1
|
Kovanda L, Hejna M, Du T, Liu Y. Butyrate Derivatives Exhibited Anti-Inflammatory Effects and Enhanced Intestinal Barrier Integrity in Porcine Cell Culture Models. Animals (Basel) 2025; 15:1289. [PMID: 40362102 PMCID: PMC12071038 DOI: 10.3390/ani15091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Butyrate and its derivatives may influence inflammatory status and physiology in a variety of organisms and organ systems. Inflammatory conditions of the gastrointestinal tract, such as post-weaning diarrhea, negatively impact swine. Dietary intervention with butyrate-based compounds should be considered a strategy to improve disease resistance in pigs. We aimed to assess the properties of different forms of butyrate treatments using porcine cell culture experiments. This assessment may inform future in vivo feed experiments designed to determine its potential application of the dietary supplements for pigs. An intestinal porcine enterocyte cell line, IPEC-J2, was seeded at 5 × 103 cells/mL in 96-well plates to confirm cell viability by MTT assay for each dose range used in the current experiments (0, 0.5, 1, 2, 4 mM butyric acid or tributyrin; 0, 1, 2, 4, 8 mM sodium butyrate or monobutyrin). For transepithelial electrical resistance (TEER) analysis, IPEC-J2 was seeded at 5 × 105 cells/mL in 12-well transwell inserts and treated with 5 levels of each butyrate derivative after adherence (n = 5). TEER was measured at 24, 48, and 72 h post-treatment to quantify intestinal barrier integrity of IPEC-J2 monolayers. Butyric acid, sodium butyrate, and monobutyrin significantly increased (p < 0.05) TEER in IPEC-J2 at different time points compared with control. Further, porcine alveolar macrophages (PAMs) were harvested from donor weaned piglets (n = 6) via bronchoalveolar lavage and isolated for primary culture (6 × 105 cells/well, 6-well plates). PAMs were treated with five levels of each butyrate derivative with or without lipopolysaccharide (LPS, 1 μg/mL) challenge. The concentrations of TNF-α and IL-1β in cell culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Butyric acid and sodium butyrate treatments reduced the production of TNF-α in LPS-challenged PAMs (linear; p < 0.05). Different butyrate derivatives exerted anti-inflammatory properties and improved intestinal barrier integrity.
Collapse
Affiliation(s)
- Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA; (L.K.); (T.D.)
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland;
| | - Tina Du
- Department of Animal Science, University of California, Davis, CA 95616, USA; (L.K.); (T.D.)
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA; (L.K.); (T.D.)
| |
Collapse
|
2
|
Musimbi ZD, Kundik A, Krücken J, Hauser AE, Rausch S, Seeberger PH, Niesner R, Leben R, Hartmann S. Two-photon NAD(P)H-FLIM reveals unperturbed energy metabolism of Ascaris suum larvae, in contrast to host macrophages upon artemisinin derivatives exposure. Sci Rep 2025; 15:2056. [PMID: 39814779 PMCID: PMC11735674 DOI: 10.1038/s41598-025-85780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Soil-transmitted helminths (STH) are widespread, with Ascaris lumbricoides infecting millions globally. Malaria and STH co-infections are common in co-endemic regions. Artemisinin derivatives (ARTs)-artesunate, artemether, and dihydroartemisinin-are standard malaria treatments and are also known to influence the energy metabolism of parasites, tumors, and immune cells. Herein, we explore the potential of ARTs to influence ascariasis either by directly targeting larvae or indirectly by modifying macrophage responses. Ascaris suum third-stage larvae and porcine IL-4 polarized (M2-like) macrophages were exposed to ARTs in vitro, and their metabolism was evaluated using two-photon NAD(P)H-FLIM. Both larvae and M2-like macrophages exhibited a steady-state bioenergetic profile of high oxidative phosphorylation and low anaerobic glycolysis. In A. suum larvae, two metabolically distinct regions were identified, with particularly high DUOX activity in the pharynx compared to the midgut; however, ARTs did not alter these profiles. In contrast, exposure of M2-like macrophages to ARTs induced a metabolic shift towards high anaerobic glycolysis and reduced metabolic activity, suggesting a possible indirect effect of ARTs on the helminth infection. Overall, two-photon NAD(P)H-FLIM proved to be a powerful tool for studying specific metabolic pathways in Ascaris larvae and host macrophages, offering valuable insights into the metabolic mechanisms of drug action on both parasite and host.
Collapse
Affiliation(s)
- Zaneta D Musimbi
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Charitéplatz 1, Berlin, Germany
| | - Sebastian Rausch
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Raluca Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
- Dynamic and Functional in Vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ruth Leben
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
- Dynamic and Functional in Vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
4
|
Rodríguez-Largo A, Gómez Á, Pérez E, de Miguel R, Moncayola I, Biagini L, Rossi G, de Blas I, Fernández A, Pérez M, Glaria I, Reina R, Luján L. Morphometry, cellular characterization and temporal evolution of granulomas induced by aluminium oxyhydroxide in sheep. J Comp Pathol 2025; 216:1-9. [PMID: 39647191 DOI: 10.1016/j.jcpa.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024]
Abstract
Persistent subcutaneous granulomas form at the injection site following administration of aluminium oxyhydroxide (AlOOH), a widely used vaccine adjuvant. Small ruminant lentiviruses (SRLVs) can infect macrophages within granulomas induced by commercial AlOOH-based vaccines in sheep. The entry of SRLVs into target cells involves the mannose receptor (MR), while catalytic polypeptide-like 3 protein containing Z1 domain (A3Z1) is considered a restriction factor for lentiviral replication. The objective of this study was to investigate the temporal evolution of AlOOH-induced post-vaccination granulomas in sheep experimentally infected with SRLVs. Twenty-four male lambs underwent two identical vaccination protocols and were challenged with SRLVs. Granulomas were detected in vaccinated groups only and progressively decreased in size. At post-mortem examination, 91.3% of the granulomas were recovered. Fistulas were present in granulomas following the second vaccination protocol. Central necrosis was present in 58.0% of granulomas and was associated with the vaccine used. Orthokeratotic keratin was seen within granulomas in 47.1% of the lambs. Considering all granulomas studied, significantly higher expression of MR was found compared with A3Z1. Differences in MR expression were related to the type of vaccine and the time since vaccination. A3Z1 expression was upregulated in granulomas from the infected groups. Macrophage polarization may influence SRLV infection of granulomas. While SRLV infection does not influence the architecture of post-vaccination granulomas, it may modulate their immune microenvironment. Further studies are needed to elucidate the complex interactions between AlOOH-induced granulomas and SRLV infection in sheep.
Collapse
Affiliation(s)
- Ana Rodríguez-Largo
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Álex Gómez
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Estela Pérez
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Ricardo de Miguel
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Irati Moncayola
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Lucia Biagini
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, 62024 Matelica, Italy
| | - Giacomo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, 62024 Matelica, Italy
| | - Ignacio de Blas
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Antonio Fernández
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Marta Pérez
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Idoia Glaria
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Ramsés Reina
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Lluís Luján
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
5
|
Liu J, Su G, Chen X, Chen Q, Duan C, Xiao S, Zhou Y, Fang L. PRRSV infection facilitates the shedding of soluble CD163 to induce inflammatory responses. Vet Microbiol 2024; 296:110189. [PMID: 39047452 DOI: 10.1016/j.vetmic.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which poses substantial threats to the global pig industry, is primarily characterized by interstitial pneumonia. Cluster of differentiation 163 (CD163) is the essential receptor for PRRSV infection. Metalloproteinase-mediated cleavage of CD163 leads to the shedding of soluble CD163 (sCD163), thereby inhibiting PRRSV proliferation. However, the exact cleavage site in CD163 and the potential role of sCD163 in inflammatory responses during PRRSV infection remain unclear. Herein, we found that PRRSV infection increased sCD163 levels, as demonstrated in primary alveolar macrophages (PAMs), immortalized PAM (IPAM) cell lines, and sera from PRRSV-infected piglets. With LC-MS/MS, Arg-1041/Ser-1042 was identified as the cleavage site in porcine CD163, and an IPAM cell line with precise mutation at the cleavage site was constructed. Using the precisely mutated IPAM cells, we found that exogenous addition of sCD163 protein promoted inflammatory responses, while mutation at the CD163 cleavage site suppressed inflammatory responses. Consistently, inhibition of sCD163 using its neutralizing antibodies reduced PRRSV infection-triggered inflammatory responses. Importantly, sCD163 promoted cell polarization from M2 to M1 phenotype, which in turn facilitated inflammatory responses. Taken together, our findings identify sCD163 as a novel proinflammatory mediator and provide valuable insights into the mechanisms underlying the induction of inflammatory responses by PRRSV infection.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Porcine respiratory and reproductive syndrome virus/immunology
- Swine
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/virology
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/immunology
- Inflammation/virology
- Cell Line
Collapse
Affiliation(s)
- Jiao Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guanning Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaolei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou 221000, China; School of Life Sciences, Xuzhou Medical University, Xuzhou 221000, China
| | - Chenrui Duan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
6
|
Wang T, Zhao W, Qi Z, Lv S, Xiao Y, Wang Y, Guo Q, Wang L, Peng X. Unmasking the dynamics of Mycoplasma gallisepticum: deciphering HD11 macrophage polarization for innovative infection control strategies. Poult Sci 2024; 103:103652. [PMID: 38537405 PMCID: PMC10987924 DOI: 10.1016/j.psj.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024] Open
Abstract
Mycoplasma gallisepticum (MG) is a highly contagious avian respiratory pathogen characterized by rapid spread, widespread distribution, and long-term persistence of infection. Previous studies have shown that chicken macrophage HD11 cells play a critical role in the replication and immunomodulation of MG. Macrophages are multifunctional immunomodulatory cells that polarize into different functions and morphologies in response to exogenous stimuli. However, the effect of MG infection on HD11 polarization is not well understood. In this study, we observed a time-dependent increase in both the expression of the MG-related virulence protein pMGA1.2 and the copy number of MG upon MG infection. Polarization studies revealed an upregulation of M1-type marker genes in MG-infected HD11 cells, suggesting that MG mainly induces HD11 macrophages towards M1-type polarization. Furthermore, MG activated the inflammatory vesicle NLRP3 signaling pathway, and NLRP3 inhibitors affected the expression of M1 and M2 marker genes, indicating the crucial regulatory role of the NLRP3 signaling pathway in MG-induced polarization of HD11 macrophages. Our findings reveal a novel mechanism of MG infection, namely the polarization of MG-infected HD11 macrophages. This discovery suggests that altering the macrophage phenotype to inhibit MG infection may be an effective control strategy. These findings provide new perspectives on the pathogenic mechanism and control measures of MG.
Collapse
Affiliation(s)
- Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqing Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenping Qi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufei Xiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Ruedas-Torres I, Sánchez-Carvajal JM, Salguero FJ, Pallarés FJ, Carrasco L, Mateu E, Gómez-Laguna J, Rodríguez-Gómez IM. The scene of lung pathology during PRRSV-1 infection. Front Vet Sci 2024; 11:1330990. [PMID: 38566751 PMCID: PMC10985324 DOI: 10.3389/fvets.2024.1330990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases for the pig industry worldwide. The disease was firstly reported in 1987 and became endemic in many countries. Since then, outbreaks caused by strains of high virulence have been reported several times in Asia, America and Europe. Interstitial pneumonia, microscopically characterised by thickened alveolar septa, is the hallmark lesion of PRRS. However, suppurative bronchopneumonia and proliferative and necrotising pneumonia are also observed, particularly when a virulent strain is involved. This raises the question of whether the infection by certain strains results in an overstimulation of the proinflammatory response and whether there is some degree of correlation between the strain involved and a particular pattern of lung injury. Thus, it is of interest to know how the inflammatory response is modulated in these cases due to the interplay between virus and host factors. This review provides an overview of the macroscopic, microscopic, and molecular pathology of PRRSV-1 strains in the lung, emphasising the differences between strains of different virulence.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA Porton Down), Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | | | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
8
|
Fabros D, Charerntantanakul W. Type I and II interferons, transcription factors and major histocompatibility complexes were enhanced by knocking down the PRRSV-induced transforming growth factor beta in monocytes co-cultured with peripheral blood lymphocytes. Front Immunol 2024; 15:1308330. [PMID: 38510257 PMCID: PMC10950996 DOI: 10.3389/fimmu.2024.1308330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The innate and adaptive immune responses elicited by porcine reproductive and respiratory syndrome virus (PRRSV) infection are known to be poor. This study investigates the impact of PRRSV-induced transforming growth factor beta 1 (TGFβ1) on the expressions of type I and II interferons (IFNs), transcription factors, major histocompatibility complexes (MHC), anti-inflammatory and pro-inflammatory cytokines in PRRSV-infected co-cultures of monocytes and peripheral blood lymphocytes (PBL). Phosphorothioate-modified antisense oligodeoxynucleotide (AS ODN) specific to the AUG region of porcine TGFβ1 mRNA was synthesized and successfully knocked down TGFβ1 mRNA expression and protein translation. Monocytes transfected with TGFβAS1 ODN, then simultaneously co-cultured with PBL and inoculated with either classical PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) showed a significant reduction in TGFβ1 mRNA expression and a significant increase in the mRNA expressions of IFNα, IFNγ, MHC-I, MHC-II, signal transducer and activator of transcription 1 (STAT1), and STAT2. Additionally, transfection of TGFβAS1 ODN in the monocyte and PBL co-culture inoculated with cPRRSV-2 significantly increased the mRNA expression of interleukin-12p40 (IL-12p40). PRRSV-2 RNA copy numbers were significantly reduced in monocytes and PBL co-culture transfected with TGFβAS1 ODN compared to the untransfected control. The yields of PRRSV-2 RNA copy numbers in PRRSV-2-inoculated monocytes and PBL co-culture were sustained and reduced by porcine TGFβ1 (rTGFβ1) and recombinant porcine IFNα (rIFNα), respectively. These findings highlight the strategy employed by PRRSV to suppress the innate immune response through the induction of TGFβ expression. The inclusion of TGFβ as a parameter for future PRRSV vaccine and vaccine adjuvant candidates is recommended.
Collapse
|
9
|
Tuo T, Chen D, Wang L, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. Infection of PRRSV inhibits CSFV C-strain replication by inducing macrophages polarization to M1. Vet Microbiol 2024; 289:109957. [PMID: 38160508 DOI: 10.1016/j.vetmic.2023.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
It is a common sense that porcine reproductive and respiratory syndrome virus (PRRSV) infection could cause immune failure of classical swine fever (CSF) vaccine, and porcine alveolar macrophages (PAMs) are the target cells of both. To elucidate the role of macrophage polarization in PRRSV infection induced CSF vaccine failure, an immortal porcine alveolar macrophage line PAM39 cell line was used to investigate the effect of PRRSV or/and CSFV C-strain (CSFV-C) infection on macrophage polarization in vitro. Interestingly, PRRSV single infection or PRRSV co-infection with CSFV-C promoted PAM39 cells to M1, while CSFV-C single infection induced PAM39 cells to M2. After the construction of M1 and M2 PAM39 cells polarization models, M1 polarized PAM39 cells were found to inhibit the replication of CSFV-C, and Chinese medicine such as matrine, ginsenosides and astragalus polysaccharides could alleviate the polarization of PAM39 cells and the replication of CSFV-C. Furthermore, interferon (IFN)-γ and lipopolysaccharide (LPS) co-stimulation induced NF-κB activation while matrine treatment blocked M1 polarization-induced NF-κB pathway activation. These findings provided a theoretical basis for designing a new strategy to improve the immune effect of CSFV-C based on porcine alveolar macrophage polarization subtypes.
Collapse
Affiliation(s)
- Tianbei Tuo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Dengjin Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lihong Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
10
|
Papakonstantinou GI, Psalla D, Pourlis A, Stylianaki I, Athanasiou LV, Tzika E, Meletis E, Kostoulas P, Maragkakis G, Christodoulopoulos G, Papaioannou N, Papatsiros VG. Histopathological Pulmonary Lesions in 1st-Day Newborn Piglets Derived from PRRSV-1 MLV Vaccinated Sows at the Last Stage of Gestation. Life (Basel) 2023; 13:1609. [PMID: 37511984 PMCID: PMC10381811 DOI: 10.3390/life13071609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Modified live virus (MLV) vaccines for the control of porcine respiratory and reproductive syndrome virus (PRRSV) have been associated with the vertical and horizontal transmission of vaccine viruses. The present study aimed to describe pathological lung lesions in piglets born by gilts vaccinated with PRRSV-1 MLV. In total, 25 gilts were vaccinated at late gestation (100th day) and were divided into five groups according to the different vaccines (Vac) used: no vaccine-control group, Vac-1-strain DV, Vac-2-strain VP-046 BIS, Vac-3-strain 94881, Vac-4-strain 96V198. Within the first 0-9 h of the farrowing, blood samples were collected from all newborn piglets and lung samples were exanimated grossly, histopathologically and with scanning electron microscopy. PRRSV (RT-PCR-positive) and antibodies were detected in the serum of piglets from gilts vaccinated with Vac-2. In these piglets, moderate to severe interstitial pneumonia with thickened alveolar septa was noticed. Type II pneumocyte hyperplasia was also observed. The rest of the trial piglets showed unremarkable lung lesions. Phylogenetic analysis revealed the 98.7% similarity of the PRRSV field strain (GR 2019-1) to the PRRS MLV vaccine strain VP-046 BIS. In conclusion, the Vac-2 PRRSV vaccine strain can act as an infectious strain when vaccination is administrated at late gestation, causing lung lesions.
Collapse
Affiliation(s)
- Georgios I. Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (L.V.A.); (G.M.)
| | - Dimitra Psalla
- Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.P.); (I.S.); (N.P.)
| | - Aris Pourlis
- Laboratory of Anatomy, Histology & Embryology, Veterinary School, University of Thessaly, 43100 Karditsa, Greece;
| | - Ioanna Stylianaki
- Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.P.); (I.S.); (N.P.)
| | - Labrini V. Athanasiou
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (L.V.A.); (G.M.)
| | - Eleni Tzika
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | - Eleftherios Meletis
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Polychronis Kostoulas
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - George Maragkakis
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (L.V.A.); (G.M.)
| | - Georgios Christodoulopoulos
- Department of Animal Science, Agricultural University of Athens, 75 Iera Odos Street, Votanikos, 11855 Athens, Greece;
| | - Nikolaos Papaioannou
- Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.P.); (I.S.); (N.P.)
| | - Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (L.V.A.); (G.M.)
| |
Collapse
|
11
|
Sun Z, Chen X, Liu J, Du Y, Duan C, Xiao S, Zhou Y, Fang L. PRRSV-induced inflammation in pulmonary intravascular macrophages (PIMs) and pulmonary alveolar macrophages (PAMs) contributes to endothelial barrier function injury. Vet Microbiol 2023; 281:109730. [PMID: 37068404 DOI: 10.1016/j.vetmic.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a severe infectious disease currently devasting the global pig industry. PRRS is characterized by intense inflammation and severe damage to the alveolar-capillary barrier. Therefore, it is crucial to uncover the underlying mechanism by which the PRRS virus (PRRSV) induces inflammatory responses and barrier function damage. In addition to porcine alveolar macrophages (PAMs), the primary target cells of PRRSV infection in vivo, pulmonary intravascular macrophages (PIMs) are also susceptible to PRRSV infection. However, the poor isolation efficiency limits the study of PRRSV infection in PIMs. In this study, we optimized the isolation method to obtain PIMs with higher purity and yield and demonstrated that PRRSV's infection kinetics in PIMs were similar to those in PAMs. Notably, PIMs exhibited a more acute inflammation process during PRRSV infection than PAMs, as evidenced by the earlier upregulation and higher levels of pro-inflammatory cytokines, including TNF-α and IL-1β. More acute endothelial barrier disfunction upon PRRSV infection was also observed in PIMs compared to in PAMs. Mechanistically, PRRSV-induced TNF-α and IL-1β could cause endothelial barrier disfunction by dysregulating tight junction proteins, including claudin 1 (CLDN1), claudin 8 (CLDN8) and occludin (OCLN). Our findings revealed the crucial and novel roles of PIMs in facilitating the progression of inflammatory responses and endothelial barrier injury and provided new insights into the mechanisms of PRRSV's induction of interstitial pneumonia.
Collapse
|
12
|
Pang Y, Li C, Wang Y, Liu J, Su G, Duan C, Fang L, Zhou Y, Xiao S. Porcine reproductive and respiratory syndrome virus infection manipulates central carbon metabolism. Vet Microbiol 2023; 279:109674. [PMID: 36739813 DOI: 10.1016/j.vetmic.2023.109674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The metabolic pathways of central carbon metabolism (CCM), glycolysis and the tricarboxylic acid (TCA) cycle, are important host factors determining the outcome of viral infection. Thus, it is not surprising that viruses easily manipulate CCM for optimized replication. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, whether PRRSV reprograms CCM is still unclear. In this study, we found that PRRSV infection increased the intensity of cellular uptake of glucose and glutamine, two main carbon sources for mammalian cells. Deprivation of glucose and/or glutamine significantly reduced PRRSV replication; restricted entry of glucose and glutamine into CCM inhibited PRRSV proliferation. We further found that PRRSV infection elevated glycolysis and maintained the TCA cycle flux. Furthermore, preventing the flow of glycolysis or the TCA cycle led to a reduction in PRRSV proliferation. The anaplerotic usage of glutamine in the TCA cycle partially rescued PRRSV growth by replacing glutamine with α-ketoglutarate (α-KG), an intermediate of the TCA cycle. Interestingly, the addition of α-KG in replete medium also promoted PRRSV proliferation. Taken together, these results reveal that PRRSV infection promotes cellular uptake of glucose and glutamine to provide the energy and macromolecules required for PRRSV replication, and optimal PRRSV replication occurs in cells dependent on glycolysis and the TCA cycle.
Collapse
Affiliation(s)
- Yu Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenyu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guanning Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenrui Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
13
|
Upregulation of TLR4-Dependent ATP Production Is Critical for Glaesserella parasuis LPS-Mediated Inflammation. Cells 2023; 12:cells12050751. [PMID: 36899887 PMCID: PMC10001010 DOI: 10.3390/cells12050751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Glaesserella parasuis (G. parasuis), an important pathogenic bacterium, cause Glässer's disease, and has resulted in tremendous economic losses to the global swine industry. G. parasuis infection causes typical acute systemic inflammation. However, the molecular details of how the host modulates the acute inflammatory response induced by G. parasuis are largely unknown. In this study, we found that G. parasuis LZ and LPS both enhanced the mortality of PAM cells, and at the same time, the level of ATP was enhanced. LPS treatment significantly increased the expressions of IL-1β, P2X7R, NLRP3, NF-κB, p-NF-κB, and GSDMD, leading to pyroptosis. Furthermore, these proteins' expression was enhanced following extracellular ATP further stimulation. When reduced the production of P2X7R, NF-κB-NLRP3-GSDMS inflammasome signaling pathway was inhibited, and the mortality of cells was reduced. MCC950 treatment repressed the formation of inflammasome and reduced mortality. Further exploration found that the knockdown of TLR4 significantly reduced ATP content and cell mortality, and inhibited the expression of p-NF-κB and NLRP3. These findings suggested upregulation of TLR4-dependent ATP production is critical for G. parasuis LPS-mediated inflammation, provided new insights into the molecular pathways underlying the inflammatory response induced by G. parasuis, and offered a fresh perspective on therapeutic strategies.
Collapse
|
14
|
Sun Y, Yao Z, Long M, Zhang Y, Huang K, Li L. Alveolar Macrophages Participate in the Promotion of Influenza Virus Infection by Aflatoxin B1 at an Early Stage. Toxins (Basel) 2023; 15:67. [PMID: 36668886 PMCID: PMC9863124 DOI: 10.3390/toxins15010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Aflatoxin B1 (AFB1), one of the most common environmental mycotoxin contaminations in food and feed, poses significant threats to human and animal health. Our previous study indicated that even non-toxic AFB1 concentrations could promote influenza virus replication and induce influenza virus-infected alveolar macrophages polarizing from M1 (immunostimulatory phenotype) to M2 (immunosuppressive phenotype) over time. However, whether AFB1 promotes influenza replication via modulating the polarization of alveolar macrophages is unknown. Here, we specifically depleted alveolar macrophages using clodronate-containing liposomes in swine influenza virus (SIV)-infected mice to explore the mechanism the promotion of SIV replication by AFB1. The results show that the depletion of alveolar macrophages significantly alleviated the AFB1-induced weight loss, inflammatory responses, and lung and immune organ damage of the SIV-infected mice after 14 days and greatly diminished the AFB1-promoted SIV replication. In contrast, the depletion of alveolar macrophages did not alleviate the AFB1-induced weight loss, and lung and immune organ damage of the SIV-infected mice after 28 days and slightly diminished the AFB1-promoted SIV replication. Collectively, the data indicate that alveolar macrophages play a crucial role the promotion of SIV infection by AFB1 in the early rather than late stage, and AFB1 can promote SIV replication by inducing alveolar macrophages to polarize towards M1 macrophages. This research provides novel targets for reducing the risk of AFB1-promoted influenza virus infection.
Collapse
Affiliation(s)
- Yuhang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaoran Yao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Kehe Huang
- Department of Animal Nutrition and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
15
|
Tomokiyo M, Tonetti FR, Yamamuro H, Shibata R, Fukuyama K, Gobbato N, Albarracin L, Rajoka MSR, Kober AKMH, Ikeda-Ohtsubo W, Villena J, Kitazawa H. Modulation of Alveolar Macrophages by Postimmunobiotics: Impact on TLR3-Mediated Antiviral Respiratory Immunity. Cells 2022; 11:2986. [PMID: 36230948 PMCID: PMC9562200 DOI: 10.3390/cells11192986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Beneficial microbes with immunomodulatory capacities (immunobiotics) and their non-viable forms (postimmunobiotics) could be effectively utilized in formulations towards the prevention of respiratory viral infections. In this study, novel immunobiotic strains with the ability to increase antiviral immunity in porcine alveolar macrophages were selected from a library of Lactobacillus gasseri. Postimmunobiotics derived from the most remarkable strains were also evaluated in their capacity to modulate the immune response triggered by Toll-like receptor 3 (TLR3) in alveolar macrophages and to differentially regulate TLR3-mediated antiviral respiratory immunity in infant mice. We provide evidence that porcine alveolar macrophages (3D4/31 cells) are a useful in vitro tool for the screening of new antiviral immunobiotics and postimmunobiotics by assessing their ability to modulate the expression IFN-β, IFN-λ1, RNAseL, Mx2, and IL-6, which can be used as prospective biomarkers. We also demonstrate that the postimmunobiotics derived from the Lactobacillus gasseri TMT36, TMT39 and TMT40 (HK36, HK39 or HK40) strains modulate the innate antiviral immune response of alveolar macrophages and reduce lung inflammatory damage triggered by TLR3 activation in vivo. Although our findings should be deepened and expanded, the results of the present work provide a scientific rationale for the use of nasally administered HK36, HK39 or HK40 to beneficially modulate TLR3-triggerd respiratory innate immune response.
Collapse
Affiliation(s)
- Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli CERELA-CONICET, San Miguel de Tucuman, Tucuman CP4000, Argentina
| | - Hikari Yamamuro
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Ryoko Shibata
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Nadia Gobbato
- Laboratory of Immunology, Microbiology Institute, Faculty of Biochemestry, Chemestry and Pharmacy, National University of Tucuman, Tucuman CP4000, Argentina
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli CERELA-CONICET, San Miguel de Tucuman, Tucuman CP4000, Argentina
| | - Muhammad Shahid Riaz Rajoka
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - A. K. M. Humayun Kober
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Department of Dairy and Poultry Science, Chattogram Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli CERELA-CONICET, San Miguel de Tucuman, Tucuman CP4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| |
Collapse
|
16
|
Chen P, Bao C, Zhu R, Wang J, Zhu J, Li Z, Li F, Gu J, Feng X, Li N, Lei L. IL-5 enhances the resistance of Actinobacillus pleuropneumoniae infection in mice through maintaining appropriate levels of lung M2, PMN-II and highly effective neutrophil extracellular traps. Vet Microbiol 2022; 269:109438. [PMID: 35468400 DOI: 10.1016/j.vetmic.2022.109438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/25/2023]
Abstract
Interleukin 5 (IL-5) regulates the maturation, activation, proliferation and function of immune cells, and plays an important role in the inflammatory response induced by an allergy. However, its anti-pathogen effect is poorly understood currently, especially on pneumonia. Here, this study was designed to elucidate the immunological role of IL-5 in the infection of mice with Actinobacillus pleuropneumoniae (APP). We established an acute lung infection model of APP in IL-5 knockout mice (IL-5-/-) and wild-type mice (WT) through nasal infusion or intraperitoneal injection, compared the survival rate, clinical symptoms, lung bacterial load, proportion of various immune cells, immune molecular expression, and neutrophil germicidal ability through flow cytometry, RT-qPCR, ELISA and immunofluorescence. Compared to WT mice, the IL-5-/- mice had a lower survival rate, more severe clinical symptoms, significantly increased bacterial load, and inflammatory cell infiltration in the lung after APP infection. In an uninfected state, IL-5 deficiency decreased the number of M1 interstitial macrophages and CD14- monocytes, while after infection, IL-5 deficiency significantly reduced the M2 alveolar macrophages, and increased PMN-II cells in the lung. Furthermore, the expression of IL-10, IL-4, IL-33, TNF-α, iNOS in the lung was lower in IL-5-/- mice under an uninfected condition, and the secretion of IL-18 was significantly increased after infection. In addition, IL-5 deficiency decreased bactericidal ability by inhibiting the formation of neutrophil extracellular traps (NETs). Collectively, these results provide evidence that IL-5 can enhance the resistance of APP infection, and its anti-infection mechanism, implying new targets and ideas for APP or similar respiratory agents' prevention and treatment.
Collapse
Affiliation(s)
- Peiru Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Chuntong Bao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Rining Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jun Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Junhui Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Ziheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Fengyang Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jingmin Gu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Xin Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Na Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Liancheng Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China; College of Animal Science, Yangtze University, Jingzhou, Hubei, 434023, PR China.
| |
Collapse
|
17
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
18
|
Yu S, Ge H, Li S, Qiu HJ. Modulation of Macrophage Polarization by Viruses: Turning Off/On Host Antiviral Responses. Front Microbiol 2022; 13:839585. [PMID: 35222345 PMCID: PMC8874017 DOI: 10.3389/fmicb.2022.839585] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages are professional antigen-presenting cells and serve as the first line of defense against invading pathogens. Macrophages are polarized toward the proinflammatory classical (M1) or anti-inflammatory alternative (M2) phenotype upon viral infections. M1-polarized macrophages exert critical roles in antiviral responses via different mechanisms. Within the long competitive history between viruses and hosts, viruses have evolved various immune evasion strategies, inhibiting macrophage acquisition of an antiviral phenotype, impairing the antiviral responses of activated macrophages, and/or exploiting macrophage phenotypes for efficient replication. This review focuses on the sophisticated regulation of macrophage polarization utilized by viruses and is expected to provide systematic insights into the regulatory mechanisms of macrophage polarization by viruses and further facilitate the design of therapeutic targets for antivirals.
Collapse
|
19
|
Meli VS, Donahue RP, Link JM, Hu JC, Athanasiou KA, Liu WF. Isolation and characterization of porcine macrophages and their inflammatory and fusion responses in different stiffness environments. Biomater Sci 2021; 9:7851-7861. [PMID: 34514479 DOI: 10.1039/d1bm00746g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluating the host immune response to biomaterials is an essential step in the development of medical devices and tissue engineering strategies. To aid in this process, in vitro studies, whereby immune cells such as macrophages are cultured on biomaterials, can often expedite high throughput testing of many materials prior to implantation. While most studies to date utilize murine or human cells, the use of porcine macrophages has been less well described, despite the prevalent use of porcine models in medical device and tissue engineering development. In this study, we describe the isolation and characterization of porcine bone marrow- and peripheral blood-derived macrophages, and their interactions with biomaterials. We confirmed the expression of the macrophage surface markers CD68 and F4/80 and characterized the porcine macrophage response to the inflammatory stimulus, bacterial lipopolysaccharide. Finally, we investigated the inflammatory and fusion response of porcine macrophages cultured on different stiffness hydrogels, and we found that stiffer hydrogels enhanced inflammatory activation by more than two-fold and promoted fusion to form foreign body giant cells. Together, this study establishes the use of porcine macrophages in biomaterial testing and reveals a stiffness-dependent effect on biomaterial-induced giant cell formation.
Collapse
Affiliation(s)
- Vijaykumar S Meli
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA. .,The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA
| | - Ryan P Donahue
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | - Jarrett M Link
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA. .,The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.,Department of Chemical and Biomolecular Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.,Department of Molecular Biology and Biochemistry, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Wahyuningtyas R, Lai YS, Wu ML, Chen HW, Chung WB, Chaung HC, Chang KT. Recombinant Antigen of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2) Promotes M1 Repolarization of Porcine Alveolar Macrophages and Th1 Type Response. Vaccines (Basel) 2021; 9:vaccines9091009. [PMID: 34579246 PMCID: PMC8473084 DOI: 10.3390/vaccines9091009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
The polarization status of porcine alveolar macrophages (PAMs) determines the infectivity of porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV infection skews macrophage polarization toward an M2 phenotype, followed by T-cells inactivation. CD163, one of the scavenger receptors of M2 macrophages, has been described as a putative receptor for PRRSV. In this study, we examined two types of PRRSV-2-derived recombinant antigens, A1 (g6Ld10T) and A2 (lipo-M5Nt), for their ability to mediate PAM polarization and T helper (Th1) response. A1 and A2 were composed of different combination of ORF5, ORF6, and ORF7 in full or partial length. To enhance the adaptive immunity, they were conjugated with T cells epitopes or lipidated elements, respectively. Our results showed that CD163+ expression on PAMs significantly decreased after being challenged with A1 but not A2, followed by a significant increase in pro-inflammatory genes (TNF-α, IL-6, and IL-12). In addition, next generation sequencing (NGS) data show an increase in T-cell receptor signaling in PAMs challenged with A1. Using a co-culture system, PAMs challenged with A1 can induce Th1 activation by boosting IFN-γ and IL-12 secretion and TNF-α expression. In terms of innate and T-cell-mediated immunity, we conclude that A1 is regarded as a potential vaccine for immunization against PRRSV infection due to its ability to reverse the polarization status of PAMs toward pro-inflammatory phenotypes, which in turn reduces CD163 expression for viral entry and increases immunomodulation for Th1-type response.
Collapse
Affiliation(s)
- Rika Wahyuningtyas
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Yin-Siew Lai
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
| | - Mei-Li Wu
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 400, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 800, Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| | - Ko-Tung Chang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| |
Collapse
|
21
|
Hejna M, Kovanda L, Rossi L, Liu Y. Mint Oils: In Vitro Ability to Perform Anti-Inflammatory, Antioxidant, and Antimicrobial Activities and to Enhance Intestinal Barrier Integrity. Antioxidants (Basel) 2021; 10:antiox10071004. [PMID: 34201645 PMCID: PMC8300686 DOI: 10.3390/antiox10071004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The objectives of the study were to test the biological activities of peppermint and spearmint oils via (i) measuring in vitro anti-inflammatory effects with porcine alveolar macrophages (PAMs), (ii) determining the barrier integrity of IPEC-J2 by analyzing transepithelial electrical resistance (TEER), (iii) testing their antioxidant activities, and (iv) investigating the antimicrobial activity against enterotoxigenic Escherichia coli (ETEC) F18+. Briefly, (i) macrophages were seeded at 106 cells/mL and treated (24 h) with mint oils and lipopolysaccharide (LPS). The treatments were 2 (0 or 1 μg/mL of LPS) × 5 (0, 25, 50, 100, 200 µg/mL of mint oils). The supernatants were collected for TNF-α and IL-1β measurement by ELISA; (ii) IPEC-J2 cells were seeded at 5 × 105 cells/mL and treated with mint oils (0, 25, 50, 100, and 200 μg/mL). TEER (Ωcm2) was measured at 0, 24, 48, and 72 h; (iii) the antioxidant activity was assessed (0, 1, 50, 100, 200, 500, and 600 mg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assays; (iv) overnight-grown ETEC F18+ were quantified (CFU/mL) after supplementing with peppermint and spearmint oils (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL). All data were analyzed using the MIXED procedure. Both mint oils significantly inhibited (p < 0.05) IL-1β and TNF-α secretion from LPS-stimulated PAMs. Mint oil treatments did not affect TEER in IPEC-J2. Spearmint and peppermint oils exhibited (p < 0.05) strong antioxidant activities in DPPH and reducing power assays. Both mint oils also dose-dependently inhibited (p < 0.05) the growth of ETEC F18+ in vitro. The results of the study indicated that both mint oils are great candidate feed additives due to their in vitro anti-inflammatory, antioxidant, and antimicrobial effects. Further research is needed to evaluate their efficacy in vivo.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy;
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy;
- Correspondence: (L.R.); (Y.L.); Tel.: +41-61-683-77-34 (L.R.); +1-530-752-4275 (Y.L.); Fax: +41-61-302-89-18 (L.R.); +1-530-752-0175 (Y.L.)
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
- Correspondence: (L.R.); (Y.L.); Tel.: +41-61-683-77-34 (L.R.); +1-530-752-4275 (Y.L.); Fax: +41-61-302-89-18 (L.R.); +1-530-752-0175 (Y.L.)
| |
Collapse
|
22
|
Zhang L, Wang L, Cao S, Lv H, Huang J, Zhang G, Tabynov K, Zhao Q, Zhou EM. Nanobody Nb6 fused with porcine IgG Fc as the delivering tag to inhibit porcine reproductive and respiratory syndrome virus replication in porcine alveolar macrophages. Vet Res 2021; 52:25. [PMID: 33596995 PMCID: PMC7887809 DOI: 10.1186/s13567-020-00868-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus that has led to enormous economic loss worldwide because of ineffective prevention and treatment. In view of their minimized size, high target specificity and affinity, nanobodies have been extensively investigated as diagnostic tools and treatments of many diseases. Previously, a PRRSV Nsp9-specific nanobody (Nb6) was identified as a PRRSV replication inhibitor. When it was fused with cell-penetrating peptide (CPP) TAT, Nb6-TAT could enter the cells for PRRSV suppression. However, delivery of molecules by CPP lack cell specificity and have a short duration of action. PRRSV has a tropism for monocyte/macrophage lineage, which expresses high levels of Fcγ receptors. Herein, we designed a nanobody containing porcine IgG Fc (Fcγ) to inhibit PRRSV replication in PRRSV permissive cells. Fcγ fused Nb6 chimeric antibody (Nb6-pFc) was assembled into a dimer with interchain disulfide bonds and expressed in a Pichia pastoris system. The results show that Nb6-pFc exhibits a well-binding ability to recombinant Nsp9 or PRRSV-encoded Nsp9 and that FcγR-mediated endocytosis of Nb6-pFc into porcine alveolar macrophages (PAM) was in a dose-dependent manner. Nb6-pFc can inhibit PRRSV infection efficiently not only by binding with Nsp9 but also by upregulating proinflammatory cytokine production in PAM. Together, this study proposes the design of a porcine IgG Fc-fused nanobody that can enter PRRSV susceptible PAM via FcγR-mediated endocytosis and inhibit PRRSV replication. This research reveals that nanobody-Fcγ chimeric antibodies might be effective for the control and prevention of monocyte/macrophage lineage susceptible pathogeneses.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Lizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Shuaishuai Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Huanhuan Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jingjing Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Guixi Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Kaissar Tabynov
- Kazakh National Agrarian University, 050010, Almaty, Kazakhstan
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Sánchez-Carvajal JM, Ruedas-Torres I, Carrasco L, Pallarés FJ, Mateu E, Rodríguez-Gómez IM, Gómez-Laguna J. Activation of regulated cell death in the lung of piglets infected with virulent PRRSV-1 Lena strain occurs earlier and mediated by cleaved Caspase-8. Vet Res 2021; 52:12. [PMID: 33482914 PMCID: PMC7821682 DOI: 10.1186/s13567-020-00882-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
PRRSV-1 virulent strains cause high fever, marked respiratory disease and severe lesions in lung and lymphoid organs. Regulated cell death (RCD), such as apoptosis, necroptosis and pyroptosis, is triggered by the host to interrupt viral replication eliminating infected cells, however, although it seems to play a central role in the immunopathogenesis of PRRSV, there are significant gaps regarding their sequence and activation upon PRRSV-infection. The present study evaluated RCD events by means of caspases expression in the lung of PRRSV-1-infected pigs and their impact on pulmonary macrophage subpopulations and lung lesion. Conventional piglets were intranasally inoculated with the virulent subtype 3 Lena strain or the low virulent subtype 1 3249 strain and euthanised at 1, 3, 6, 8 and 13 dpi. Lena-infected piglets showed severe and early lung damage with a high frequency of PRRSV-N-protein+ cells, depletion of CD163+ cells and high viral load in the lung. The number of TUNEL+ cells was significantly higher than cCasp3+ cells in Lena-infected piglets during the first week post-infection. cCasp8 and to a lesser extent cCasp9 were activated by both PRRSV-1 strains after one week post-infection together with a replenishment of both CD163+ and Arg-1+ pulmonary macrophages. These results highlight the induction of other forms of RCD beyond apoptosis, such as, necroptosis and pyroptosis during the first week post-infection followed by the activation of, mainly, extrinsic apoptosis during the second week post-infection. The recovery of CD163+ macrophages at the end of the study represents an attempt to restore pulmonary macrophage subpopulations lost during the early stages of the infection but also a macrophage polarisation into M2 macrophages.
Collapse
Affiliation(s)
- Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain.,Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
24
|
Morozumi T, Takenouchi T, Wada E, Uenishi H, Nishiyama Y. Susceptibility of immortalized porcine kidney macrophages to porcine reproductive and respiratory syndrome virus-2 infection. J Virol Methods 2020; 288:114026. [PMID: 33238183 DOI: 10.1016/j.jviromet.2020.114026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) displays restricted tropism to porcine alveolar macrophages in nature. Meanwhile, non-porcine cell lines derived from African green monkey kidney cell lines are permissive to PRRSV, resulting in their widespread use in PRRSV research. Furthermore, genetically modified cell lines expressing receptors targeted by PRRSV have been established. We previously established porcine immortalized kidney-derived macrophages (IPKMs) that maintained typical macrophage function. In the present study, we demonstrated the advantages of IPKMs for PRRSV research. IPKMs expressed receptors for PRRSV such as CD163 and CD169. The efficiency of virus isolation from field biological samples was higher for IPKMs than for MARC-145 cells. Five different clusters of North American type PRRSV were propagated in IPKMs. Four field strains continuously produced progeny viruses during 10 continuous passages. The efficiency of virus isolation from field biological samples and continuous progeny virus production in the sequential passages using IPKMs indicated that these cells are good vessels for PRRSV research.
Collapse
Affiliation(s)
- Takeya Morozumi
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan.
| | - Takato Takenouchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Emi Wada
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| | - Hirohide Uenishi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yasutaka Nishiyama
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| |
Collapse
|
25
|
Herrera-Uribe J, Liu H, Byrne KA, Bond ZF, Loving CL, Tuggle CK. Changes in H3K27ac at Gene Regulatory Regions in Porcine Alveolar Macrophages Following LPS or PolyIC Exposure. Front Genet 2020; 11:817. [PMID: 32973863 PMCID: PMC7468443 DOI: 10.3389/fgene.2020.00817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Changes in chromatin structure, especially in histone modifications (HMs), linked with chromatin accessibility for transcription machinery, are considered to play significant roles in transcriptional regulation. Alveolar macrophages (AM) are important immune cells for protection against pulmonary pathogens, and must readily respond to bacteria and viruses that enter the airways. Mechanism(s) controlling AM innate response to different pathogen-associated molecular patterns (PAMPs) are not well defined in pigs. By combining RNA sequencing (RNA-seq) with chromatin immunoprecipitation and sequencing (ChIP-seq) for four histone marks (H3K4me3, H3K4me1, H3K27ac and H3K27me3), we established a chromatin state map for AM stimulated with two different PAMPs, lipopolysaccharide (LPS) and Poly(I:C), and investigated the potential effect of identified histone modifications on transcription factor binding motif (TFBM) prediction and RNA abundance changes in these AM. The integrative analysis suggests that the differential gene expression between non-stimulated and stimulated AM is significantly associated with changes in the H3K27ac level at active regulatory regions. Although global changes in chromatin states were minor after stimulation, we detected chromatin state changes for differentially expressed genes involved in the TLR4, TLR3 and RIG-I signaling pathways. We found that regions marked by H3K27ac genome-wide were enriched for TFBMs of TF that are involved in the inflammatory response. We further documented that TF whose expression was induced by these stimuli had TFBMs enriched within H3K27ac-marked regions whose chromatin state changed by these same stimuli. Given that the dramatic transcriptomic changes and minor chromatin state changes occurred in response to both stimuli, we conclude that regulatory elements (i.e. active promoters) that contain transcription factor binding motifs were already active/poised in AM for immediate inflammatory response to PAMPs. In summary, our data provides the first chromatin state map of porcine AM in response to bacterial and viral PAMPs, contributing to the Functional Annotation of Animal Genomes (FAANG) project, and demonstrates the role of HMs, especially H3K27ac, in regulating transcription in AM in response to LPS and Poly(I:C).
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Haibo Liu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kristen A Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Zahra F Bond
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | | |
Collapse
|
26
|
Kim K, Ji P, Song M, Che TM, Bravo D, Pettigrew JE, Liu Y. Dietary plant extracts modulate gene expression profiles in alveolar macrophages of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci Biotechnol 2020; 11:74. [PMID: 32685145 PMCID: PMC7359597 DOI: 10.1186/s40104-020-00475-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/17/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Our previous study showed that 3 plant extracts enhanced the immune responses and growth efficiency of weaned pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV), which is one of the most economically important disease in swine industry. However, each plant extract differently effected on growth efficiency and immune responses. Therefore, the objective of this study was conducted to characterize the effects and investigate the potential underlying mechanisms of 3 plant extracts on gene expression of alveolar macrophages in weaned pigs experimentally infected with PRRSV. RESULTS PRRSV infection altered (P < 0.05) the expression of 1,352 genes in pigs fed the control (CON; 755 up, 597 down). Compared with the infected CON, feeding capsicum (CAP), garlic botanical (GAR), or turmeric oleoresin (TUR) altered the expression of 46 genes (24 up, 22 down), 134 genes (59 up, 75 down), or 98 genes (55 up, 43 down) in alveolar macrophages of PRRSV-infected pigs, respectively. PRRSV infection up-regulated (P < 0.05) the expression of genes related to cell apoptosis, immune system process, and response to stimulus, but down-regulated (P < 0.05) the expression of genes involved in signaling transduction and innate immune response. Compared with the infected CON, feeding TUR or GAR reduced (P < 0.05) the expression of genes associated with antigen processing and presentation, feeding CAP up-regulated (P < 0.05) the expression of genes involved in antigen processing and presentation. Supplementation of CAP, GAR, or TUR also enhanced (P < 0.05) the expression of several genes related to amino acid metabolism, steroid hormone synthesis, or RNA degradation, respectively. CONCLUSIONS The results suggest that 3 plant extracts differently regulated the expression of genes in alveolar macrophages of PRRSV-infected pigs, especially altering genes involved in immunity.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA USA
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA USA
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Tung M. Che
- Department of Animal Production, Nong Lam University, Ho Chi Minh City, Vietnam
| | - David Bravo
- Pancosma SA, Geneva, Switzerland
- Current address: Land O’Lakes Inc., Arden Hills, MN USA
| | | | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA USA
| |
Collapse
|
27
|
Tatoyan MR, Izmailyan RA, Semerjyan AB, Karalyan NY, Sahakyan CT, Mkrtchyan GL, Ghazaryan HK, Arzumanyan HH, Semerjyan ZB, Karalova EM, Karalyan ZA. Patterns of alveolar macrophage activation upon attenuated and virulent African swine fever viruses in vitro. Comp Immunol Microbiol Infect Dis 2020; 72:101513. [PMID: 32569898 DOI: 10.1016/j.cimid.2020.101513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/01/2022]
Abstract
The pattern of porcine alveolar macrophage (AM) activation upon classical stimuli of two strains of African swine fever (ASF) viruses, an attenuated ASFV-BA71V and virulent ASFV-Georgia2007 were investigated. In an in vitro experiment ASFV-Georgia2007-infected AM showed M1 polarization pattern different from the one induced by classical stimuli. Altered morphology, appearance of binuclear cells, decreased synthesis of IFN-alpha as well as IFN-epsilon was observed compared with attenuated ASFV-BA71V, and decreased synthesis of IFN-omega compared with intact cells. However, CD68 level did not significantly differ between alveolar macrophage populations infected by ASFV-Georgia2007 and control group, while both LPS/IFN-gamma stimulation and non-pathogenic ASFV-BA71V virus increased the level of CD68 soluble receptor. AM infection with ASFV-Georgia2007 resulted in remarkable DNA proliferation whereas LPS/IFN-gamma and ASFV-BA71V induced less expressed DNA proliferation in activated cells. The higher value of nitric oxide was obvious in the cells infected with ASFV-BA71V, compared to ASFV-Georgia2007 and LPS/IFN-gamma activated cells. In conclusion, pattern of activation of alveolar macrophages induced by ASFV-Georgia2007 virus differs from the one expressed in LPS/IFN-gamma- and ASFV-BA71V-activated cells. ASFV-BA71V and LPS/IFN-gamma share similar antiviral response of porcine AM. Therefore we assume that wild type virulent ASFV can partially down regulate antiviral response of AM and conclude that evolutionary decrease of virulence in ASFV is related to alterations of control of the host cell antiviral response.
Collapse
Affiliation(s)
| | - Roza A Izmailyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | | | | | | | | | - Hovsep K Ghazaryan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Hranush H Arzumanyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Zara B Semerjyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia; Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia
| | - Elena M Karalova
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia; Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia
| | - Zaven A Karalyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia; Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
28
|
Zhu Z, Zhang H, Zhang X, He S, Dong W, Wang X, Chen Y, Liu X, Guo C. Lipopolysaccharide Downregulates CD163 Expression to Inhibit PRRSV Infection via TLR4-NF-κB Pathway. Front Microbiol 2020; 11:501. [PMID: 32269560 PMCID: PMC7109323 DOI: 10.3389/fmicb.2020.00501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been recognized to induce proinflammatory cytokine production and modulate the host interferon (IFN) system. Proinflammatory cytokines and type I IFNs contribute to the prevention of viral infection. Lipopolysaccharide (LPS), a specific agonist to Toll-like receptor 4 (TLR4), provokes signal transduction and activates immune response in vivo and in vitro. Here we identified LPS inhibited PRRSV infection in porcine alveolar macrophages (PAMs) and in Marc-145 cells. To investigate the possible mechanism, we found TLR4-NF-κB pathway was obviously activated in LPS-treated PAMs at the early stage of PRRSV infection. As a result, the expression of proinflammatory cytokines was strongly induced following LPS and PRRSV co-treatment. Due to the enhanced proinflammatory response, CD163 expression was significantly reduced and a disintegrin and metalloproteinase 17 was activated, which promotes the cleavage of membrane CD163. Ultimately, CD163 down-regulation led to the suppression of PRRSV replication. Our data demonstrate that LPS has an impact on PRRSV infection via inflammation response, which provides a new insight of inflammation-mediated antiviral immunity and a new strategy to control PRRSV infection.
Collapse
Affiliation(s)
- Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Lauzon-Joset JF, Scott NM, Mincham KT, Stumbles PA, Holt PG, Strickland DH. Pregnancy Induces a Steady-State Shift in Alveolar Macrophage M1/M2 Phenotype That Is Associated With a Heightened Severity of Influenza Virus Infection: Mechanistic Insight Using Mouse Models. J Infect Dis 2020; 219:1823-1831. [PMID: 30576502 DOI: 10.1093/infdis/jiy732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza virus infection during pregnancy is associated with enhanced disease severity. However, the underlying mechanisms are still not fully understood. We hypothesized that normal alveolar macrophage (AM) functions, which are central to maintaining lung immune homeostasis, are altered during pregnancy and that this dysregulation contributes to the increased inflammatory response to influenza virus infection. METHODS Time-mated BALB/c mice were infected with a low dose of H1N1 influenza A virus at gestation day 9.5. Inflammatory cells in bronchoalveolar lavage (BAL) fluid were assessed by flow cytometry. RESULTS Our findings confirm previous reports of increased severity of influenza virus infection in pregnant mice. The heightened inflammatory response detected in BAL fluid from infected pregnant mice was characterized by neutrophil-rich inflammation with concomitantly reduced numbers of AM, which were slower to return to baseline counts, compared with nonpregnant infected mice. The increased infection severity and inflammatory responses to influenza during pregnancy were associated with a pregnancy-induced shift in AM phenotype at homeostatic baseline, from the M1 (ie, classical activation) state toward the M2 (ie, alternative activation) state, as evidence by increased expression of CD301 and reduced levels of CCR7. CONCLUSION These results show that pregnancy is associated with an alternatively activated phenotype of AM before infection, which may contribute to heightened disease severity.
Collapse
Affiliation(s)
| | - Naomi M Scott
- Telethon Kids Institute, University of Western Australia, Nedlands
| | - Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands.,School of Medicine, University of Western Australia, Crawley
| | - Philip A Stumbles
- Telethon Kids Institute, University of Western Australia, Nedlands.,School of Veterinary and Life Science, Murdoch University, Perth, Australia
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Nedlands
| | | |
Collapse
|
30
|
Hiremath J, Renu S, Tabynov K, Renukaradhya GJ. Pulmonary inflammatory response to influenza virus infection in pigs is regulated by DAP12 and macrophage M1 and M2 phenotypes. Cell Immunol 2020; 352:104078. [PMID: 32164997 DOI: 10.1016/j.cellimm.2020.104078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/07/2023]
Abstract
We delineated the expression of DAP12 (DNAX-Activating Protein) and its associated receptors, TREM-1, TREM-2 and MDL-1 in pig alveolar monocyte/macrophages (AMM) that have attained M1 or M2 phenotypes. Pig AMM stimulated in vitro with IFN-γ and IL-4 induced the expression of M1 (TNFα and iNOS) and M2 (ARG1 and no MMR) phenotypic markers, respectively. In influenza virus infected pigs at seven days post-infection, in addition to substantial modulations in the M1 and M2 markers expression, DAP12, TREM-1 and MDL-1 were downregulated in AMM. Thus, DAP12 signaling promoted the anti-inflammatory pathway in AMM of influenza virus infected pigs.
Collapse
Affiliation(s)
- Jagadish Hiremath
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA; ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Sankar Renu
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Kaissar Tabynov
- Kazakh National Agrarian University, Almaty 050010, Kazakhstan and Research Institute of Cardiology and Internal Medicine, Almaty 050000, Kazakhstan
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
31
|
Liu H, Liu J, Huang J, Bai X, Wang Q. Heterogeneity and plasticity of porcine alveolar macrophage and pulmonary interstitial macrophage isolated from healthy pigs in vitro. Biol Open 2019; 8:bio.046342. [PMID: 31615770 PMCID: PMC6826289 DOI: 10.1242/bio.046342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study investigated the heterogeneity and plasticity of porcine alveolar macrophages (PAM) and pulmonary interstitial macrophages (IM) isolated from healthy pigs, including phenotype, function and gene expression. Dynamic changes of nitric oxide (NO) levels secreted by PAM and IM with stimulation of different doses of lipopolysaccharide (LPS) were investigated by Griess method, and the viability of the PAM and IM cells was investigated by MTT assay. Flow cytometry, fluorescence quantitative PCR and ELISA techniques were used to measure cell phenotype, gene expression and cytokine secretion, respectively. The PAM and IM cells in normal healthy pigs showed heterogeneity with 95.42±1.51% and 31.99±5.84% of CD163+ macrophage, respectively. The NO level in IM was significantly higher versus PAM after LPS treatment. Consistently, the ratio of Arg I/iNOS in IM was much lower than that in PAM, suggesting that the PAM belong to M2 macrophages and the IM belong to M1 macrophages. The PAM and IM cells in normal healthy pigs also showed plasticity. The Arg I/iNOS ratio and TIMP1/MMP12 ratio were significantly decreased in LPS- or LPS+IFNγ-treated PAM and IM, suggesting that cells were polarized towards M1 macrophages under LPS or LPS+IFNγ stimulation. On the contrary, IL-4 and IL-13 stimulation on PAM and IM lead to M2 polarization. A similar result was found in IL-1β gene expression and TNFα secretion. In conclusion, porcine macrophages have shown heterogeneity and plasticity on polarization under the stimulation of LPS, IFNγ, IL-4 and IL-13.
Collapse
Affiliation(s)
- Huan Liu
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Jia Liu
- Dalian Modern Agricultural Production Development Service Center, Dalian 116037, China
| | - Jing Huang
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Xianchang Bai
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Qinfu Wang
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| |
Collapse
|
32
|
Cellular Innate Immunity against PRRSV and Swine Influenza Viruses. Vet Sci 2019; 6:vetsci6010026. [PMID: 30862035 PMCID: PMC6466325 DOI: 10.3390/vetsci6010026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine respiratory disease complex (PRDC) is a polymicrobial syndrome that results from a combination of infectious agents, such as environmental stressors, population size, management strategies, age, and genetics. PRDC results in reduced performance as well as increased mortality rates and production costs in the pig industry worldwide. This review focuses on the interactions of two enveloped RNA viruses—porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SwIV)—as major etiological agents that contribute to PRDC within the porcine cellular innate immunity during infection. The innate immune system of the porcine lung includes alveolar and parenchymal/interstitial macrophages, neutrophils (PMN), conventional dendritic cells (DC) and plasmacytoid DC, natural killer cells, and γδ T cells, thus the in vitro and in vivo interactions between those cells and PRRSV and SwIV are reviewed. Likewise, the few studies regarding PRRSV-SwIV co-infection are illustrated together with the different modulation mechanisms that are induced by the two viruses. Alterations in responses by natural killer (NK), PMN, or γδ T cells have not received much attention within the scientific community as their counterpart antigen-presenting cells and there are numerous gaps in the knowledge regarding the role of those cells in both infections. This review will help in paving the way for future directions in PRRSV and SwIV research and enhancing the understanding of the innate mechanisms that are involved during infection with these viruses.
Collapse
|
33
|
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 2019; 6:38. [PMID: 30842948 PMCID: PMC6391865 DOI: 10.3389/fvets.2019.00038] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine diseases in the world. It is causing an enormous economic burden due to reproductive failure in sows and a complex respiratory syndrome in pigs of all ages, with mortality varying from 2 to 100% in the most extreme cases of emergent highly pathogenic strains. PRRSV displays complex interactions with the immune system and a high mutation rate, making the development, and implementation of control strategies a major challenge. In this review, the biology of the virus will be addressed focusing on newly discovered functions of non-structural proteins and novel dissemination mechanisms. Secondly, the role of different cell types and viral proteins will be reviewed in natural and vaccine-induced immune response together with the role of different immune evasion mechanisms focusing on those gaps of knowledge that are critical to generate more efficacious vaccines. Finally, novel strategies for antigen discovery and vaccine development will be discussed, in particular the use of exosomes (extracellular vesicles of endocytic origin). As nanocarriers of lipids, proteins and nucleic acids, exosomes have potential effects on cell activation, modulation of immune responses and antigen presentation. Thus, representing a novel vaccination approach against this devastating disease.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| | - Hernando A Del Portillo
- Innovex Therapeutics S.L, Badalona, Spain.,Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Montoya
- Innovex Therapeutics S.L, Badalona, Spain.,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Lorenzo Fraile
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| |
Collapse
|
34
|
Liu Q, Zhang YL, Hu W, Hu SP, Zhang Z, Cai XH, He XJ. Transcriptome of porcine alveolar macrophages activated by interferon-gamma and lipopolysaccharide. Biochem Biophys Res Commun 2018; 503:2666-2672. [PMID: 30086883 DOI: 10.1016/j.bbrc.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/06/2023]
Abstract
The molecular repertoire of porcine alveolar macrophages (PAMs) is greatly affected by the microenvironment they are exposed to, and specifically by inflammatory cytokines, such as interferon gamma (IFN-γ) released by activated lymphocytes, and microbial products, such as lipopolysaccharide (LPS). In our previous study, we found that IFN-γ- and LPS-activated PAMs (M1) could inhibit porcine reproductive and respiratory syndrome virus (PRRSV) replication. In this study, comprehensive analysis of the expression profiles of the genes associated with the polarization of M0-type PAMs (resting) toward M1 phenotypes (activated by IFN-γ and LPS) led to the following main results: 1) 1551 and 1823 genes were upregulated or downregulated in M1-type PAMs, respectively, compared with M0-type PAMs; 2) Among these, genes encoding ASS1 and CRTAM were the most upregulated and downregulated, respectively; 3) Genes involved in cytokine-cytokine receptor interaction and the JAK/STAT signaling pathway were significantly upregulated, suggesting their critical role in cellular activation; and 4) Genes involved in antigen proteolysis and presentation (immunoproteasome subunits), and inhibition of virus replication (host restriction factors) were significantly upregulated, emphasizing the critical role of these cytokines in immunity. Thus, our results provide important information for future studies on the role of PAM polarization in modulation of infection.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China. liuqiang.@caas.cn
| | - Yong-Li Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Wei Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Shou-Ping Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhuo Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
35
|
Different susceptibility to porcine reproductive and respiratory syndrome virus infection among Chinese native pig breeds. Arch Virol 2018; 163:2155-2164. [DOI: 10.1007/s00705-018-3821-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
36
|
Tong J, Yu Y, Zheng L, Zhang C, Tu Y, Liu Y, Wu J, Li H, Wang S, Jiang C, Zhou EM, Wang G, Cai X. Hypothalamus-pituitary-adrenal axis involves in anti-viral ability through regulation of immune response in piglets infected by highly pathogenic porcine reproductive and respiratory syndrome virus. BMC Vet Res 2018. [PMID: 29540178 PMCID: PMC5853143 DOI: 10.1186/s12917-018-1414-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has been responsible for several viral attacks in the Asian porcine industry, since the first outbreak in China in 2006. During the early stages of the HP-PRRSV infection, high levels of proinflammatory cytokines are noted in the host peripheral blood, which are accompanied by severe lesions in the lungs and immune system organs; these are considered as the greatest contributors to the overall disease burden. We hypothesized that the anti-PRRSV response in piglets might be mediated by the hypothalamus-pituitary-adrenal (HPA) axis, which led to a decrease in the psycho-neuroendocrinological manifestation of HP-PRRSV etiology via immune response regulation. RESULTS We investigated the regulation of the HPA axis in HP-PRRSV-infected piglets that were treated with 1 mg/kg body weight (b. w.)/day mifepristone (RU486) or 2 mg/kg b.w./day dexamethasone (DEX). Both RU486 and DEX enhanced the disease status of the piglets infected by the HP-PRRSV HuN4 strain, resulting in high mortality and more severe pathological changes in the lungs. CONCLUSIONS HP-PRRSV infection activates the HPA axis, and artificial regulation of the immune-endocrine system enhances disease severity in HP-PRRSV-infected piglets. Thus, DEX and RU486 should be avoided in the clinical treatment of HP-PRRS.
Collapse
Affiliation(s)
- Jie Tong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Ying Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Linlin Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Chong Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Yabin Tu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Yonggang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Jianan Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Hai Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Shujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - Chenggang Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China.
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, People's Republic of China.
| |
Collapse
|