the overall structure and affinity of BmLDH to NADH but dramatically altered the closure of the enzyme's active pocket. Together, these structural and biochemical data highlight significant differences between B. microti and human LDH enzymes and suggest that BmLDH could be a suitable target for the development of selective antibabesial inhibitors.-Yu, L., Shen, Z., Liu, Q., Zhan, X., Luo, X., An, X., Sun, Y., Li, M., Wang, S., Nie, Z., Ao, Y., Zhao, Y., Peng, G., Ben Mamoun, C., He, L., Zhao, J. Crystal structures of Babesia microti lactate dehydrogenase BmLDH reveal a critical role for Arg99 in catalysis.
Collapse
Affiliation(s)
- Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Xiaoyin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Xiaomeng An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Yangsiqi Ao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine, Wuhan, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Nugraha AB, Tuvshintulga B, Guswanto A, Tayebwa DS, Rizk MA, Gantuya S, El-Saber Batiha G, Beshbishy AM, Sivakumar T, Yokoyama N, Igarashi I. Screening the Medicines for Malaria Venture Pathogen Box against piroplasm parasites. Int J Parasitol Drugs Drug Resist 2019; 10:84-90. [PMID: 31254719 PMCID: PMC6603297 DOI: 10.1016/j.ijpddr.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/06/2022]
Abstract
Diminazene aceturate (DA) and imidocarb dipropionate are commonly used in livestock as antipiroplasm agents. However, toxic side effects are common in animals treated with these two drugs. Therefore, evaluations of novel therapeutic agents with high efficacy against piroplasm parasites and low toxicity to host animals are of paramount importance. In this study, the 400 compounds in the Pathogen Box provided by the Medicines for Malaria Venture foundation were screened against Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi. A fluorescence-based method using SYBR Green 1 stain was used for initial in vitro screening and determination of the half maximal inhibitory concentration (IC50). The initial in vitro screening performed using a 1 μM concentration as baseline revealed nine effective compounds against four tested parasites. Two "hit" compounds, namely MMV021057 and MMV675968, that showed IC50 < 0.3 μM and a selectivity index (SI)> 100 were selected. The IC50s of MMV021057 and MMV675968 against B. bovis, B. bigemina, T. equi and B. caballi were 23, 39, 229, and 146 nM, and 2.9, 3, 25.7, and 2.9 nM, respectively. In addition, a combination of MMV021057 and DA showed additive or synergistic effects against four tested parasites, while combinations of MMV021057 with MMV675968 and of MMV675968 with DA showed antagonistic effects. In mice, treated with 50 mg/kg MMV021057 and 25 mg/kg MMV675968 inhibited the growth of Babesia microti by 54 and 64%, respectively, as compared to the untreated group on day 8. Interestingly, a combination treatment with 6.25 mg/kg DA and 25 mg/kg MMV021057 inhibited B. microti by 91.6%, which was a stronger inhibition than that by single treatments with 50 mg/kg MMV021057 and 25 mg/kg DA, which showed 54 and 83% inhibition, respectively. Our findings indicated that MMV021057, MMV675968, and the combination treatment with MMV021057 and DA are prospects for further development of antipiroplasm drugs.
Collapse
Affiliation(s)
- Arifin Budiman Nugraha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Nishi 2 Sen-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, Jawa Barat, 16680, Indonesia
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Nishi 2 Sen-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Azirwan Guswanto
- Balai Veteriner Subang (DIC Subang), Jl. Terusan Garuda 33/11 Blok Werasari Dangdeur, Subang, Jawa Barat, 41212, Indonesia
| | - Dickson Stuart Tayebwa
- (f)Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, 7062, Kampala, Uganda
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Nishi 2 Sen-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Sambuu Gantuya
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Nishi 2 Sen-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, 22511, Egypt
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Nishi 2 Sen-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Nishi 2 Sen-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Nishi 2 Sen-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Nishi 2 Sen-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
18
|
Tuvshintulga B, Sivakumar T, Yokoyama N, Igarashi I. Development of unstable resistance to diminazene aceturate in Babesia bovis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 9:87-92. [PMID: 30785049 PMCID: PMC6382846 DOI: 10.1016/j.ijpddr.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
Abstract
Diminazene aceturate (DA) is commonly used in the treatment of bovine babesiosis caused by Babesia bovis. In this study, we attempted to develop resistance in B. bovis in vitro to DA and clofazimine (CF, a novel antibabesial agent) using short- and long-term drug pressures. In the short term, we found that 6.7 ± 2 (0.54 ± 0.16 μM)-, 12.9 ± 8.6 (1.05 ± 0.7 μM)-, and 14 ± 5.9 (1.14 ± 0.48 μM)-fold increases in the half-maximal inhibitory concentration (IC50) of DA were demonstrated on B. bovis cultivated with 0.04 μM of DA pressure for 4, 8, and 12 days, respectively, as compared to that on parental culture (0.08 ± 0.0065 μM) before drug pressure was initiated. However, in B. bovis cultivated with 0.04 μM of DA pressure after 16 days, the parasites could not tolerate 0.8 μM of DA. In the long term, 7.6 ± 3.5-, 20.5 ± 0.1-, and 26.8 ± 5.5-fold increases in the IC50 of DA were demonstrated on parasites from subcultures at days 8, 3, and 5 post-cultivation, respectively, in a drug-free medium, where these subcultures were obtained from B. bovis cultivated with DA pressure with changing doses for 30, 60, and 90 days, respectively. However, the second and third times, no increase was demonstrated on B. bovis from these subcultures at days 15 and 30 post-cultivation in a drug-free medium. In addition, in B. bovis cultivated with drug pressure after 90 days, the parasites tolerate up to 0.64 μM DA. All findings demonstrated that DA resistance in B. bovis is unstable and lost within 15 days of drug withdrawal. However, treatment with subtherapeutic doses of DA in cattle might result in the development of resistance in B. bovis, which may not even respond to subsequent treatments with high doses of DA. Thus, if the bovine babesiosis caused by B. bovis is unresponsive to DA, treatment with other antibabesial agents might be recommended.
Collapse
Affiliation(s)
- Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
19
|
To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. Int J Parasitol 2019; 49:153-163. [DOI: 10.1016/j.ijpara.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
20
|
Diminazene aceturate—An antiparasitic drug of antiquity: Advances in pharmacology & therapeutics. Pharmacol Res 2015; 102:138-57. [DOI: 10.1016/j.phrs.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/28/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
|
21
|
Hines SA, Ramsay JD, Kappmeyer LS, Lau AO, Ojo KK, Van Voorhis WC, Knowles DP, Mealey RH. Theileria equi isolates vary in susceptibility to imidocarb dipropionate but demonstrate uniform in vitro susceptibility to a bumped kinase inhibitor. Parasit Vectors 2015; 8:33. [PMID: 25600252 PMCID: PMC4311422 DOI: 10.1186/s13071-014-0611-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/17/2014] [Indexed: 11/29/2022] Open
Abstract
Background The apicomplexan hemoparasite Theileria equi is a causative agent of equine piroplasmosis, eradicated from the United States in 1988. However, recent outbreaks have sparked renewed interest in treatment options for infected horses. Imidocarb dipropionate is the current drug of choice, however variation in clinical response to therapy has been observed. Methods We quantified the in vitro susceptibility of two T. equi isolates and a lab generated variant to both imidocarb dipropionate and a bumped kinase inhibitor compound 1294. We also evaluated the capacity of in vitro imidocarb dipropionate exposure to decrease susceptibility to that drug. The efficacy of imidocarb dipropionate for clearing infection in four T. equi infected ponies was also assessed. Results We observed an almost four-fold difference in imidocarb dipropionate susceptibility between two distinct isolates of T. equi. Four ponies infected with the less susceptible USDA Florida strain failed to clear the parasite despite two rounds of treatment. Importantly, a further 15-fold decrease in susceptibility was produced in this strain by continuous in vitro imidocarb dipropionate exposure. Despite a demonstrated difference in imidocarb dipropionate susceptibility, there was no difference in the susceptibility of two T. equi isolates to bumped kinase inhibitor 1294. Conclusions The observed variation in imidocarb dipropionate susceptibility, further reduction in susceptibility caused by drug exposure in vitro, and failure to clear T. equi infection in vivo, raises concern for the emergence of drug resistance in clinical cases undergoing treatment. Bumped kinase inhibitors may be effective as alternative drugs for the treatment of resistant T. equi parasites.
Collapse
Affiliation(s)
- Siddra A Hines
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| | - Joshua D Ramsay
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| | - Lowell S Kappmeyer
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA. .,Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA, 99164-6630, USA.
| | - Audrey Ot Lau
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| | - Kayode K Ojo
- Division of Allergy and Infectious Diseases and Center for Emerging and Re-emerging Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, 98109-4766, USA.
| | - Wesley C Van Voorhis
- Division of Allergy and Infectious Diseases and Center for Emerging and Re-emerging Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, 98109-4766, USA.
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA. .,Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA, 99164-6630, USA.
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| |
Collapse
|
22
|
In vitro and in vivo safety and efficacy studies of amphotericin B on Babesia gibsoni. Vet Parasitol 2014; 205:424-33. [PMID: 25260334 DOI: 10.1016/j.vetpar.2014.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 11/23/2022]
Abstract
Babesia gibsoni is a causative pathogen of canine babesiosis, which is commonly treated with anti-babesial drugs; however, the development of novel, more effective anti-babesial drugs is necessary because the currently used drugs cannot remove the parasites from dogs. Therefore we investigated the anti-babesial effect of amphotericin B (AmB), a membrane-active polyene macrolide antibiotic. The interaction of such compounds with sterols in bilayer cell membranes can lead to cell damage and ultimately cell lysis. AmB exhibits in vitro activity against B. gibsoni in normal canine erythrocytes within 12h. We also studied liposomal AmB (L-AmB), a liposomal formulation of AmB that required a longer incubation period to reduce the number of parasites. However, L-AmB completely inhibited the invasion of free parasites into erythrocytes. These results indicated that free parasites failed to invade erythrocytes in the presence of L-AmB. Both AmB and L-AmB induced mild hemolysis of erythrocytes. Moreover, the methemoglobin level and the turbidity index of erythrocytes were significantly increased when erythrocytes were incubated with AmB, suggesting that AmB induced oxidative damage in erythrocytes. Finally, the anti-babesial activity of AmB in vivo was observed. When experimentally B. gibsoni-infected dogs were administered 0.5 and 1mg/kg AmB by the intravenous route, the number of parasites decreased; however, recurrence of parasitemia was observed, indicating that AmB did not eliminate parasites completely. Blood urea nitrogen and creatinine of dogs were abnormally elevated after the administration of 1mg/kg AmB. These results indicate that AmB has in vivo activity against B. gibsoni; however, it does not eliminate parasites from infected dogs and affects kidney function at a high dose.
Collapse
|
23
|
Flores MM, Pereira PR, Mazzanti A, Kommers GD, Fighera RA. Aspectos epidemiológicos, clínicos e anatomopatológicos da intoxicação por aceturato de diminazeno em cães. PESQUISA VETERINARIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014000700011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Os aspectos epidemiológicos, clínicos e anatomopatológicos da intoxicação espontânea por aceturato de diminazeno foram estudados em 10 cães. Em todos os casos, os cães afetados demonstraram sinais de síndrome tálamo-cortical, principalmente alteração do nível de consciência, tetraparesia, rigidez extensora e crise convulsiva. Em alguns casos, os cães acometidos apresentaram sinais de síndrome cerebelar, como tremores musculares generalizados de alta frequência e baixa amplitude, e/ou de síndrome vestibular, como ataxia, inclinação de cabeça e quedas. Esses sinais ocorreram entre 24 e 48 horas após o uso do fármaco injetável por via intramuscular e se mantiveram até a morte ou eutanásia dos cães (entre 1 e 7 dias). Tais sinais clínicos refletiam encefalomalacia hemorrágica focal simétrica, que afetava a medula oblonga, a ponte, a medular do cerebelo, o tálamo, o mesencéfalo, os pedúnculos cerebelares e os núcleos da base. Esse artigo: 1) descreve e discute essa forma de intoxicação medicamentosa tão pouco citada na literatura internacional e desconhecida da maior parte dos clínicos e patologistas veterinários brasileiros, 2) estabelece critérios clínicos e anatomopatológicos para o seu diagnóstico e, principalmente, 3) atenta para os riscos da utilização desse princípio ativo na terapêutica canina.
Collapse
|
24
|
Wickramasekara Rajapakshage BK, Yamasaki M, Hwang SJ, Sasaki N, Murakami M, Tamura Y, Lim SY, Nakamura K, Ohta H, Takiguchi M. Involvement of mitochondrial genes of Babesia gibsoni in resistance to diminazene aceturate. J Vet Med Sci 2012; 74:1139-48. [PMID: 22673639 DOI: 10.1292/jvms.12-0056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The stability of the characteristics of the diminazene aceturate (DA)-resistant B. gibsoni isolate was initially determined in vitro. Part of the DA-resistant B. gibsoni isolate was cultured without DA for 4 weeks, and then newly exposed to 200 ng/ml DA. As a result, this isolate could proliferate the same as the DA-resistant isolate, indicating that the characteristic of DA resistance was stable in the DA-resistant isolate. Additionally, the level of parasitemia in the DA-resistant isolate was comparatively lower than in the wild-type, suggesting that the proliferation potential of the DA-resistant isolate would be lower than that of the wild-type. Subsequently, to investigate the involvement of mitochondrial DNA (mtDNA) in DA resistance in B. gibsoni, the nucleotide sequences and deduced amino acid sequences of mitochondrial genes such as COXI, COXIII, and CYTb genes of the DA-resistant isolate, were compared with those of the wild-type. As a result, these three genes were not altered in the DA-resistant B. gibsoni isolate. Moreover, the transcription levels of COXI, COXIII, and CYTb genes were observed by semi-quantitative RT-PCR. As a result, the gene transcription of those genes in the DA-resistant isolate was not significantly altered. These results indicated that DA did not affect mtDNA directly in DA-resistant B. gibsoni. Thus, it is suggested that mtDNA should not be deeply involved in DA resistance in B. gibsoni.
Collapse
Affiliation(s)
- Bandula Kumara Wickramasekara Rajapakshage
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|