1
|
Doyle C, Wall K, Fanning S, McMahon BJ. Making sense of sentinels: wildlife as the One Health bridge for environmental antimicrobial resistance surveillance. J Appl Microbiol 2025; 136:lxaf017. [PMID: 39805713 DOI: 10.1093/jambio/lxaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025]
Abstract
Antimicrobial resistance (AMR), arising from decades of imprudent anthropogenic use of antimicrobials in healthcare and agriculture, is considered one of the greatest One Health crises facing healthcare globally. Antimicrobial pollutants released from human-associated sources are intensifying resistance evolution in the environment. Due to various ecological factors, wildlife interact with these polluted ecosystems, acquiring resistant bacteria and genes. Although wildlife are recognized reservoirs and disseminators of AMR in the environment, current AMR surveillance systems still primarily focus on clinical and agricultural settings, neglecting this environmental dimension. Wildlife can serve as valuable sentinels of AMR in the environment, reflecting ecosystem health, and the effectiveness of mitigation strategies. This review explores knowledge gaps surrounding the ecological factors influencing AMR acquisition and dissemination in wildlife, and highlights limitations in current surveillance systems and policy instruments that do not sufficiently address the environmental component of AMR. We discuss the underutilized opportunity of using wildlife as sentinel species in a holistic, One Health-centred AMR surveillance system. By better integrating wildlife into systematic AMR surveillance and policy, and leveraging advances in high-throughput technologies, we can track and predict resistance evolution, assess the ecological impacts, and better understand the complex dynamics of environmental transmission of AMR across ecosystems.
Collapse
Affiliation(s)
- Caoimhe Doyle
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katie Wall
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Sabença C, Romero-Rivera M, Barbero-Herranz R, Sargo R, Sousa L, Silva F, Lopes F, Abrantes AC, Vieira-Pinto M, Torres C, Igrejas G, del Campo R, Poeta P. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet Sci 2024; 11:469. [PMID: 39453061 PMCID: PMC11512376 DOI: 10.3390/vetsci11100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (blaCTX-M-65, blaCTX-M-55, and blaEC-1982). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Mario Romero-Rivera
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Raquel Barbero-Herranz
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Roberto Sargo
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Luís Sousa
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipe Silva
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipa Lopes
- LxCRAS—Centro de Recuperação de Animais Silvestres de Lisboa, 1500-068 Lisboa, Portugal;
| | - Ana Carolina Abrantes
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
| | - Madalena Vieira-Pinto
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Li X, Mowlaboccus S, Jackson B, Cai C, Coombs GW. Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Int J Antimicrob Agents 2024; 64:107251. [PMID: 38906487 DOI: 10.1016/j.ijantimicag.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed.
Collapse
Affiliation(s)
- Xing Li
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia
| | - Bethany Jackson
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Chang Cai
- School of Information Technology, College of Science, Technology, Engineering and Mathematics, Murdoch University, Perth, Australia
| | - Geoffrey Wallace Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia.
| |
Collapse
|
4
|
Ikushima S, Torii H, Sugiyama M, Asai T. Characterization of quinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli derived from sika deer populations of the Nara Prefecture, Japan. J Vet Med Sci 2023; 85:937-941. [PMID: 37438115 PMCID: PMC10539820 DOI: 10.1292/jvms.23-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Wildlife in urban areas have the potential to disseminate antimicrobial-resistant bacteria (ARB) across a wider environment. Using antimicrobial-supplemented agar plates, we isolated extended-spectrum β-lactamase-producing Escherichia coli (EEC) and quinolone-resistant E. coli (QREC) from 144, 23, and 30 deer feces from Nara Park (NP), rural area neighboring NP (RA), and Mt. Odaigahara (MO), respectively. In NP and RA, the prevalence of EEC was 24.3 and 4.3%, respectively; that of QREC was 11.1 and 17.4%, respectively. Neither EEC nor QREC were detected in MO. The pulsotypes of EEC and QREC isolates differed between NP and RA. Our study suggests that deer of the Nara Prefecture are potential carriers of ARB, but long-distance dissemination is unlikely due to limited deer movement.
Collapse
Affiliation(s)
- Shiori Ikushima
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Present address: Fukushima Regional Collaborative Center, National Institute for Environmental Studies, Fukushima, Japan
| | - Harumi Torii
- Center for Natural Environment Education, Nara University of Education, Nara, Japan
| | - Michiyo Sugiyama
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Tetsuo Asai
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
5
|
Devnath P, Karah N, Graham JP, Rose ES, Asaduzzaman M. Evidence of Antimicrobial Resistance in Bats and Its Planetary Health Impact for Surveillance of Zoonotic Spillover Events: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:243. [PMID: 36612565 PMCID: PMC9819402 DOI: 10.3390/ijerph20010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/16/2023]
Abstract
As a result of the COVID-19 pandemic, as well as other outbreaks, such as SARS and Ebola, bats are recognized as a critical species for mediating zoonotic infectious disease spillover events. While there is a growing concern of increased antimicrobial resistance (AMR) globally during this pandemic, knowledge of AMR circulating between bats and humans is limited. In this paper, we have reviewed the evidence of AMR in bats and discussed the planetary health aspect of AMR to elucidate how this is associated with the emergence, spread, and persistence of AMR at the human-animal interface. The presence of clinically significant resistant bacteria in bats and wildlife has important implications for zoonotic pandemic surveillance, disease transmission, and treatment modalities. We searched MEDLINE through PubMed and Google Scholar to retrieve relevant studies (n = 38) that provided data on resistant bacteria in bats prior to 30 September 2022. There is substantial variability in the results from studies measuring the prevalence of AMR based on geographic location, bat types, and time. We found all major groups of Gram-positive and Gram-negative bacteria in bats, which are resistant to commonly used antibiotics. The most alarming issue is that recent studies have increasingly identified clinically significant multi-drug resistant bacteria such as Methicillin Resistant Staphylococcus aureus (MRSA), ESBL producing, and Colistin resistant Enterobacterales in samples from bats. This evidence of superbugs abundant in both humans and wild mammals, such as bats, could facilitate a greater understanding of which specific pathways of exposure should be targeted. We believe that these data will also facilitate future pandemic preparedness as well as global AMR containment during pandemic events and beyond.
Collapse
Affiliation(s)
- Popy Devnath
- College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nabil Karah
- Department of Molecular Biology and Umeå Centre for Microbial Research, Umeå University, SE-901 87 Umeå, Sweden
| | - Jay P. Graham
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Elizabeth S. Rose
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Muhammad Asaduzzaman
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, 450 Oslo, Norway
- Planetary Health Alliance, Boston, MA 02115, USA
- Planetary Health Working Group, Be-Cause Health, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| |
Collapse
|
6
|
ASAI T, USUI M, SUGIYAMA M, ANDOH M. A survey of antimicrobial-resistant Escherichia coli prevalence in wild mammals in Japan using antimicrobial-containing media. J Vet Med Sci 2022; 84:1645-1652. [PMID: 36310042 PMCID: PMC9791238 DOI: 10.1292/jvms.22-0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
The emergence and spread of antimicrobial-resistant bacteria and resistance genes pose serious human and animal health concerns. Therefore, to control antimicrobial-resistant bacteria in the environment, the status of antimicrobial resistance of Escherichia coli in a variety of wild mammals and their prevalence were examined using antimicrobial-containing media. In total, 750 isolates were obtained from 274/366 (74.9%) wild mammals, and antimicrobial-resistant E. coli was detected in 37/750 isolates (4.9%) from 7 animal species (26/366 [7.1%] individuals). Using antimicrobial-containing media, 14 cefotaxime (CTX)- and 35 nalidixic acid-resistant isolates were obtained from 5 (1.4%) and 17 (4.6%) individuals, respectively. CTX-resistant isolates carried blaCTX-M-27, blaCTX-M-55, blaCTX-M-1, and blaCMY-2, with multiple resistance genes. Fluoroquinolone-resistant isolates had multiple mutations in the quinolone-resistance determining regions of gyrA and parC or qnrB19. Most resistant isolates exhibited resistance to multiple antimicrobials. The prevalence of antimicrobial-resistant bacteria observed in wild mammals was low; however, it is essential to elucidate the causative factors related to the low prevalence and transmission route of antimicrobial-resistant bacteria/resistance genes released from human activities to wild animals and prevent an increase in their frequency.
Collapse
Affiliation(s)
- Tetsuo ASAI
- The United Graduate School of Veterinary Medicine, Gifu
University, Gifu, Japan
| | - Masaru USUI
- School of Veterinary Medicine, Rakuno Gakuen University,
Hokkaido, Japan
| | - Michiyo SUGIYAMA
- The United Graduate School of Veterinary Medicine, Gifu
University, Gifu, Japan
| | - Masako ANDOH
- Joint Faculty of Veterinary Medicine, Kagoshima University,
Kagoshima, Japan
| |
Collapse
|
7
|
Asai T, Sugiyama M, Omatsu T, Yoshikawa M, Minamoto T. Isolation of extended-spectrum β-lactamase-producing Escherichia coli from Japanese red fox (Vulpes vulpes japonica). Microbiologyopen 2022; 11:e1317. [PMID: 36314755 PMCID: PMC9484300 DOI: 10.1002/mbo3.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is a global concern requiring a one-health approach. Given wild animals can harbor antimicrobial-resistant bacteria (ARB), we investigated their presence in 11 fecal samples from wild animals using deoxycholate hydrogen sulfide lactose agar with or without cefotaxime (CTX, 1 mg/L). Thus, we isolated CTX-resistant Escherichia coli from two Japanese red fox fecal samples. One strain was O83:H42-ST1485-fimH58 CTX-M-55-producing E. coli carrying the genes aph(3″)-Ib, aph(3')-Ia, aph(6)-Id, mdf(A), sitABCD, sul2, tet(A), and tet(B), whereas the other was O25:H4-ST131-fimH30 CTX-M-14-producing E. coli carrying mdf(A) and sitABCD and showing fluoroquinolone resistance. Thus, the presence of extended-spectrum β-lactamase producers in wild foxes suggests a spillover of ARB from human activities to these wild animals.
Collapse
Affiliation(s)
- Tetsuo Asai
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary SciencesGifu UniversityGifuJapan
| | - Michiyo Sugiyama
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary SciencesGifu UniversityGifuJapan
| | - Tsutomu Omatsu
- Crisis Management Unit, Center for Infectious Diseases Epidemiology and Prevention ResearchTokyo University of Agriculture and TechnologyFuchu‐shiTokyoJapan
| | - Masato Yoshikawa
- Division of Environment Conservation, Institute of AgricultureTokyo University of Agriculture and TechnologyFuchu‐shiTokyoJapan
| | - Toshifumi Minamoto
- Division of Environment Conservation, Institute of AgricultureTokyo University of Agriculture and TechnologyFuchu‐shiTokyoJapan
- Department of Human Environmental Science, Graduate School of Human Development and EnvironmentKobe UniversityKobeHyogoJapan
| |
Collapse
|
8
|
Usui M, Tamura Y, Asai T. Current status and future perspective of antimicrobial-resistant bacteria and resistance genes in animal-breeding environments. J Vet Med Sci 2022; 84:1292-1298. [PMID: 35871558 PMCID: PMC9523292 DOI: 10.1292/jvms.22-0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The emergence and spread of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) are a global public health concern. ARB are transmitted directly or indirectly
from animals to humans. The importance of environmental transmission of ARB and ARGs has recently been demonstrated, given the relationships between compost, livestock wastewater, insects,
and wildlife. In addition, companion animals and their surrounding environments (veterinary hospitals and homes with companion animals) should be considered owing to their close relationship
with humans. This review discusses the current status and future perspectives of ARB and ARGs in animal-breeding environments.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University
| | - Tetsuo Asai
- Department of Applied Veterinary Science, The United Graduate School of Veterinary Science, Gifu University
| |
Collapse
|
9
|
Selmi R, Tayh G, Srairi S, Mamlouk A, Ben Chehida F, Lahmar S, Bouslama M, Daaloul-Jedidi M, Messadi L. Prevalence, risk factors and emergence of extended-spectrum β-lactamase producing-, carbapenem- and colistin-resistant Enterobacterales isolated from wild boar (Sus scrofa) in Tunisia. Microb Pathog 2022; 163:105385. [PMID: 34995748 DOI: 10.1016/j.micpath.2021.105385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
Antimicrobial resistance (AMR) is recognized as an emerging and growing public health problem worldwide. In Tunisia, knowledge is still limited to domestic animals and humans, and only few data are available regarding the role of wildlife. This research determined the antibiotic susceptibility profiles of Beta-lactamase producing Gram-negative bacteria isolated from the faeces of 110 wild boars (Sus scrofa) in northern Tunisia. Fecal samples, obtained post mortem from boar carcasses, were cultured on MacConkey agar and MacConkey agar containing 2 mg/L of cefotaxime. A total of 102 Enterobacterales isolates were identified from 94(85%) fecal samples. Escherichia coli (56, 54%), Citrobacter freundii (14, 13%), Klebsiella oxytoca (11, 10%), and Klebsiella pneumoniae (7, 6%) were the most predominantly identified Enterobacterales. However, Pantoea spp. (4, 4%), Enterobacter spp. (3,3%), Enterobacter cloacae (1, 1%), Enterobacter gergoviae (2, 2%), Proteus mirabilis (2, 2%), Yersinia sp. (1, 1%), and Citrobacter diversus (1, 1%) were rarely identified. Antimicrobial susceptibility tests revealed that 55% (57/102) of the identified strains were multidrug resistant (MDR). A total of 30% (31/102) of the tested isolates were recognized as Extended Spectrum β-Lactamase (ESBL)-producing strains and blaCTX-M-G1, blaTEM, blaSHV β-lactamases were the main encoding genes revealed. Furthermore, identified isolates showed a high level of AMR, especially for amoxicillin-clavulanic acid (77.67%), ticarcillin-clavulanic acid (71.85%), streptomycin (76.69%), amoxicillin (75.73%), and cephalotin (74.76%). Alarming levels of resistance to colistin (2.9%) and ertapenem (9.7%) were revealed and confirmed by the detection of mcr-1, and blaIMP and blaVIM genes, respectively. Various phenotypes of AMR were obtained in this study highlighting the important role of wild boars as hosts and even carriers for several resistant Enterobacterales isolates. This may represents a focal risk factor allowing the transmission of these strains between domestic, wild animals, environment and humans.
Collapse
Affiliation(s)
- Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia; Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisia
| | - Ghassan Tayh
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Sinda Srairi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Aymen Mamlouk
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Faten Ben Chehida
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Samia Lahmar
- Service de Parasitologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | | | - Monia Daaloul-Jedidi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet. Université de la Manouba, Tunisia.
| |
Collapse
|
10
|
Morita S, Sato S, Maruyama S, Nagasaka M, Murakami K, Inada K, Uchiumi M, Yokoyama E, Asakura H, Sugiyama H, Takai S, Maeda K, Kabeya H. Whole-genome sequence analysis of Shiga toxin-producing Escherichia coli O157 strains isolated from wild deer and boar in Japan. J Vet Med Sci 2021; 83:1860-1868. [PMID: 34629335 PMCID: PMC8762402 DOI: 10.1292/jvms.21-0454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into four and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.
Collapse
Affiliation(s)
- Satoshi Morita
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Shingo Sato
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Mariko Nagasaka
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Kou Murakami
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Kazuya Inada
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Masako Uchiumi
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases
| | - Shinji Takai
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Disease
| | - Hidenori Kabeya
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| |
Collapse
|
11
|
Prevalence of Antimicrobial-Resistant Escherichia coli in Migratory Greater White-Fronted Geese (Anser albifrons) and their Habitat in Miyajimanuma, Japan. J Wildl Dis 2021; 57:954-958. [PMID: 34410412 DOI: 10.7589/jwd-d-21-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/20/2022]
Abstract
The spread of antimicrobial-resistant bacteria (ARB) in natural environments including wild animals is a concern for public health. Birds cover large areas, and some fly across borders to migrate in large flocks. As a migratory bird, the Greater White-fronted Goose (Anser albifrons) travels to Miyajimanuma, North Japan, each spring and autumn. To investigate the ARB in migratory birds and their surroundings, we collected 110 fecal samples of A. albifrons and 18 water samples from Miyajimanuma in spring and autumn of 2019. Isolation of Escherichia coli was performed using selective agars with or without antimicrobials (cefazolin and nalidixic acid). Isolates of E. coli were recovered from 56 fecal samples (50.9%) and five water samples (27.8%) on agars without antimicrobials. No isolates were recovered on agars with antimicrobials. One E. coli isolate derived from a fecal sample exhibited resistance to β-lactams (ampicillin and cefazolin), whereas all other isolates exhibited susceptibility to all tested antimicrobials. The resistant isolate harbored blaACC, which could be transferred to other bacteria and confer resistance to β-lactams. These results suggest a low prevalence of antimicrobial resistance in wild migratory birds and their living environments; however, wild migratory birds sometimes carry ARB harboring transferrable antimicrobial resistance genes and therefore present a risk of spreading antimicrobial resistance.
Collapse
|
12
|
ODOI JO, SUGIYAMA M, KITAMURA Y, SUDO A, OMATSU T, ASAI T. Prevalence of antimicrobial resistance in bacteria isolated from Great Cormorants (Phalacrocorax carbo hanedae) in Japan. J Vet Med Sci 2021; 83:1191-1195. [PMID: 34108337 PMCID: PMC8437729 DOI: 10.1292/jvms.21-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022] Open
Abstract
Wild birds are recognized as disseminators of antimicrobial-resistant (AMR) bacteria into the environment. Here, we isolated AMR indicator bacteria from 198 Great Cormorant cloacal swabs collected in Shiga (n=90), Oita (n=52), Gifu (n=29), and Gunma (n=27) Prefectures, Japan, in 2018 and 2019. In total, 198 Aeromonas spp. and 194 Escherichia spp. were isolated, and their antimicrobial susceptibility was examined. Aeromonas spp. were resistant to colistin (8.6%), nalidixic acid (4%), and other antimicrobials (<2%), with 3.0% positivity for mcr-3. Escherichia spp. showed resistance to colistin (3.1%), ampicillin (2.6%), tetracycline (2.1%), and other antimicrobials (<2%). This study shows the presence of AMR bacteria in Great Cormorants, indicating that these birds potentially disseminate AMR bacteria.
Collapse
Affiliation(s)
- Justice Opare ODOI
- Department of Applied Veterinary Sciences, United Graduate
School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Michiyo SUGIYAMA
- Department of Applied Veterinary Sciences, United Graduate
School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuko KITAMURA
- Department of Applied Veterinary Sciences, United Graduate
School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akiko SUDO
- Eaglet Office Inc., 348-1 Shimoitanami, Maibara-shi, Shiga
521-0306, Japan
| | - Tsutomu OMATSU
- Center for Infectious Diseases Epidemiology and Prevention
Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Tetsuo ASAI
- Department of Applied Veterinary Sciences, United Graduate
School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Clonal Spread of Quinolone-Resistant Escherichia coli among Sika Deer (Cervus nippon) Inhabiting an Urban City Park in Japan. J Wildl Dis 2021; 57:172-177. [PMID: 33635973 DOI: 10.7589/jwd-d-19-00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
The emergence and dissemination of resistance to clinically important antimicrobials in wild animals is of great concern. The aim of our study was to reveal the prevalence and intraspecies dissemination of quinolone-resistant Escherichia coli (QREC) in sika deer (Cervus nippon) in Nara Park, a famous tourist spot in Japan. Fecal samples were collected from 59 wild deer in Nara Park between July and October 2018. We isolated QREC using deoxycholate-hydrogen sulfide-lactose agar containing nalidixic acid and subjected it to antimicrobial susceptibility testing. The mutations in the quinolone resistance-determining region (QRDR) of the gyrA and parC genes of the isolates were analyzed and fragment patterns of genomic DNA were compared by pulsed-field gel electrophoresis (PFGE). A total of 105 QREC isolates were obtained from 41 deer (70%). All isolates had mutations within the QRDR. Other than quinolone resistance, QREC isolates also showed resistance to various other antimicrobial agents. The QREC isolates were classified into 15 PFGE clusters, of which seven were observed in multiple deer. Our results suggest clonal transmission of QREC in a high-density deer population. Spread of QREC in deer inhabiting a tourist location could have potential impact on public health.
Collapse
|
14
|
Tamamura-Andoh Y, Tanaka N, Sato K, Mizuno Y, Arai N, Watanabe-Yanai A, Akiba M, Kusumoto M. A survey of antimicrobial resistance in Escherichia coli isolated from wild sika deer (Cervus nippon) in Japan. J Vet Med Sci 2021; 83:754-758. [PMID: 33692233 PMCID: PMC8182326 DOI: 10.1292/jvms.21-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the antimicrobial susceptibility of 848 Escherichia coli isolates from 237 feces samples of wild sika deer (Cervus nippon) captured between 2016 and 2019 in 39 of the 47 prefectures of Japan. Five of the 237 wild sika deer (2.1%) carried E. coli with resistance to at least one antimicrobial, and all the resistant isolates showed resistance to tetracycline. The resistant isolates contained antimicrobial resistance genes that were similar to those in E. coli derived from humans and farm animals. Although wild sika deer are not currently likely to be a source for the transmission of antimicrobial resistance in Japan, they can potentially mediate antimicrobial resistance spread by coming into contact with humans, animals, and their surroundings.
Collapse
Affiliation(s)
- Yukino Tamamura-Andoh
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Nobuyuki Tanaka
- Tottori Station, National Livestock Breeding Center, 14 Idekami, Kotoura, Tohaku, Tottori 689-2511, Japan
| | - Keisuke Sato
- Niigata Chuo Livestock Hygiene Service Center, 686 Hataya, Nishikan-ku, Niigata 959-0423, Japan
| | - Yoshino Mizuno
- Kumamoto Chuo Livestock Hygiene Service Center, 1666-1 Jonanmachi, Shizume, Minami-ku, Kumamoto 861-4215, Japan
| | - Nobuo Arai
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Ayako Watanabe-Yanai
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masato Akiba
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masahiro Kusumoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
15
|
Yossapol M, Yamamoto M, Sugiyama M, Odoi JO, Omatsu T, Mizutani T, Ohya K, Asai T. Association between the blaCTX-M-14-harboring Escherichia coli Isolated from Weasels and Domestic Animals Reared on a University Campus. Antibiotics (Basel) 2021; 10:432. [PMID: 33924433 PMCID: PMC8069031 DOI: 10.3390/antibiotics10040432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial-resistant (AMR) bacteria affect human and animal health worldwide. Here, CTX-M-14-producing Escherichia coli isolates were isolated from Siberian weasels (Mustela sibirica) that were captured on a veterinary campus. To clarify the source of bacteria in the weasels, we examined the domestic animals reared in seven facilities on the campus. Extended-spectrum β-lactamase (ESBL)-producing E. coli were isolated on deoxycholate hydrogen sulfide lactose agar, containing cephalexin (50 μg/mL) or cefotaxime (2 μg/mL), and were characterized with antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), replicon typing, and β-lactamase typing analyses. Next-generation sequencing of the ESBL-encoding plasmids was also performed. CTX-M-14 producers isolated from both domestic animals and weasels were classified into six clusters with seven PFGE profiles. The PFGE and antimicrobial resistance profiles were characterized by the animal facility. All CTX-M-14 plasmids belonged to the IncI1 type with a similar size (98.9-99.3 kb), except for one plasmid that was 105.5 kb in length. The unweighted pair group method with arithmetic mean (UPGMA) revealed that the CTX-M-14 plasmid in the weasel isolates might have the same origin as the CTX-M-14 plasmid in the domestic animals. Our findings shed further light on the association of antimicrobial resistance between wild and domestic animals.
Collapse
Affiliation(s)
- Montira Yossapol
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
- Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Miku Yamamoto
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
| | - Michiyo Sugiyama
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
| | - Justice Opare Odoi
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo 1838538, Japan; (T.O.); (T.M.)
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo 1838538, Japan; (T.O.); (T.M.)
| | - Kenji Ohya
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
| | - Tetsuo Asai
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
- Education and Research Center for Food Animal Health, Gifu University, Gifu 5011193, Japan
| |
Collapse
|
16
|
Analysis of fecal samples from Amami rabbits (Pentalagus furnessi) indicates low levels of antimicrobial resistance in Escherichia coli. EUR J WILDLIFE RES 2020. [DOI: 10.1007/s10344-020-01424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|