1
|
Gao Y, He J, Wang J, Xu H, Ma L. Chimeric antigen receptor T cell immunotherapy for gynecological malignancies. Crit Rev Oncol Hematol 2025; 209:104680. [PMID: 40024355 DOI: 10.1016/j.critrevonc.2025.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Gynecologic malignancies pose a serious threat to women's health worldwide. Although immunotherapy has significantly revolutionized cancer treatment strategies, effective therapeutic options for recurrent or advanced gynecologic malignancies are still deficient, posing significant challenges to clinical therapy. Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable efficacy in treating hematologic malignancies, marking a significant change in the oncology treatment paradigm. However, despite the gradual increase in CAR T cell therapy used in treating solid tumors in recent years, its efficacy in treating gynecologic malignancies still needs further validation. This review will thoroughly examine CAR-T cell engineering and its mechanism of action on specific antigens associated with gynecologic malignancies, systematically assess the current application of CAR T cell therapy in gynecologic tumors and the advancements in clinical trials, and discuss the significant challenges and corresponding strategies, thereby offering a scientific foundation and guidance for future research in this area.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China.
| | - Jing He
- Department of Emergency, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China
| | - Jing Wang
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China
| | - Haiou Xu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Lin Ma
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
2
|
Yu R, Ji X, Zhang P, Zhang H, Qu H, Dong W. The potential of chimeric antigen receptor -T cell therapy for endocrine cancer. World J Surg Oncol 2025; 23:153. [PMID: 40264184 PMCID: PMC12012980 DOI: 10.1186/s12957-025-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/24/2025] Open
Abstract
Endocrine cancer, a relatively rare and heterogeneous tumor with diverse clinical features. The facile synthesis of hormones further complicates endocrine cancer treatment. Thus, the development of safe and effective systemic treatment approaches, such as chimeric antigen receptor (CAR) T cell therapy, is imperative to enhance the prognosis of patients with endocrine cancer. Although this therapy has achieved good results in the treatment of hematological malignancies, it encounters diverse complications and challenges in the context of endocrine cancer. This review delineates the generation of CAR-T cells, examines the potential of CAR-T cell therapy for endocrine cancer, enumerates pivotal antigens linked to endocrine cancer, encapsulates the challenges confronted with CAR-T cell therapy for endocrine cancer, and expounds upon strategies to overcome these limitations. The primary objective is to provide insightful perspectives that can contribute to the advancement of CAR-T cell therapy in the field of endocrine cancer.
Collapse
Affiliation(s)
- Ruonan Yu
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Huiling Qu
- Department of Neurology, The General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, Liaoning, 110840, China.
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
3
|
Li D, Andaloori L, Crowe M, Lin S, Hong J, Zaidi N, Ho M. Development of CAR-T Therapies and Personalized Vaccines for the Treatment of Cholangiocarcinoma: Current Progress, Mechanisms of Action, and Challenges. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:453-469. [PMID: 39675505 PMCID: PMC11983698 DOI: 10.1016/j.ajpath.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy with an increasing prevalence, a high mortality rate, poor overall survival, and limited responsiveness to conventional chemoradiotherapy. Targeted therapies addressing specific gene mutations have expanded treatment options for some patient populations. The introduction of chimeric antigen receptor-modified T-cell (CAR-T) immunotherapy and personalized vaccines have opened up a new avenue for managing various cancers. Considerable efforts have been dedicated to preclinical research and ongoing clinical trials of immunotherapeutic approaches including CAR-T therapy, vaccines, and antibody-based therapies such as antibody drug conjugates. However, the potential of CAR-T therapy and vaccines in treating advanced unresectable/metastatic cholangiocarcinoma remains largely unexplored. This article offers an overview of the current landscape of antibody-based immunotherapy, particularly CAR-T therapy and vaccines in the context of cholangiocarcinoma treatment. It outlines a framework for selecting CAR-T and vaccine targets and delves into the biology of promising targetable antigens, as well as potential future therapeutic targets.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lalitya Andaloori
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Crowe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
4
|
Xu N, Wu Z, Pan J, Xu X, Wei Q. CAR-T cell therapy: Advances in digestive system malignant tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200872. [PMID: 39377038 PMCID: PMC11456800 DOI: 10.1016/j.omton.2024.200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Malignant tumors of the digestive system have had a notoriously dismal prognosis throughout history. Immunotherapy, radiotherapy, surgery, and chemotherapy are the primary therapeutic approaches for digestive system cancers. The rate of recurrence and metastasis, nevertheless, remains elevated. As one of the immunotherapies, chimeric antigen receptor T cell (CAR-T) therapy has demonstrated a promising antitumor effect in hematologic cancer. Despite undergoing numerous clinical trials, the ineffective antitumor effect and adverse effects of CAR-T cell therapy in the treatment of digestive system cancers continue to impede its clinical translation. It is necessary to surmount the restricted options for targeting proteins, the obstacles that impede CAR-T cell infiltration into solid tumors, and the limited survival time in vivo. We examined and summarized the developments, obstacles, and countermeasures associated with CAR-T therapy in digestive system cancers. Emphasis was placed on the regulatory functions of potential antigen targets, the tumor microenvironment, and immune evasion in CAR-T therapy. Thus, our analysis has furnished an all-encompassing comprehension of CAR-T cell therapy in digestive system cancers, which will generate tremendous enthusiasm for subsequent in-depth research into CAR-T-based therapies in digestive system cancers.
Collapse
Affiliation(s)
- Nan Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Zhonglin Wu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jun Pan
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
5
|
Li X, Li W, Xu L, Song Y. Chimeric antigen receptor-immune cells against solid tumors: Structures, mechanisms, recent advances, and future developments. Chin Med J (Engl) 2024; 137:1285-1302. [PMID: 37640679 PMCID: PMC11191032 DOI: 10.1097/cm9.0000000000002818] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Indexed: 08/31/2023] Open
Abstract
ABSTRACT The advent of chimeric antigen receptor (CAR)-T cell immunotherapies has led to breakthroughs in the treatment of hematological malignancies. However, their success in treating solid tumors has been limited. CAR-natural killer (NK) cells have several advantages over CAR-T cells because NK cells can be made from pre-existing cell lines or allogeneic NK cells with a mismatched major histocompatibility complex (MHC), which means they are more likely to become an "off-the-shelf" product. Moreover, they can kill cancer cells via CAR-dependent/independent pathways and have limited toxicity. Macrophages are the most malleable immune cells in the body. These cells can efficiently infiltrate into tumors and are present in large numbers in tumor microenvironments (TMEs). Importantly, CAR-macrophages (CAR-Ms) have recently yielded exciting preclinical results in several solid tumors. Nevertheless, CAR-T, CAR-NK, and CAR-M all have their own advantages and limitations. In this review, we systematically discuss the current status, progress, and the major hurdles of CAR-T cells, CAR-NK cells, and CAR-M as they relate to five aspects: CAR structure, therapeutic mechanisms, the latest research progress, current challenges and solutions, and comparison according to the existing research in order to provide a reasonable option for treating solid tumors in the future.
Collapse
Affiliation(s)
- Xudong Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Linping Xu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
6
|
Kotsifaki A, Maroulaki S, Armakolas A. Exploring the Immunological Profile in Breast Cancer: Recent Advances in Diagnosis and Prognosis through Circulating Tumor Cells. Int J Mol Sci 2024; 25:4832. [PMID: 38732051 PMCID: PMC11084220 DOI: 10.3390/ijms25094832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.
Collapse
Affiliation(s)
| | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.M.)
| |
Collapse
|
7
|
Cutri-French C, Nasioudis D, George E, Tanyi JL. CAR-T Cell Therapy in Ovarian Cancer: Where Are We Now? Diagnostics (Basel) 2024; 14:819. [PMID: 38667465 PMCID: PMC11049291 DOI: 10.3390/diagnostics14080819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapies in the treatment of hematologic malignancies has led to the investigation of their potential in the treatment of solid tumors, including ovarian cancer. While the immunosuppressive microenvironment of ovarian cancer has been a barrier in their implementation, several early phase clinical trials are currently evaluating CAR-T cell therapies targeting mesothelin, folate receptor a, HER2, MUC16, and B7H3. Ongoing challenges include cytokine-associated and "on-target, off-tumor" toxicities, while most common adverse events include cytokine release syndrome, hemophagocytic lymphohistiocytosis/macrophage activation-like syndrome (HLH/MAS), and neurotoxicity. In the present review, we summarize the current status of CAR-T therapy in ovarian cancer and discuss future directions.
Collapse
Affiliation(s)
- Clare Cutri-French
- Department of Obstetrics and Gynecology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA;
| | - Dimitrios Nasioudis
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| | - Erin George
- Moffitt Cancer Center, Richard M. Schulze Family Foundation Outpatient Center at McKinley Campus, 10920 McKinley Dr, Tampa, FL 33612, USA
| | - Janos L. Tanyi
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol 2024; 15:1385571. [PMID: 38680498 PMCID: PMC11045891 DOI: 10.3389/fimmu.2024.1385571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Surgery, chemotherapy, and endocrine therapy have improved the overall survival and postoperative recurrence rates of Luminal A, Luminal B, and HER2-positive breast cancers but treatment modalities for triple-negative breast cancer (TNBC) with poor prognosis remain limited. The effective application of the rapidly developing chimeric antigen receptor (CAR)-T cell therapy in hematological tumors provides new ideas for the treatment of breast cancer. Choosing suitable and specific targets is crucial for applying CAR-T therapy for breast cancer treatment. In this paper, we summarize CAR-T therapy's effective targets and potential targets in different subtypes based on the existing research progress, especially for TNBC. CAR-based immunotherapy has resulted in advancements in the treatment of breast cancer. CAR-macrophages, CAR-NK cells, and CAR-mesenchymal stem cells (MSCs) may be more effective and safer for treating solid tumors, such as breast cancer. However, the tumor microenvironment (TME) of breast tumors and the side effects of CAR-T therapy pose challenges to CAR-based immunotherapy. CAR-T cells and CAR-NK cells-derived exosomes are advantageous in tumor therapy. Exosomes carrying CAR for breast cancer immunotherapy are of immense research value and may provide a treatment modality with good treatment effects. In this review, we provide an overview of the development and challenges of CAR-based immunotherapy in treating different subtypes of breast cancer and discuss the progress of CAR-expressing exosomes for breast cancer treatment. We elaborate on the development of CAR-T cells in TNBC therapy and the prospects of using CAR-macrophages, CAR-NK cells, and CAR-MSCs for treating breast cancer.
Collapse
Affiliation(s)
- Zhipu Niu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinyu Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pengyu Zhang
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Sooi K, Walsh R, Kumarakulasinghe N, Wong A, Ngoi N. A review of strategies to overcome immune resistance in the treatment of advanced prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:656-673. [PMID: 37842236 PMCID: PMC10571060 DOI: 10.20517/cdr.2023.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Immunotherapy has become integral in cancer therapeutics over the past two decades and is now part of standard-of-care treatment in multiple cancer types. While various biomarkers and pathway alterations such as dMMR, CDK12, and AR-V7 have been identified in advanced prostate cancer to predict immunotherapy responsiveness, the vast majority of prostate cancer remain intrinsically immune-resistant, as evidenced by low response rates to anti-PD(L)1 monotherapy. Since regulatory approval of the vaccine therapy sipuleucel-T in the biomarker-unselected population, there has not been much success with immunotherapy treatment in advanced prostate cancer. Researchers have looked at various strategies to overcome immune resistance, including the identification of more biomarkers and the combination of immunotherapy with existing effective prostate cancer treatments. On the horizon, novel drugs using bispecific T-cell engager (BiTE) and chimeric antigen receptors (CAR) technology are being explored and have shown promising early efficacy in this disease. Here we discuss the features of the tumour microenvironment that predispose to immune resistance and rational strategies to enhance antitumour responsiveness in advanced prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
11
|
Izadpanah A, Mohammadkhani N, Masoudnia M, Ghasemzad M, Saeedian A, Mehdizadeh H, Poorebrahim M, Ebrahimi M. Update on immune-based therapy strategies targeting cancer stem cells. Cancer Med 2023; 12:18960-18980. [PMID: 37698048 PMCID: PMC10557910 DOI: 10.1002/cam4.6520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Accumulating data reveals that tumors possess a specialized subset of cancer cells named cancer stem cells (CSCs), responsible for metastasis and recurrence of malignancies, with various properties such as self-renewal, heterogenicity, and capacity for drug resistance. Some signaling pathways or processes like Notch, epithelial to mesenchymal transition (EMT), Hedgehog (Hh), and Wnt, as well as CSCs' surface markers such as CD44, CD123, CD133, and epithelial cell adhesion molecule (EpCAM) have pivotal roles in acquiring CSCs properties. Therefore, targeting CSC-related signaling pathways and surface markers might effectively eradicate tumors and pave the way for cancer survival. Since current treatments such as chemotherapy and radiation therapy cannot eradicate all of the CSCs and tumor relapse may happen following temporary recovery, improving novel and more efficient therapeutic options to combine with current treatments is required. Immunotherapy strategies are the new therapeutic modalities with promising results in targeting CSCs. Here, we review the targeting of CSCs by immunotherapy strategies such as dendritic cell (DC) vaccines, chimeric antigen receptors (CAR)-engineered immune cells, natural killer-cell (NK-cell) therapy, monoclonal antibodies (mAbs), checkpoint inhibitors, and the use of oncolytic viruses (OVs) in pre-clinical and clinical studies. This review will mainly focus on blood malignancies but also describe solid cancers.
Collapse
Affiliation(s)
- Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Niloufar Mohammadkhani
- Department of Clinical BiochemistrySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mina Masoudnia
- Department of ImmunologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mahsa Ghasemzad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Molecular Cell Biology‐Genetics, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Arefeh Saeedian
- Radiation Oncology Research CenterCancer Research Institute, Tehran University of Medical SciencesTehranIran
- Department of Radiation OncologyCancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical SciencesTehranIran
| | - Hamid Mehdizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Mansour Poorebrahim
- Arnie Charbonneau Cancer Research Institute, University of CalgaryAlbertaCalgaryCanada
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of regenerative medicineCell Science research Center, Royan Institute for stem cell biology and technology, ACECRTehranIran
| |
Collapse
|
12
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
13
|
Rodríguez-Nava C, Ortuño-Pineda C, Illades-Aguiar B, Flores-Alfaro E, Leyva-Vázquez MA, Parra-Rojas I, Del Moral-Hernández O, Vences-Velázquez A, Cortés-Sarabia K, Alarcón-Romero LDC. Mechanisms of Action and Limitations of Monoclonal Antibodies and Single Chain Fragment Variable (scFv) in the Treatment of Cancer. Biomedicines 2023; 11:1610. [PMID: 37371712 DOI: 10.3390/biomedicines11061610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Monoclonal antibodies are among the most effective tools for detecting tumor-associated antigens. The U.S. Food and Drug Administration (FDA) has approved more than 36 therapeutic antibodies for developing novel alternative therapies that have significant success rates in fighting cancer. However, some functional limitations have been described, such as their access to solid tumors and low interaction with the immune system. Single-chain variable fragments (scFv) are versatile and easy to produce, and being an attractive tool for use in immunotherapy models. The small size of scFv can be advantageous for treatment due to its short half-life and other characteristics related to the structural and functional aspects of the antibodies. Therefore, the main objective of this review was to describe the current situation regarding the mechanisms of action, applications, and limitations of monoclonal antibodies and scFv in the treatment of cancer.
Collapse
Affiliation(s)
- Cynthia Rodríguez-Nava
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Proteínas y Ácidos Nucleicos, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | | | - Amalia Vences-Velázquez
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Karen Cortés-Sarabia
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| |
Collapse
|
14
|
Li YN, Li YY, Wang SX, Ma XY. Efficacy of Bispecific Antibody Targeting EpCAM and CD3 for Immunotherapy in Ovarian Cancer Ascites: An Experimental Study. Curr Med Sci 2023:10.1007/s11596-023-2753-2. [PMID: 37119369 DOI: 10.1007/s11596-023-2753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
OBJECTIVE This study aimed to explore the value of M701, targeting epithelial cell adhesion molecule (EpCAM) and CD3, in the immunotherapy of ovarian cancer ascites by the in vitro assay. METHODS The expression of EpCAM in ovarian cancer tissues was analyzed by databases. The EpCAM expression and immune cell infiltration in different foci of ovarian cancer were detected by 8-channel flow cytometry. The toxic effect of M701 on OVCAR3 was tested using the in vitro cytotoxicity assay. The 3D cell culture and drug intervention experiments were performed to evaluate the therapeutic effect of M701 in ovarian cancer specimens. Flow cytometry was used to examine the effect of M701 on the binding of immune cells to tumor cells and the activation capacity of T cells. RESULTS The results of the bioinformatic analysis showed that the expression of EpCAM in ovarian cancer tissue was significantly higher than that in normal ovarian tissue. The 8-channel flow cytometry of clinical samples showed that the EpCAM expression and lymphocyte infiltration were significantly heterogeneous among ovarian cancer patients and lesions at different sites. The in vitro experiment results showed that M701 had a significant killing effect on OVCAR3 cells. M701 also obviously killed primary tumor cells derived from some patients with ovarian cancer ascites. M701 could mediate the binding of CD3+ T cells to EpCAM+ tumor cells and induce T cell activation in a dose-dependent manner. CONCLUSION M701 showed significant inhibitory activity on tumor cells derived from ovarian cancer ascites, which had a promising application in immunotherapy for patients with ovarian cancer ascites.
Collapse
Affiliation(s)
- Yi-Nuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Yuan Li
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Xuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiang-Yi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023; 13:biom13030465. [PMID: 36979400 PMCID: PMC10046142 DOI: 10.3390/biom13030465] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Ovarian cancer (OC) is among the most common gynecologic malignancies with a poor prognosis and a high mortality rate. Most patients are diagnosed at an advanced stage (stage III or IV), with 5-year survival rates ranging from 25% to 47% worldwide. Surgical resection and first-line chemotherapy are the main treatment modalities for OC. However, patients usually relapse within a few years of initial treatment due to resistance to chemotherapy. Cell-based therapies, particularly adoptive T-cell therapy and chimeric antigen receptor T (CAR-T) cell therapy, represent an alternative immunotherapy approach with great potential for hematologic malignancies. However, the use of CAR-T-cell therapy for the treatment of OC is still associated with several difficulties. In this review, we comprehensively discuss recent innovations in CAR-T-cell engineering to improve clinical efficacy, as well as strategies to overcome the limitations of CAR-T-cell therapy in OC.
Collapse
|
16
|
Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol 2023; 12:14. [PMID: 36707873 PMCID: PMC9883880 DOI: 10.1186/s40164-023-00373-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The past decade has witnessed ongoing progress in immune therapy to ameliorate human health. As an emerging technique, chimeric antigen receptor (CAR) T-cell therapy has the advantages of specific killing of cancer cells, a high remission rate of cancer-induced symptoms, rapid tumor eradication, and long-lasting tumor immunity, opening a new window for tumor treatment. However, challenges remain in CAR T-cell therapy for solid tumors due to target diversity, tumor heterogeneity, and the complex microenvironment. In this review, we have outlined the development of the CAR T-cell technique, summarized the current advances in tumor-associated antigens (TAAs), and highlighted the importance of tumor-specific antigens (TSAs) or neoantigens for solid tumors. We also addressed the challenge of the TAA binding domain in CARs to overcome off-tumor toxicity. Moreover, we illustrated the dominant tumor microenvironment (TME)-induced challenges and new strategies based on TME-associated antigens (TMAs) for solid tumor CAR T-cell therapy.
Collapse
Affiliation(s)
- Ting Yan
- grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| | - Lingfeng Zhu
- grid.443397.e0000 0004 0368 7493Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| | - Jin Chen
- grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China ,grid.443397.e0000 0004 0368 7493Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| |
Collapse
|
17
|
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, Aghebati-Maleki L, Baradaran B. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front Immunol 2023; 14:1113882. [PMID: 37020537 PMCID: PMC10067596 DOI: 10.3389/fimmu.2023.1113882] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The successful outcomes of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic cancers have increased the previously unprecedented excitement to use this innovative approach in treating various forms of human cancers. Although researchers have put a lot of work into maximizing the effectiveness of these cells in the context of solid tumors, few studies have discussed challenges and potential strategies to overcome them. Restricted trafficking and infiltration into the tumor site, hypoxic and immunosuppressive tumor microenvironment (TME), antigen escape and heterogeneity, CAR T-cell exhaustion, and severe life-threatening toxicities are a few of the major obstacles facing CAR T-cells. CAR designs will need to go beyond the traditional architectures in order to get over these limitations and broaden their applicability to a larger range of malignancies. To enhance the safety, effectiveness, and applicability of this treatment modality, researchers are addressing the present challenges with a wide variety of engineering strategies as well as integrating several therapeutic tactics. In this study, we reviewed the antigens that CAR T-cells have been clinically trained to recognize, as well as counterstrategies to overcome the limitations of CAR T-cell therapy, such as recent advances in CAR T-cell engineering and the use of several therapies in combination to optimize their clinical efficacy in solid tumors.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| |
Collapse
|
18
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
19
|
Hu X, Bian C, Zhao X, Yi T. Efficacy evaluation of multi-immunotherapy in ovarian cancer: From bench to bed. Front Immunol 2022; 13:1034903. [PMID: 36275669 PMCID: PMC9582991 DOI: 10.3389/fimmu.2022.1034903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer, one of the most common gynecological malignancies, is characterized by high mortality and poor prognosis. Cytoreductive surgery and chemotherapy remain the mainstay of ovarian cancer treatment, and most women experience recurrence after standard care therapies. There is compelling evidence that ovarian cancer is an immunogenic tumor. For example, the accumulation of tumor-infiltrating lymphocytes is associated with increased survival, while increases in immunosuppressive regulatory T cells are correlated with poor clinical outcomes. Therefore, immunotherapies targeting components of the tumor microenvironment have been gradually integrated into the existing treatment options, including immune checkpoint blockade, adoptive cell therapy, and cancer vaccines. Immunotherapies have changed guidelines for maintenance treatment and established a new paradigm in ovarian cancer treatment. Despite single immunotherapies targeting DNA repair mechanisms, immune checkpoints, and angiogenesis bringing inspiring efficacy, only a subset of patients can benefit much from it. Thus, the multi-immunotherapy investigation remains an active area for ovarian cancer treatment. The current review provides an overview of various clinically oriented forms of multi-immunotherapy and explores potentially effective combinational therapies for ovarian cancer.
Collapse
|
20
|
Wang I, Song L, Wang BY, Rezazadeh Kalebasty A, Uchio E, Zi X. Prostate cancer immunotherapy: a review of recent advancements with novel treatment methods and efficacy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:210-233. [PMID: 36051616 PMCID: PMC9428569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy remains to be an appealing treatment option for prostate cancer with some documented promise. Prostate cancer is traditionally considered as an immunologically "cold" tumor with low tumor mutation burden, low expression of PD-L1, sparse T-cell infiltration, and a immunosuppressive tumor microenvironment (TME). Sipuleucel-T (Provenge) is the first FDA approved immunotherapeutic agent for the treatment of asymptomatic or minimally symptomatic metastatic castrate resistant prostate cancer (mCRPC); demonstrating a benefit in overall survival. However various clinical trials by immune checkpoint inhibitors (ICIs) and their combinations with other drugs have shown limited responses in mCRPC. Up to now, only a small subset of patients with mismatch repair deficiency/microsatellite instability high and CDK12 mutations can clinically benefit from ICIs and/or their combinations with other agents, such as DNA damage agents. The existence of a large heterogeneity in genomic alterations and a complex TME in prostate cancer suggests the need for identifying new immunotherapeutic targets. As well as designing personalized immunotherapy strategies based on patient-specific molecular signatures. There is also a need to adjust strategies to overcome histologic barriers such as tissue hypoxia and dense stroma. The racial differences of immunological responses between men of diverse ethnicities also merit further investigation to improve the efficacy of immunotherapy and better patient selection in prostate cancer.
Collapse
Affiliation(s)
- Ian Wang
- Hofstra UniversityHempstead, NY, USA
| | - Liankun Song
- Department of Urology, University of CaliforniaIrvine, Orange, CA 92868, USA
| | - Beverly Y Wang
- Department of Pathology, University of CaliforniaIrvine, Orange, CA 92868, USA
| | | | - Edward Uchio
- Department of Medicine, University of CaliforniaIrvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of CaliforniaOrange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of CaliforniaIrvine, Orange, CA 92868, USA
- Department of Medicine, University of CaliforniaIrvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of CaliforniaOrange, CA 92868, USA
- Department of Pharmaceutical Sciences, University of CaliforniaIrvine, Irvine, CA 92617, USA
| |
Collapse
|
21
|
Huang B, Miao L, Liu J, Zhang J, Li Y. A promising antitumor method: Targeting CSC with immune cells modified with CAR. Front Immunol 2022; 13:937327. [PMID: 36032145 PMCID: PMC9403009 DOI: 10.3389/fimmu.2022.937327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Tumors pose a great threat to human health; as a subgroup of tumor cells, cancer stem cells (CSCs) contribute to the genesis, development, metastasis, and recurrence of tumors because of their enhanced proliferation and multidirectional differentiation. Thus, a critical step in tumor treatment is to inhibit CSCs. Researchers have proposed many methods to inhibit or reduce CSCs, including monoclonal antibodies targeting specific surface molecules of CSCs, signal pathway inhibitors, and energy metabolic enzyme inhibitors and inducing differentiation therapy. Additionally, immunotherapy with immune cells engineered with a chimeric antigen receptor (CAR) showed favorable results. However, there are few comprehensive reviews in this area. In this review, we summarize the recent CSC targets used for CSC inhibition and the different immune effector cells (T cells, natural killer (NK) cells, and macrophages) which are engineered with CAR used for CSC therapy. Finally, we list the main challenges and options in targeting CSC with CAR-based immunotherapy. The design targeting two tumor antigens (one CSC antigen and one mature common tumor antigen) should be more reasonable and practical; meanwhile, we highlight the potential of CAR-NK in tumor treatment.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Jiaxing Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li,
| |
Collapse
|
22
|
Immunotherapy and immunoengineering for breast cancer; a comprehensive insight into CAR-T cell therapy advancements, challenges and prospects. Cell Oncol (Dordr) 2022; 45:755-777. [PMID: 35943716 DOI: 10.1007/s13402-022-00700-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly prevalent solid cancer with a high-rise infiltration of immune cells, turning it into a significant candidate for tumor-specific immunotherapies. Chimeric antigen receptor (CAR)-T cells are emerging as immunotherapeutic tools with genetically engineered receptors to efficiently recognize and attack tumor cells that express specific target antigens. Technological advancements in CAR design have provided five generations of CAR-T cells applicable to a wide range of cancer patients while boosting CAR-T cell therapy safety. However, CAR-T cell therapy is ineffective against breast cancer because of the loss of specified antigens, the immunosuppressive nature of the tumor and CAR-T cell-induced toxicities. Next-generation CAR-T cells actively pass through the tumor vascular barriers, persist for extended periods and disrupt the tumor microenvironment (TME) to block immune escape. CONCLUSION CAR-T cell therapy embodies advanced immunotherapy for BC, but further pre-clinical and clinical assessments are recommended to achieve maximized efficiency and safety.
Collapse
|
23
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
24
|
Zhang Q, Ding J, Wang Y, He L, Xue F. Tumor microenvironment manipulates chemoresistance in ovarian cancer (Review). Oncol Rep 2022; 47:102. [PMID: 35362546 DOI: 10.3892/or.2022.8313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of mortality among the various types of gynecological cancer, and >75% of the cases are diagnosed at a late stage. Although platinum‑based chemotherapy is able to help the majority of patients to achieve remission, the disease frequently recurs and acquires chemoresistance, resulting in high mortality rates. The complexity of OC therapy is not solely governed by the intrinsic characteristics of the OC cells (OCCs) themselves, but is also largely dependent on the dynamic communication between OCCs and various components of their surrounding microenvironment. The present review attempts to describe the mutual interplay between OCCs and their surrounding microenvironment. Tumor‑associated macrophages (TAMs) and cancer‑associated fibroblasts (CAFs) are the most abundant stromal cell types in OC. Soluble factors derived from CAFs steadily nourish both the OCCs and TAMs, facilitating their proliferation and immune evasion. ATP binding cassette transporters facilitate the extrusion of cytotoxic molecules, eventually promoting cell survival and multidrug resistance. Extracellular vesicles fulfill their role as genetic exchange vectors, transferring cargo from the donor cells to the recipient cells and propagating oncogenic signaling. A greater understanding of the vital roles of the tumor microenvironment will allow researchers to be open to the prospect of developing therapeutic approaches for combating OC chemoresistance.
Collapse
Affiliation(s)
- Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jiashan Ding
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Linsheng He
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
25
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
26
|
Cell-based immunotherapies in gynecologic cancers. Curr Opin Obstet Gynecol 2022; 34:10-14. [PMID: 34967809 DOI: 10.1097/gco.0000000000000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review provides an update on recent developments in cell-based immunotherapy in gynecologic cancers. RECENT FINDINGS Chimeric antigen receptor (CAR) technology has made significant progress allowing now for not only expressing CARs on T-cells, but also on other immune effector cells, such as natural killer cells and macrophages. Cell-based vaccines have started to show promising results in clinical trials. SUMMARY Cell-based immunotherapies in gynecologic cancers continue to evolve with promising clinical efficacy in select patients.
Collapse
|