1
|
Interleukin-1β triggers matrix metalloprotease-3 expression through p65/RelA activation in melanoma cells. PLoS One 2022; 17:e0278220. [PMID: 36445856 PMCID: PMC9707762 DOI: 10.1371/journal.pone.0278220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Melanoma shows highly aggressive behavior (i.e., local invasion and metastasis). Matrix metalloprotease-3 (MMP-3), a zinc-dependent endopeptidase, degrades several extracellular substrates and contributes to local invasion by creating a microenvironment suitable for tumor development. Here, we report that interleukin-1β (IL-1β) triggers the MMP-3 expression in canine melanoma cells. The activity of MMP-3 in the culture supernatant was increased in IL-1β-treated melanoma cells. IL-1β time- and dose-dependently provoked the mRNA expression of MMP-3. IL-1β induced the migration of melanoma cells; however, this migration was attenuated by UK356618, an MMP-3 inhibitor. When the cells were treated with the nuclear factor-κB (NF-κB) inhibitor TPCA-1, the inhibition of MMP-3 expression was observed. In IL-1β-treated cells, the phosphorylation both of p65/RelA and p105 was detected, indicating NF-κB pathway activation. In p65/RelA-depleted melanoma cells, IL-1β-mediated mRNA expression of MMP-3 was inhibited, whereas this reduction was not observed in p105-depleted cells. These findings suggest that MMP-3 expression in melanoma cells is regulated through IL-1β-mediated p65/RelA activation, which is involved in melanoma cell migration.
Collapse
|
2
|
Mizuno M, Nakano R, Nose S, Matsumura M, Nii Y, Kurogochi K, Sugiya H, Uechi M. Canonical NF-κB p65, but Not p105, Contributes to IL-1β-Induced IL-8 Expression in Cardiac Fibroblasts. Front Immunol 2022; 13:863309. [PMID: 35514973 PMCID: PMC9065446 DOI: 10.3389/fimmu.2022.863309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiac fibroblasts participate in the inflammatory process of heart diseases as sentinel cells of the cardiac tissue. In this study, we investigated the effect of the proinflammatory cytokine, interleukin 1β (IL-1β), on the expression of interleukin 8 (IL-8), which contributes to the induction of innate immunity via the activation and recruitment of innate immune cells, such as neutrophils, to the site of inflammation in canine cardiac fibroblasts. IL-1β mediates IL-8 mRNA expression and protein release in a dose- and time-dependent manner. The IL-β-mediated IL-8 protein release and mRNA expression were inhibited by 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide, an inhibitor of the transcription factor, nuclear factor (NF)-κB. In cells treated with IL-1β, NF-κB p65 and p105 were transiently phosphorylated, indicating the activation of NF-κB. However, IL-1β failed to induce IL-8 mRNA expression in the cells transfected with p65 small interfering RNA (siRNA), but not in those transfected with p105 siRNA. These observations suggest that IL-1β induces IL-8 expression via the activation of NF-κB p65 in canine cardiac fibroblasts.
Collapse
Affiliation(s)
- Masashi Mizuno
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Rei Nakano
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan.,Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan.,Laboratory of Veterinary Radiotherapy, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Saki Nose
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Moeka Matsumura
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Yasuyuki Nii
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | | | - Hiroshi Sugiya
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Masami Uechi
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| |
Collapse
|
3
|
Ma L, Wei X, Ma W, Liu Y, Wang Y, He Y, Jia S, Wang Y, Luo W, Liu D, Huang T, Yan J, Gu H, Bai Y, Yuan Z. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:539-551. [PMID: 35325230 PMCID: PMC9154334 DOI: 10.1093/stcltm/szac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal bifida aperta (SBA) is a congenital malformation with a high incidence. Bone marrow mesenchymal stem cell (BMSC) transplantation has the potential to repair the structure of damaged tissues and restore their functions. This is an optional treatment that can be used as a supplement to surgery in the treatment of SBA. However, the application of BMSCs is limited, as the neuronal differentiation rate of BMSCs is not satisfactory when used in treating severe SBA. Thus, we aimed to assess the effect of neural stem cell (NSC)-derived exosomes on BMSC neuronal differentiation and observe the therapeutic effect in an ex vivo rat SBA embryo model. We found that NSC-derived exosomes increased the neuronal differentiation rate of BMSCs in vitro and in the SBA embryo model ex vivo. Proteomic analysis showed that NSC-derived exosomes were enriched in Netrin1, which positively regulated neuronal differentiation. Netrin1 increased the neuronal differentiation rate of BMSCs and NSCs and upregulated the expression of the neuronal markers, microtubule-associated protein (Map2), neurofilament, and β3-tubulin. Bioinformatic analysis revealed that Netrin1 treatment increased the expression of the transcription factors Hand2 and Phox2b, related to neuronal differentiation. Furthermore, the Netrin1-induced NSC neuronal differentiation was significantly blocked by Phox2b knockdown. We suggest that NSC-derived exosomal Netrin1 induces neuronal differentiation via the Hand2/Phox2b axis by upregulating the expression of Hand2 and Phox2b. Therefore, NSC-derived exosomes are a critical inducer of BMSC neuronal differentiation and represent a potential treatment agent that can benefit BMSC treatment in SBA.
Collapse
Affiliation(s)
- Ling Ma
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xiaowei Wei
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Wei Ma
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yusi Liu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yanfu Wang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yiwen He
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Shanshan Jia
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yu Wang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Wenting Luo
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Dan Liu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Tianchu Huang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Jiayu Yan
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Hui Gu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yuzuo Bai
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Zhengwei Yuan
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Corresponding author: Zhengwei Yuan, Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China. Tel: +86 24 23929903;
| |
Collapse
|
4
|
Naruke A, Nakano R, Nunomura J, Suwabe Y, Nakano M, Namba S, Kitanaka T, Kitanaka N, Sugiya H, Nakayama T. Tpl2 contributes to IL-1β-induced IL-8 expression via ERK1/2 activation in canine dermal fibroblasts. PLoS One 2021; 16:e0259489. [PMID: 34735542 PMCID: PMC8568182 DOI: 10.1371/journal.pone.0259489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
In autoimmune diseases, fibroblasts produce and secrete various cytokines and act as sentinel immune cells during inflammatory states. However, the contribution of sentinel immune cells (i.e. dermal fibroblasts) in autoimmune diseases of the skin, such as atopic dermatitis, has been obscure. The pro-inflammatory cytokine interleukin 1β (IL-1β) induces the expression of chemokines, such as interleukin 8 (IL-8), in autoimmune diseases of the skin. IL-8 induces the activation and recruitment of innate immune cells such as neutrophils to the site of inflammation. IL-1β-mediated induction of IL-8 expression is important for the pathogenesis of autoimmune diseases; however, the intracellular singling remains to be understood. To elucidate the mechanism of the onset of autoimmune diseases, we established a model for IL-1β-induced dermatitis and investigated MAPK signaling pathways in IL-1β-induced IL-8 expression. We also identified that a MAP3K Tpl2 acts as an upstream modulator of IL-1β-induced ERK1/2 activation in dermal fibroblasts. We observed an increase in the expression of IL-8 mRNA and protein in cells treated with IL-1β. ERK1/2 inhibitors significantly reduced IL-1β-induced IL-8 expression, whereas the inhibitor for p38 MAPK or JNK had no effect. IL-1β induced ERK1/2 phosphorylation, which was attenuated in the presence of an ERK1/2 inhibitor. IL-1β failed to induce IL-8 expression in cells transfected with siRNA for ERK1, or ERK2. Notably, a Tpl2 inhibitor reduced IL-1β-induced IL-8 expression and ERK1/2 phosphorylation. We confirmed that the silencing of Tpl2 in siRNA-transfected fibroblasts prevented both in IL-1β-induced IL-8 expression and ERK1/2 phosphorylation. Taken together, our data indicate the importance of Tpl2 in the modulation of ERK1/2 signaling involved in the IL-1β-induced development of autoimmune diseases affecting the dermal tissue, such as atopic dermatitis.
Collapse
Affiliation(s)
- Atsuto Naruke
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
- * E-mail:
| | - Junichi Nunomura
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Yoko Suwabe
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Masumi Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| |
Collapse
|
5
|
Suwabe Y, Nakano R, Namba S, Yachiku N, Kuji M, Sugimura M, Kitanaka N, Kitanaka T, Konno T, Sugiya H, Nakayama T. Involvement of GLUT1 and GLUT3 in the growth of canine melanoma cells. PLoS One 2021; 16:e0243859. [PMID: 33539362 PMCID: PMC7861381 DOI: 10.1371/journal.pone.0243859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The rate of glucose uptake dramatically increases in cancer cells even in the presence of oxygen and fully functioning mitochondria. Cancer cells produce ATP by glycolysis rather than oxidative phosphorylation under aerobic conditions, a process termed as the “Warburg effect.” In the present study, we treated canine melanoma cells with the glucose analog 2-deoxy-D-glucose (2-DG) and investigated its effect on cell growth. 2-DG attenuated cell growth in a time- and dose-dependent manner. Cell growth was also inhibited following treatment with the glucose transporter (GLUT) inhibitor WZB-117. The treatment of 2-DG and WZB-117 attenuated the glucose consumption, lactate secretion and glucose uptake of the cells. The mRNA expression of the subtypes of GLUT was examined and GLUT1 and GLUT3 were found to be expressed in melanoma cells. The growth, glucose consumption and lactate secretion of melanoma cells transfected with siRNAs of specific for GLUT1 and GLUT3 was suppressed. These findings suggest that glucose uptake via GLUT1 and GLUT3 plays a crucial role for the growth of canine melanoma cells.
Collapse
Affiliation(s)
- Yoko Suwabe
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Naoya Yachiku
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Manami Kuji
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Mana Sugimura
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tadayoshi Konno
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
6
|
Yusuf IO, Chen HM, Cheng PH, Chang CY, Tsai SJ, Chuang JI, Wu CC, Huang BM, Sun HS, Chen CM, Yang SH. Fibroblast Growth Factor 9 Stimulates Neuronal Length Through NF-kB Signaling in Striatal Cell Huntington's Disease Models. Mol Neurobiol 2021; 58:2396-2406. [PMID: 33421017 DOI: 10.1007/s12035-020-02220-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Proper development of neuronal cells is important for brain functions, and impairment of neuronal development may lead to neuronal disorders, implying that improvement in neuronal development may be a therapeutic direction for these diseases. Huntington's disease (HD) is a neurodegenerative disease characterized by impairment of neuronal structures, ultimately leading to neuronal death and dysfunctions of the central nervous system. Based on previous studies, fibroblast growth factor 9 (FGF9) may provide neuroprotective functions in HD, and FGFs may enhance neuronal development and neurite outgrowth. However, whether FGF9 can provide neuronal protective functions through improvement of neuronal morphology in HD is still unclear. Here, we study the effects of FGF9 on neuronal length in HD and attempt to understand the related working mechanisms. Taking advantage of striatal cell lines from HD knock-in mice, we found that FGF9 increases total neuronal length and upregulates several structural and synaptic proteins under HD conditions. In addition, activation of nuclear factor kappa B (NF-kB) signaling by FGF9 was observed to be significant in HD cells, and blockage of NF-kB leads to suppression of these structural and synaptic proteins induced by FGF9, suggesting the involvement of NF-kB signaling in these effects of FGF9. Taken these results together, FGF9 may enhance total neuronal length through upregulation of NF-kB signaling, and this mechanism could serve as an important mechanism for neuroprotective functions of FGF9 in HD.
Collapse
Affiliation(s)
- Issa Olakunle Yusuf
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsiu-Mei Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Yi Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Institute of Basic Medical Sciences, Taipei, Taiwan
| | - Jih-Ing Chuang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Institute of Basic Medical Sciences, Taipei, Taiwan
| | - Chia-Ching Wu
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Department of Cell Biology and Anatomy, Taipei, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Department of Cell Biology and Anatomy, Taipei, Taiwan
| | - H Sunny Sun
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shang-Hsun Yang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan. .,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, Taipei, Taiwan.
| |
Collapse
|
7
|
Nakano R, Kitanaka T, Namba S, Kitanaka N, Suwabe Y, Konno T, Yamazaki J, Nakayama T, Sugiya H. Non-Transcriptional and Translational Function of Canonical NF- κB Signaling in Activating ERK1/2 in IL-1 β-Induced COX-2 Expression in Synovial Fibroblasts. Front Immunol 2020; 11:579266. [PMID: 33117381 PMCID: PMC7576893 DOI: 10.3389/fimmu.2020.579266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
The pro-inflammatory cytokine interleukin 1β (IL-1β) induces the synthesis of prostaglandin E2 by upregulating cyclooxygenase-2 (COX-2) in the synovial tissue of individuals with autoimmune diseases, such as rheumatoid arthritis (RA). IL-1β-mediated stimulation of NF-κB and MAPK signaling is important for the pathogenesis of RA; however, crosstalk(s) between NF-κB and MAPK signaling remains to be understood. In this study, we established a model for IL-1β-induced synovitis and investigated the role of NF-κB and MAPK signaling in synovitis. We observed an increase in the mRNA and protein levels of COX-2 and prostaglandin E2 release in cells treated with IL-1β. NF-κB and ERK1/2 inhibitors significantly reduced IL-1β-induced COX-2 expression. IL-1β induced the phosphorylation of canonical NF-κB complex (p65 and p105) and degradation of IκBα. IL-1β also induced ERK1/2 phosphorylation but did not affect the phosphorylation levels of p38 MAPK and JNK. IL-1β failed to induce COX-2 expression in cells transfected with siRNA for p65, p105, ERK1, or ERK2. Notably, NF-κB inhibitors reduced IL-1β-induced ERK1/2 phosphorylation; however, the ERK1/2 inhibitor had no effect on the phosphorylation of the canonical NF-κB complex. Although transcription and translation inhibitors had no effect on IL-1β-induced ERK1/2 phosphorylation, the silencing of canonical NF-κB complex in siRNA-transfected fibroblasts prevented IL-1β-induced phosphorylation of ERK1/2. Taken together, our data indicate the importance of the non-transcriptional/translational activity of canonical NF-κB in the activation of ERK1/2 signaling involved in the IL-1β-induced development of autoimmune diseases affecting the synovial tissue, such as RA.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shinichi Namba
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Nanako Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Suwabe
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jun Yamazaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
8
|
Edamura K, Takahashi Y, Fujii A, Masuhiro Y, Narita T, Seki M, Asano K. Recombinant canine basic fibroblast growth factor-induced differentiation of canine bone marrow mesenchymal stem cells into voltage- and glutamate-responsive neuron-like cells. Regen Ther 2020; 15:121-128. [PMID: 33426210 PMCID: PMC7770349 DOI: 10.1016/j.reth.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Basic fibroblast growth factor (bFGF) is a promising cytokine in regenerative therapy for spinal cord injury. In this study, recombinant canine bFGF (rc-bFGF) was synthesized for clinical use in dogs, and the ability of rc-bFGF to differentiate canine bone marrow mesenchymal stem cells (BMSCs) into functional neurons was investigated. Methods The rc-bFGF was synthesized using a wheat germ cell-free protein synthesis system. The expression of rc-bFGF mRNA in the purification process was confirmed using a reverse transcription-polymerase chain reaction (RT-PCR). Western blotting was performed to confirm the antigenic property of the purified protein. To verify function of the purified protein, phosphorylation of extracellular signal-regulated kinase (ERK) was examined by in vitro assay using HEK293 cells. To compare the neuronal differentiation capacity of canine BMSCs in response to treatment with rc-bFGF, the cells were divided into the following four groups: control, undifferentiated, rh-bFGF, and rc-bFGF groups. After neuronal induction, the percentage of cells that had changed to a neuron-like morphology and the mRNA expression of neuronal markers were evaluated. Furthermore, to assess the function of the canine BMSCs after neuronal induction, changes in the intracellular Ca2+ concentrations after stimulation with KCl and l-glutamate were examined. Results The protein synthesized in this study was rc-bFGF and functioned as bFGF, from the results of RT-PCR, western blotting, and the expression of pERK in HEK293 cells. Canine BMSCs acquired a neuron-like morphology and expressed mRNAs of neuronal markers after neuronal induction in the rh-bFGF and the rc-bFGF groups. These results were more marked in the rc-bFGF group than in the other groups. Furthermore, an increase in intracellular Ca2+ concentrations was observed after the stimulation of KCl and l-glutamate in the rc-bFGF group, same as in the rh-bFGF group. Conclusions A functional rc-bFGF was successfully synthesized, and rc-bFGF induced the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells. Our purified rc-bFGF may contribute, on its own, or in combination with canine BMSCs, to regenerative therapy for spinal cord injury in dogs. Functional rc-bFGF was successfully synthesized. rc-bFGF induced the differentiation of canine BMSCs into neuron-like cells. rc-bFGF may aid in regenerative therapy of spinal cord injury in dogs.
Collapse
Key Words
- BMSCs, bone marrow mesenchymal stem cells
- Basic fibroblast growth factor
- Bone marrow
- Differentiation
- Dog
- EDTA, ethylenediaminetetraacetic acid
- ERK, extracellular signal-regulated kinase
- FBS, fatal bovine serum
- FGFR, basic fibroblast growth factor receptor
- GUSB, β-glucuronidase
- HEK293, human embryonic kidney cells 293
- HRP, horseradish peroxidase
- Mesenchymal stem cell
- Neuron
- PBS, phosphate buffered saline
- PCR, polymerase chain reaction
- PI3K, phosphatidylinositol 3-kinase
- RT-PCR, reverse transcription-polymerase chain reaction
- bFGF, basic fibroblast growth factor
- cDNA, complementary DNA
- mRNA, messenger ribonucleic acid
- pERK, phosphorylated extracellular signal-regulated kinase
- αMEM, alpha modified eagle minimum essential medium
Collapse
Affiliation(s)
- Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yusuke Takahashi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Airi Fujii
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Science, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mamiko Seki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazushi Asano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
9
|
Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21144867. [PMID: 32660142 PMCID: PMC7402296 DOI: 10.3390/ijms21144867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cells are highly important in biology due to their unique innate ability to self-renew and differentiate into other specialised cells. In a neurological context, treating major injuries such as traumatic brain injury, spinal cord injury and stroke is a strong basis for research in this area. Mesenchymal stem cells (MSC) are a strong candidate because of their accessibility, compatibility if autologous, high yield and multipotency with a potential to generate neural cells. With the use of small-molecule chemicals, the neural induction of stem cells may occur within minutes or hours. Isobutylmethyl xanthine (IBMX) has been widely used in cocktails to induce neural differentiation. However, the key molecular mechanisms it instigates in the process are largely unknown. In this study we showed that IBMX-treated mesenchymal stem cells induced differentiation within 24 h with the unique expression of several key proteins such as Adapter protein crk, hypoxanthine-guanine phosphoribosyltransferase, DNA topoisomerase 2-beta and Cell division protein kinase 5 (CDK5), vital in linking signalling pathways. Furthermore, the increased expression of basic fibroblast growth factor in treated cells promotes phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK) cascades and GTPase–Hras interactions. Bioinformatic and pathway analyses revealed upregulation in expression and an increase in the number of proteins with biological ontologies related to neural development and substructure formation. These findings enhance the understanding of the utility of IBMX in MSC neural differentiation and its involvement in neurite substructure development.
Collapse
|
10
|
All-trans retinoic acid induces reprogramming of canine dedifferentiated cells into neuron-like cells. PLoS One 2020; 15:e0229892. [PMID: 32231396 PMCID: PMC7108708 DOI: 10.1371/journal.pone.0229892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/16/2020] [Indexed: 12/18/2022] Open
Abstract
The specification of cell identity depends on the exposure of cells to sequences of bioactive ligands. All-trans retinoic acid (ATRA) affects neuronal development in the early stage, and it is involved in neuronal lineage reprogramming. We previously established a fibroblast-like dedifferentiated fat cells (DFATs) derived from highly homogeneous mature adipocytes, which are more suitable for the study of cellular reprogramming. Canine cognitive dysfunction is similar to human cognitive dysfunction, suggesting that dogs could be a pathological and pharmacological model for human neuronal diseases. However, the effect of ATRA on neuronal reprogramming in dogs has remained unclear. Therefore, in this study, we investigated the effect of ATRA on the neuronal reprogramming of canine DFATs. ATRA induced the expression of neuronal marker mRNA/protein. The neuron-like cells showed Ca2+ influx with depolarization (50 mM KCl; 84.75 ± 4.05%) and Na+ channel activation (50 μM veratridine; 96.02 ± 2.02%). Optical imaging of presynaptic terminal activity and detection of neurotransmitter release showed that the neuron-like cells exhibited the GABAergic neuronal property. Genome-wide RNA-sequencing analysis shows that the transcriptome profile of canine DFATs is effectively reprogrammed towards that of cortical interneuron lineage. Collectively, ATRA can produce functional GABAergic cortical interneuron-like cells from canine DFATs, exhibiting neuronal function with > 80% efficiency. We further demonstrated the contribution of JNK3 to ATRA-induced neuronal reprogramming in canine DFATs. In conclusion, the neuron-like cells from canine DFATs could be a powerful tool for translational research in cell transplantation therapy, in vitro disease modeling, and drug screening for neuronal diseases.
Collapse
|
11
|
Devireddy LR, Myers M, Screven R, Liu Z, Boxer L. A serum-free medium formulation efficiently supports isolation and propagation of canine adipose-derived mesenchymal stem/stromal cells. PLoS One 2019; 14:e0210250. [PMID: 30811421 PMCID: PMC6392232 DOI: 10.1371/journal.pone.0210250] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Medium containing Fetal Bovine Serum (FBS) provides a supportive environment for isolation and expansion of mesenchymal stromal/stem cells (MSCs); however, the inherent variability of FBS may contribute to inconsistencies in cell growth and yield between batches of stem cell products. For this reason, we set out to develop a serum-free medium capable of supporting the in vitro expansion of MSCs. First a naïve serum-free medium was formulated by Sato's approach. Once it was established that the naïve serum-free medium supported the expansion of canine adipose-derived MSCs (Ad-MSCs), the serum-free medium was optimized by addition of growth factors. Combinations of growth factors were chosen and compared by their effect on cell proliferation and colony formation. Growth characteristics of canine adipose-derived MSCs cultured in the serum-free medium were comparable to those cultured in standard FBS containing medium. In addition, cell surface marker expression and differentiation potential of serum-free and FBS-based cultures were also comparable. However, a commercial serum-free medium developed for human MSC culture did not support growth of canine Ad-MSCs. In summary, canine Ad-MSCs isolated and cultured in serum-free medium retained the basic characteristics of MSCs cultured in FBS containing medium.
Collapse
Affiliation(s)
- Laxminarayana R. Devireddy
- Division of Applied Veterinary Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Michael Myers
- Division of Applied Veterinary Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Rudell Screven
- Division of Applied Veterinary Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Zhuoming Liu
- Division of Applied Veterinary Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Lynne Boxer
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, Maryland, United States of America
| |
Collapse
|
12
|
Bhat IA, T B S, Somal A, Pandey S, Bharti MK, Panda BSK, B I, Verma M, J A, Sonwane A, Kumar GS, Amarpal, Chandra V, Sharma GT. An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J Cell Physiol 2018; 234:2705-2718. [PMID: 30132873 DOI: 10.1002/jcp.27086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
This study was conducted to characterize canine bone marrow-derived mesenchymal stem cells (BMSCs); in vivo tracking in mice, and therapeutic evaluation in canine clinical paraplegia cases. Canine BMSCs were isolated, cultured, and characterized in vitro as per International Society for Cellular Therapy criteria, and successfully differentiated to chondrogenic, osteogenic, and adipogenic lineages. To demonstrate the homing property, the pGL4.51 vector that contained luciferase reporter gene was used to transfect BMSCs. Successfully transfected cells were injected around the skin wound in mice and in vivo imaging was done at 6, 12 and 24 hr post MSCs delivery. In vivo imaging revealed that transfected BMSCs migrated and concentrated predominantly toward the center of the wound. BMSCs were further evaluated for allogenic therapeutic potential in 44 clinical cases of spinal cord injuries (SCI) and compared with conventional therapy (control). Therapeutic potential as evaluated by different body reflexes and recovery score depicted significantly better results in stem cell-treated group compared to control group. In conclusion, allogenic canine BMSCs can serve as potent therapeutic candidate in cell-based therapies, especially for diseases like SCI, where the conventional medication is not so promising.
Collapse
Affiliation(s)
- Irfan A Bhat
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sivanarayanan T B
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Anjali Somal
- Department of Veterinary Physiology and Biochemistry, CSK HPKV Palampur (H.P.)
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mukesh K Bharti
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bibhudatta S K Panda
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Indu B
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Megha Verma
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Anand J
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Arvind Sonwane
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G Sai Kumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Amarpal
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veter inary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
13
|
Protein kinase Cε regulates nuclear translocation of extracellular signal-regulated kinase, which contributes to bradykinin-induced cyclooxygenase-2 expression. Sci Rep 2018; 8:8535. [PMID: 29867151 PMCID: PMC5986758 DOI: 10.1038/s41598-018-26473-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/04/2018] [Indexed: 01/18/2023] Open
Abstract
The proinflammatory mediator bradykinin stimulated cyclooxygenase-2 (COX-2) expression and subsequently prostaglandin E2 synthesis in dermal fibroblasts. The involvement of B2 receptors and Gαq in the role of bradykinin was suggested by using pharmacological inhibitors. The PKC activator PMA stimulated COX-2 mRNA expression. Bradykinin failed to induce COX-2 mRNA expression in the presence of PKC inhibitors, whereas the effect of bradykinin was observed in the absence of extracellular Ca2+. Bradykinin-induced COX-2 mRNA expression was inhibited in cells transfected with PKCε siRNA. These observations suggest that the novel PKCε is concerned with bradykinin-induced COX-2 expression. Bradykinin-induced PKCε phosphorylation and COX-2 mRNA expression were inhibited by an inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and bradykinin-induced PDK-1 phosphorylation was inhibited by phospholipase D (PLD) inhibitors, suggesting that PLD/PDK-1 pathway contributes to bradykinin-induced PKCε activation. Pharmacological and knockdown studies suggest that the extracellular signal-regulated kinase 1 (ERK1) MAPK signaling is involved in bradykinin-induced COX-2 expression. Bradykinin-induced ERK phosphorylation was attenuated in the cells pretreated with PKC inhibitors or transfected with PKCε siRNA. We observed the interaction between PKCε and ERK by co-immunoprecipitation experiments. These observations suggest that PKCε activation contributes to the regulation of ERK1 activation. Bradykinin stimulated the accumulation of phosphorylated ERK in the nuclear fraction, that was inhibited in the cells treated with PKC inhibitors or transfected with PKCε siRNA. Consequently, we concluded that bradykinin activates PKCε via the PLD/PDK-1 pathway, which subsequently induces activation and translocation of ERK1 into the nucleus, and contributes to COX-2 expression for prostaglandin E2 synthesis in dermal fibroblasts.
Collapse
|
14
|
Mili B, Das K, Kumar A, Saxena AC, Singh P, Ghosh S, Bag S. Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 29:4. [PMID: 29204722 DOI: 10.1007/s10856-017-6008-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Sustained and controlled release of neurotrophic factors in target tissue through nanomaterial based delivery system could be a better strategy for nerve tissue regeneration. The present study aims to prepare the nerve growth factor (NGF) encapsulated chitosan nanoparticles (NGF-CNPs) and its evaluation on neuronal differentiation potentiality of canine bone marrow derived mesenchymal stem cells (cBM-MSCs). The NGF-CNPs were prepared by ionotropic gelation method with tripolyphosphate (TPP) as an ionic cross-linking agent. Observations on physiochemical properties displayed the size of nanoparticles as 80-90 nm with positive zeta potential as well as an ionic interaction between NGF and nanoparticle. NGF loading efficiency was found to be 61% while its sustained release was observed by an in vitro release kinetics study. These nanoparticles were found to be cytocompatible to cBM-MSCs when supplemented at a concentration upto 4 mg/ml in culture media. The NGF-CNP supplemented culture media was able to transdifferentiate the preinduced cBM-MSCs into neurons in a better way than unbound NGF supplementation. Further, it was also noticed that NGF-CNPs were able to transdifferentiate cBM-MSCs without any chemical based preinduction. In conclusion, our findings propose that NGF-CNPs are capable of releasing bioactive NGF with the ability to transdifferentiate mesenchymal stem cells into neurons, suggesting its potential future application in nerve tissue regeneration.
Collapse
Affiliation(s)
- Bhabesh Mili
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Kinsuk Das
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Ajay Kumar
- Biochemistry and Food Science Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - A C Saxena
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Praveen Singh
- Biophysics, Electron Microscopy and Instrumentation Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Srikanta Ghosh
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Sadhan Bag
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India.
| |
Collapse
|
15
|
Namba S, Nakano R, Kitanaka T, Kitanaka N, Nakayama T, Sugiya H. ERK2 and JNK1 contribute to TNF-α-induced IL-8 expression in synovial fibroblasts. PLoS One 2017; 12:e0182923. [PMID: 28806729 PMCID: PMC5555573 DOI: 10.1371/journal.pone.0182923] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor α (TNF-α) induces the expression and secretion of interleukin 8 (IL-8), which contributes to synovitis in rheumatoid arthritis (RA). To elucidate the mechanism of the onset of RA, we used synovial fibroblasts without autoimmune inflammatory diseases and investigated MAPK signaling pathways in TNF-α-induced IL-8 expression. Synovial fibroblasts isolated from healthy dogs were characterized by flow cytometry, which were positive for the fibroblast markers CD29, CD44, and CD90 but negative for the hematopoietic cell markers CD14, CD34, CD45, and HLA-DR. TNF-α stimulated the secretion and mRNA expression of IL-8 in a time- and dose-dependent manner. ERK and JNK inhibitors attenuated TNF-α-induced IL-8 expression and secretion. TNF-α induced the phosphorylation of ERK1/2 and JNK1/2. TNF-α-induced IL-8 expression was attenuated both in ERK2- and JNK1-knockdown cells. TNF-α-induced ERK1/2 or JNK1/2 was observed in ERK2- or JNK1-knockdown cells, respectively, showing that there is no crosstalk between ERK2 and JNK1 pathways. These observations indicate that the individual activation of ERK2 and JNK1 pathways contributes to TNF-α-induced IL-8 expression in synovial fibroblasts, which appears to be involved in the progress in RA.
Collapse
Affiliation(s)
- Shinichi Namba
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
16
|
Das K, Madhusoodan AP, Mili B, Kumar A, Saxena AC, Kumar K, Sarkar M, Singh P, Srivastava S, Bag S. Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells. Int J Nanomedicine 2017; 12:3235-3252. [PMID: 28458543 PMCID: PMC5402918 DOI: 10.2147/ijn.s122945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the field of regenerative medicine, numerous potential applications of mesenchymal stem cells (MSCs) can be envisaged, due to their ability to differentiate into a range of tissues on the basis of the substrate on which they grow. With the advances in nanotechnology, carbon nanotubes (CNTs) have been widely explored for use as cell culture substrate in tissue engineering applications. In this study, canine bone marrow-derived MSCs were considered as the cellular model for an in vitro study to elucidate the collective cellular processes, using three different varieties of thin films of functionalized carbon nanotubes (COOH-single-walled CNTs [SWCNTs], COOH-multiwalled CNTs [MWCNTs] and polyethylene glycol [PEG]-SWCNTs), which were spray dried onto preheated cover slips. Cells spread out better on the CNT films, resulting in higher cell surface area and occurrence of filopodia, with parallel orientation of stress fiber bundles. Canine MSCs proliferated at a slower rate on all types of CNT substrates compared to the control, but no decline in cell number was noticed during the study period. Expression of apoptosis-associated genes decreased on the CNT substrates as time progressed. On flow cytometry after AnnexinV-fluorescein isothiocyanate/propidium iodide (PI) staining, total number of apoptotic and necrotic cells remained lower in COOH-functionalized films compared to PEG-functionalized ones. Collectively, these results indicate that COOH-MWCNT substrate provided an environment of low cytotoxicity. Canine MSCs were further induced to differentiate along osteogenic, chondrogenic, and neuronal lineages by culturing under specific differentiation conditions. The cytochemical and immunocytochemical staining results, as well as the expression of the bone marker genes, led us to hypothesize that the COOH-MWCNT substrate acted as a better cue, accelerating the osteogenic differentiation process. However, while chondrogenesis was promoted by COOH-SWCNT, neuronal differentiation was promoted by both COOH-SWNCT and COOH-MWCNT. Taken together, these findings suggest that COOH-functionalized CNTs represent a promising scaffold component for future utilization in the selective differentiation of canine MSCs in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Praveen Singh
- Biophysics, Electron Microscopy and Instrumentation Section
| | - Sameer Srivastava
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
17
|
Lin HY, Fujita N, Endo K, Morita M, Takeda T, Nakagawa T, Nishimura R. Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow. Stem Cells Dev 2017; 26:431-440. [DOI: 10.1089/scd.2016.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Hsing-Yi Lin
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Endo
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Maresuke Morita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tae Takeda
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Roszek K, Makowska N, Czarnecka J, Porowińska D, Dąbrowski M, Danielewska J, Nowak W. Canine Adipose-Derived Stem Cells: Purinergic Characterization and Neurogenic Potential for Therapeutic Applications. J Cell Biochem 2016; 118:58-65. [PMID: 27225588 DOI: 10.1002/jcb.25610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
The presented results evidence that canine adipose-derived stem cells (ADSCs) represent the premature population of stem cells with great biological potential and properties. ADCS are easy to obtain and culture, able to differentiate into the neurogenic lineage as well as it is easy to control their proliferation rate with nucleotides and nucleosides or analogues. We report that in vitro cultured canine ADSCs response to adenosine- and ATP-mediated stimulation. Differences in canine ADSCs and human mesenchymal stem cells in ecto-nucleotidase activity have been observed. The ecto-nucleotidase activity changes during ADSCs in vitro transdifferentiation into neurogenic lineage are fast and simple to analyze. Therefore, the simple analysis of ecto-enzymes activity allows for verification of the stem cells quality: their stemness or initiation of the differentiation process. The biological potential of the cells isolated from canine fat, as well as the good quality control of this cell culture, make them a promising tool for both experimental and therapeutic usage. J. Cell. Biochem. 118: 58-65, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Noemi Makowska
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Joanna Czarnecka
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowińska
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Dąbrowski
- Faculty of Physics, Astronomy and Computer Science, Department of Biophysics and Medical Physics, Institute of Physics, Nicolaus Copernicus University, Torun, Poland.,Faculty of Biology and Environment Protection, Department of Biophysics, Nicolaus Copernicus University, Torun, Poland
| | | | - Wiesław Nowak
- Faculty of Physics, Astronomy and Computer Science, Department of Biophysics and Medical Physics, Institute of Physics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
19
|
Nakano R, Edamura K, Nakayama T, Narita T, Okabayashi K, Sugiya H. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway. PLoS One 2015; 10:e0141581. [PMID: 26523832 PMCID: PMC4629880 DOI: 10.1371/journal.pone.0141581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Ken Okabayashi
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
20
|
Tsuchiya H, Nakano R, Konno T, Okabayashi K, Narita T, Sugiya H. Activation of MEK/ERK pathways through NF-κB activation is involved in interleukin-1β-induced cyclooxygenease-2 expression in canine dermal fibroblasts. Vet Immunol Immunopathol 2015; 168:223-32. [PMID: 26549149 DOI: 10.1016/j.vetimm.2015.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 12/30/2022]
Abstract
The proinflammatory cytokine interleukin-1β (IL-1β) induced cyclooxygenases-2 (COX-2) mRNA expression and lipid mediator prostaglandin E2 release and in a time- and dose-dependent manner in canine dermal fibroblasts. The MEK inhibitor U0126 and the ERK inhibitor FR180204 clearly inhibited IL-1β-induced prostaglandin E2 release and COX-2 mRNA expression. IL-1β enhanced ERK1/2 phosphorylation, which was attenuated by inhibitors of MEK and ERK. The NF-κB inhibitor BAY 11-7082 also suppressed IL-1β-induced prostaglandin E2 release and COX-2 mRNA expression. Treatment of fibroblasts with IL-1β led to the phosphorylation of p65 and degradation of IκBα occurred, indicating that IL-1β treatment activated NF-κB. MEK and ERK1/2 inhibitors had no effect on the phosphorylation of p65 subunit induced by IL-1β, whereas the NF-κB inhibitor completely blocked IL-1β-induced phosphorylation of ERK1/2. We also observed that IκBα-knockdown enhanced the phosphorylation of p65 and ERK1/2. These findings suggest that stimulation of MEK/ERK signaling pathway by NF-κB activation regulates IL-1β-induced COX-2 expression and subsequent prostaglandin E2 release in canine dermal fibroblasts.
Collapse
Affiliation(s)
- Hisashi Tsuchiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Ken Okabayashi
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|