1
|
Zhang G, Zhou J, Lv Q, Yang R, Zhang Y, Chu J, Zhang H, Han Y, Sun K, Yuan C, Tao K. Rapid virus inactivation by nanoparticles-embedded photodynamic surfaces. J Colloid Interface Sci 2025; 679:609-618. [PMID: 39471589 DOI: 10.1016/j.jcis.2024.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
The persistent threat of viral epidemics poses significant risks to human health, highlighting the urgent need for antiviral surfaces to mitigate viral transmission through bioaerosols and surface contamination. However, there is still a scarcity of readily accessible antiviral coatings to address this critical concern. In this study, we demonstrate that photodynamic nanoparticle-embedded surfaces can swiftly inactivate both enveloped and non-enveloped viruses. We prepared core-shell structured methylene blue (MB)-loaded SiO2 nanoparticles with a high reactive oxygen species (ROS) yield (0.47 ± 0.02). The superior ROS production was maintained after modifying these nanoparticles onto air filter fibers, likely due to the prevention of aggregation-caused quenching effects. Three viruses, including both enveloped and non-enveloped types, were rapidly inactivated within just 12 min (>6 log units) under medium light intensity (660 nm, 30 mW/cm2). Mechanistic studies revealed that envelope glycoproteins are the primary targets for this rapid inactivation. Thus, photodynamic nanoparticle-embedded surfaces offer a straightforward and adaptable strategy in the fight against viral epidemics.
Collapse
Affiliation(s)
- Gengxin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiewen Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuhan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Chu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Luo X, Liang R, Liang L, Tang A, Hou S, Ding J, Li Z, Tang X. Advancements, challenges, and future perspectives in developing feline herpesvirus 1 as a vaccine vector. Front Immunol 2024; 15:1445387. [PMID: 39328406 PMCID: PMC11424437 DOI: 10.3389/fimmu.2024.1445387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
As the most prevalent companion animal, cats are threatened by numerous infectious diseases and carry zoonotic pathogens such as Toxoplasma gondii and Bartonella henselae, which are the primary causes of human toxoplasmosis and cat-scratch disease. Vaccines play a crucial role in preventing and controlling the spread of diseases in both humans and animals. Currently, there are only three core vaccines available to prevent feline panleukopenia, feline herpesvirus, and feline calicivirus infections, with few vaccines available for other significant feline infectious and zoonotic diseases. Feline herpesvirus, a major component of the core vaccine, offers several advantages and a stable genetic manipulation platform, making it an ideal model for vaccine vector development to prevent and control feline infectious diseases. This paper reviews the technologies involved in the research and development of the feline herpesvirus vaccine vector, including homologous recombination, CRISPR/Cas9, and bacterial artificial chromosomes. It also examines the design and effectiveness of expressing antigens of other pathogens using the feline herpesvirus as a vaccine vector. Additionally, the paper analyzes existing technical bottlenecks and challenges, providing an outlook on its application prospects. The aim of this review is to provide a scientific basis for the research and development of feline herpesvirus as a vaccine vector and to offer new ideas for the prevention and control of significant feline infectious and zoonotic diseases.
Collapse
Affiliation(s)
- Xinru Luo
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aoxing Tang
- Shanghai Veterinary Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaohua Hou
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zibin Li
- College of Life and Health, Dalian University, Dalian, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Yang M, Mu B, Ma H, Xue H, Song Y, Zhu K, Hao J, Liu D, Li W, Zhang Y, Gao X. The Latest Prevalence, Isolation, and Molecular Characteristics of Feline Herpesvirus Type 1 in Yanji City, China. Vet Sci 2024; 11:417. [PMID: 39330796 PMCID: PMC11435738 DOI: 10.3390/vetsci11090417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Epidemiological surveys revealed that 33 of the 93 samples were positive for FHV-1, with the gD gene of these 33 samples exhibiting low variation, high homology, and no critical amino acid mutation. Feline herpesvirus type 1 (FHV-1), also known as feline viral rhinotracheitis (FVR) virus, is one of the main causes of URT disease in cats. All cats can become hosts of FHV-1, and the spread of this disease affects the protection of rare feline animals. Nasal swabs from cats with URT disease were collected at five veterinary clinics in Yanji City from 2022 to 2024. The purpose of this study was to isolate and investigate the epidemiology of FHV-1. The gD gene of the FHV-1 strain was cloned and inserted into the pMD-18T vector and transformed into a competent Escherichia coli strain. Subsequently, the gD gene of the positive samples was sequenced and phylogenetic analysis was performed to determine the genetic evolution relationship between the strains. We successfully isolated the FHV-1 strain YBYJ-1 in Yanji City for the first time. The diameter of the virus is approximately 150-160 nm. After 48 h of virus inoculation, the cells were round, isolated, and formed grape-like clusters. The gD gene of the virus was sequenced, and the length was 1125 bp, which proved the isolate was FHV-1. This study found that the genetic evolution of the FHV-1 gD gene was stable, expanding the molecular epidemiological data on FHV-1 in cats in Yanji City.
Collapse
Affiliation(s)
- Meng Yang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Biying Mu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Haowen Xue
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Jingrui Hao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Dan Liu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Weijian Li
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Yaning Zhang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| |
Collapse
|
4
|
Ma H, Hao J, Li W, Yu K, Zhu K, Yang M, Cao S, Xue H, Liu D, Song Y, Zhang S, Zhang X, Sun Z, Gao X. Evaluation of feline mesenchymal stem cell susceptibility to feline viruses. Sci Rep 2024; 14:18598. [PMID: 39127765 PMCID: PMC11316800 DOI: 10.1038/s41598-024-69343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Feline mesenchymal stem cells (fMSCs) are well known for their robust differentiation capabilities and are commonly used in studying immune-related diseases in cats. Despite their importance, the susceptibility of fMSCs to viral infections remains uncertain. This study aimed to assess the susceptibility of feline adipose-derived mesenchymal stem cells (fAD-MSCs) and feline umbilical cord-derived mesenchymal stem cells (fUC-MSCs) to common feline viruses, including feline coronavirus (FCoV), feline herpesvirus type 1 (FHV-1), and feline panleukopenia virus (FPV). The results demonstrated that both FCoV and FHV-1 were able to infect both types of cells, while FPV did not exhibit cytopathic effects on fUC-MSCs. Furthermore, all three viruses were successfully isolated from fAD-MSCs. These findings suggest that certain feline viruses can replicate in fMSCs, indicating potential limitations in using fMSCs for treating viral diseases caused by these specific viruses. This study has important clinical implications for veterinarians, particularly in the management of viral diseases.
Collapse
Affiliation(s)
- Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Jingrui Hao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Weijian Li
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Kai Yu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Meng Yang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Shuoning Cao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Haowen Xue
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Dan Liu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Siqi Zhang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Xifeng Zhang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Zheng Sun
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
5
|
Liu B, Jiao XQ, Dong XF, Guo P, Wang SB, Qin ZH. Saikosaponin B2, Punicalin, and Punicalagin in Vitro Block Cellular Entry of Feline Herpesvirus-1. Viruses 2024; 16:231. [PMID: 38400007 PMCID: PMC10892935 DOI: 10.3390/v16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of drug resistance. These challenges underscore the imperative to innovate and develop alternative antiviral medications featuring unique mechanisms of action, such as viral entry inhibitors. This research endeavors to address this pressing need. Utilizing Bio-layer interferometry (BLI), we meticulously screened drugs to identify natural compounds exhibiting high binding affinity for the herpesvirus functional protein envelope glycoprotein B (gB). The selected drugs underwent a rigorous assessment to gauge their antiviral activity against feline herpesvirus-1 (FHV-1) and to elucidate their mode of action. Our findings unequivocally demonstrated that Saikosaponin B2, Punicalin, and Punicalagin displayed robust antiviral efficacy against FHV-1 at concentrations devoid of cytotoxicity. Specifically, these compounds, Saikosaponin B2, Punicalin, and Punicalagin, are effective in exerting their antiviral effects in the early stages of viral infection without compromising the integrity of the viral particle. Considering the potency and efficacy exhibited by Saikosaponin B2, Punicalin, and Punicalagin in impeding the early entry of FHV-1, it is foreseeable that their chemical structures will be further explored and developed as promising antiviral agents against FHV-1 infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi-Hua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (B.L.); (X.-Q.J.); (X.-F.D.); (P.G.); (S.-B.W.)
| |
Collapse
|
6
|
Synowiec A, Dąbrowska A, Pachota M, Baouche M, Owczarek K, Niżański W, Pyrc K. Feline herpesvirus 1 (FHV-1) enters the cell by receptor-mediated endocytosis. J Virol 2023; 97:e0068123. [PMID: 37493545 PMCID: PMC10506464 DOI: 10.1128/jvi.00681-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
Feline herpesvirus type 1 (FHV-1) is an enveloped dsDNA virus belonging to the Herpesviridae family and is considered one of the two primary viral etiological factors of feline upper respiratory tract disease. In this study, we investigated the entry of FHV-1 into host cells using two models: the AK-D cell line and primary feline skin fibroblasts (FSFs). We employed confocal microscopy, siRNA silencing, and selective inhibitors of various entry pathways. Our observations revealed that the virus enters cells via pH and dynamin-dependent endocytosis, as the infection was significantly inhibited by NH4Cl, bafilomycin A1, dynasore, and mitmab. Additionally, genistein, nystatin, and filipin treatments, siRNA knock-down of caveolin-1, as well as FHV-1 and caveolin-1 colocalization suggest the involvement of caveolin-mediated endocytosis during the entry process. siRNA knock-down of clathrin heavy chain and analysis of virus particle colocalization with clathrin indicated that clathrin-mediated endocytosis also takes part in the primary cells. This is the first study to systematically examine FHV-1 entry into host cells, and for the first time, we describe FHV-1 replication in AK-D and FSFs. IMPORTANCE Feline herpesvirus 1 (FHV-1) is one of the most prevalent viruses in cats, causing feline viral rhinotracheitis, which is responsible for over half of viral upper respiratory diseases in cats and can lead to ocular lesions resulting in loss of sight. Although the available vaccine reduces the severity of the disease, it does not prevent infection or limit virus shedding. Despite the clinical relevance, the entry mechanisms of FHV-1 have not been thoroughly studied. Considering the limitations of commonly used models based on immortalized cells, we sought to verify our findings using primary feline skin fibroblasts, the natural target for infection in cats.
Collapse
Affiliation(s)
- Aleksandra Synowiec
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Dąbrowska
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pachota
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, University of Environmental Science, Wrocław, Poland
| | - Katarzyna Owczarek
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, University of Environmental Science, Wrocław, Poland
| | - Krzysztof Pyrc
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Tang A, Zhu M, Zhu J, Zhang D, Zhu S, Wang X, Meng C, Li C, Liu G. Pathogenicity and immunogenicity of gI/gE/TK-gene-deleted Felid herpesvirus 1 variants in cats. Virol J 2023; 20:87. [PMID: 37143065 PMCID: PMC10157573 DOI: 10.1186/s12985-023-02053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Felid herpesvirus 1 (FHV-1) is a major pathogenic agent of upper respiratory tract infections and eye damage in felines worldwide. Current FHV-1 vaccines offer limited protection of short duration, and therefore, do not reduce the development of clinical signs or the latency of FHV-1. METHODS To address these shortcomings, we constructed FHV ∆gIgE-eGFP, FHV ∆TK mCherry, and FHV ∆gIgE/TK eGFP-mCherry deletion mutants (ΔgI/gE, ΔTK, and ΔgIgE/TK, respectively) using the clustered regularly interspaced palindromic repeats (CRISPR)/CRISP-associated protein 9 (Cas9) system (CRISPR/Cas9), which showed safety and immunogenicity in vitro. We evaluated the safety and efficacy of the deletion mutants administered with intranasal (IN) and IN + subcutaneous (SC) vaccination protocols. Cats in the vaccination group were vaccinated twice at a 4-week interval, and all cats were challenged with infection 3 weeks after the last vaccination. The cats were assessed for clinical signs, nasal shedding, and virus-neutralizing antibodies (VN), and with postmortem histological testing. RESULTS Vaccination with the gI/gE-deleted and gI/gE/TK-deleted mutants was safe and resulted in significantly lower clinical disease scores, fewer pathological changes, and less nasal virus shedding after infection. All three mutants induced virus-neutralizing antibodies after immunization. CONCLUSIONS In conclusion, this study demonstrates the advantages of FHV-1 deletion mutants in preventing FHV-1 infection in cats.
Collapse
Affiliation(s)
- Aoxing Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Meng Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Da Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Shiqiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Xiao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Chuangfeng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
8
|
Magouz A, Lokman MS, Albrakati A, Elmahallawy EK. First Report of Isolation and Molecular Characterization of Felid Herpesvirus-1 from Symptomatic Domestic Cats in Egypt. Vet Sci 2022; 9:vetsci9020081. [PMID: 35202334 PMCID: PMC8874770 DOI: 10.3390/vetsci9020081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Feline herpesvirus 1 (FHV-1) is one of the main causes of upper respiratory tract infection in cats. Despite its veterinary importance, no previous studies investigated the occurrence of this virus in Egypt. In the present work, a total number of one hundred forty (N = 140) conjunctival and/or oropharyngeal swabs were collected from symptomatic cats during veterinary clinic visits located in two Egyptian provinces. Virus isolation was performed in the Chorioallantoic membranes (CAMs) of 12-days-old SPF eggs. Interestingly, the embryos showed stunting growth and abnormal feathering and infected CAMs showed edematous thickening and cloudiness with characteristic white opaque pock lesions. Polymerase chain reaction (PCR) amplification of the thymidine kinase gene (TK) was successful in 16/140 (11.4%) of the suspected cases. Two of the amplified genes were sequenced and the TK gene sequences of the FHV-1 isolates were highly similar to other reference strains in the GenBank database. Given the above information, the present study represents the first report of feline herpesvirus type 1 (FHV-1) in domestic cats in Egypt. Further studies on the causes of upper respiratory tract infections in cats as well as vaccine efficacy are needed.
Collapse
Affiliation(s)
- Asmaa Magouz
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (A.M.); (E.K.E.)
| | - Maha S. Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (A.M.); (E.K.E.)
| |
Collapse
|
9
|
Chen L, Ni Z, Hua J, Ye W, Liu K, Yun T, Zhu Y, Zhang C. Proteomic analysis of host cellular proteins co-immunoprecipitated with duck enteritis virus gC. J Proteomics 2021; 245:104281. [PMID: 34091090 DOI: 10.1016/j.jprot.2021.104281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Duck enteritis virus (DEV), the causative agent of duck viral enteritis, causes a contagious, lethal viral disease in Anseriformes (waterfowls). In virus infection, host-virus interaction plays a crucial role in virus replication and pathogenesis. In our previous study, mRFP was fused with the C-terminus of DEV glycoprotein C (gC) to construct a fluorescent-tag DEV virus rgCRFP. In the current study, fluorescent fusion protein (gC-mRFP) was used as the proteomic probe. Co-immunoprecipitation and mass spectrometric analysis of proteins from rgCRFP-infected chicken embryo fibroblasts using commercial anti-RFP antibody led to the identification of a total of 21 gC interacting host proteins. Out of these 21 proteins, the interaction of seven host proteins (GNG2, AR1H1, PPP2CA, UBE2I, MCM5, NUBP1, HN1) with DEV gC protein was validated using membrane-bound split-ubiquitin yeast two-hybrid system (MbYTH) and bimolecular fluorescence complementation (BiFC) analyses. It indicated direct interaction between these proteins with DEV gC protein. This study has furthered the current understanding of DEV virus infection and pathogenesis. SIGNIFICANCE: gC is an crucial glycoprotein of duck enteritis virus that plays an important role in the viral life cycle. Uncovering the interaction between virus-host is very important to elucidate the pathogenic mechanism of the virus. In this study, host factors interacting with DEV gC have been discerned. And seven host proteins (GNG2, AR1H1, PPP2CA, UBE2I, MCM5, NUBP1, HN1) have been further validated to interact with DEV gC using MbYTH and BiFC analyses. These outcomes could shed light on how DEV manipulates the cellular machinery, which could further our understanding of DEV pathogenesis.
Collapse
Affiliation(s)
- Liu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Keshu Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Yun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
10
|
The haemagglutination activity of equine herpesvirus type 1 glycoprotein C. Virus Res 2014; 195:172-6. [PMID: 25456403 DOI: 10.1016/j.virusres.2014.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 11/24/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) has haemagglutination (HA) activity toward equine red blood cells (RBCs), but the identity of its haemagglutinin is unknown. To identify the haemagglutinin of EHV-1, the major glycoproteins of EHV-1 were expressed in 293T cells, and the cells or cell lysates were mixed with equine RBCs. The results showed that only EHV-1 glycoprotein C (gC)-producing cells adsorbed equine RBCs, and that the lysate of EHV-1 gC-expressing cells agglutinated equine RBCs. EHV-1 lacking gC did not show HA activity. HA activity was inhibited by monoclonal antibodies (MAbs) specific for gC, but not by antibodies directed against other glycoproteins. In addition, HA activity was not inhibited by the addition of heparin. These results indicate that EHV-1 gC can bind equine RBCs irrespective of heparin, in contrast to other herpesvirus gC proteins.
Collapse
|
11
|
Yang X, Forier K, Steukers L, Van Vlierberghe S, Dubruel P, Braeckmans K, Glorieux S, Nauwynck HJ. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking. PLoS One 2012; 7:e51054. [PMID: 23236432 PMCID: PMC3517622 DOI: 10.1371/journal.pone.0051054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/29/2012] [Indexed: 01/15/2023] Open
Abstract
Pseudorabies virus (PRV) initially replicates in the porcine upper respiratory tract. It easily invades the mucosae and submucosae for subsequent spread throughout the body via blood vessels and nervous system. In this context, PRV developed ingenious processes to overcome different barriers such as epithelial cells and the basement membrane. Another important but often overlooked barrier is the substantial mucus layer which coats the mucosae. However, little is known about how PRV particles interact with porcine respiratory mucus. We therefore measured the barrier properties of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles including PRV in this mucus. We developed an in vitro model utilizing single particle tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene glycol coupled (PEGylated) nanoparticles and atomic force microscope. Secondly, the mobility of PRV in porcine tracheal respiratory mucus was examined and compared with that of negative, positive and PEGylated nanoparticles. The pore size of porcine tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 455±240 nm. PRV (zeta potential: −31.8±1.5 mV) experienced a severe obstruction in porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. Similarly, the highly negatively (−49.8±0.6 mV) and positively (36.7±1.1 mV) charged nanoparticles were significantly trapped. In contrast, the nearly neutral, hydrophilic PEGylated nanoparticles (−9.6±0.8 mV) diffused rapidly, with the majority of particles moving 50-fold faster than PRV. The mobility of the particles measured was found to be related but not correlated to their surface charge. Furthermore, PEGylated PRV (-13.8±0.9 mV) was observed to diffuse 13-fold faster than native PRV. These findings clearly show that the mobility of PRV was significantly hindered in porcine tracheal respiratory mucus, and that the obstruction of PRV was due to complex mucoadhesive interactions including charge interactions rather than size exclusion.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Katrien Forier
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Harelbekestraat, Ghent, Belgium
| | - Lennert Steukers
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | | | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Harelbekestraat, Ghent, Belgium
| | - Sarah Glorieux
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
12
|
Maes R. Felid herpesvirus type 1 infection in cats: a natural host model for alphaherpesvirus pathogenesis. ISRN VETERINARY SCIENCE 2012; 2012:495830. [PMID: 23762586 PMCID: PMC3671728 DOI: 10.5402/2012/495830] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/20/2012] [Indexed: 11/23/2022]
Abstract
Feline herpesvirus 1 (FeHV-1) is an alphaherpesvirus that causes feline viral rhinotracheitis, an important viral disease of cats on a worldwide basis. Acute FeHV-1 infection is associated with both upper respiratory and ocular signs. Following the acute phase of the disease lifelong latency is established, primarily in sensory neuronal cells. As is the case with human herpes simplex viruses, latency reactivation can result in recrudescence, which can manifest itself in the form of serious ocular lesions. FeHV-1 infection in cats is a natural host model that is useful for the identification of viral virulence genes that play a role in replication at the mucosal portals of entry or are mediators of the establishment, maintenance, or reactivation of latency. It is also a model system for defining innate and adaptive immunity mechanisms and for immunization strategies that can lead to better protection against this and other alphaherpesvirus infections.
Collapse
Affiliation(s)
- Roger Maes
- Departments of Pathobiology and Diagnostic Investigation and Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Complete genomic sequence and an infectious BAC clone of feline herpesvirus-1 (FHV-1). Virology 2010; 401:215-27. [PMID: 20304455 DOI: 10.1016/j.virol.2010.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/22/2009] [Accepted: 02/17/2010] [Indexed: 11/21/2022]
Abstract
Infection with feline herpesvirus-1 (FHV-1) is a major cause of upper respiratory and ocular diseases in Felidae. We report the first complete genomic sequence of FHV-1, as well as the construction and characterization of a bacterial artificial chromosome (BAC) clone of FHV-1, which contains the entire FHV-1 genome and has the BAC vector inserted at the left end of U(L). Complete genomic sequences were derived from both the FHV-1 BAC clone and purified virion DNA. The FHV-1 genome is 135,797bp in size with an overall G+C content of 45%. A total of 78 open reading frames were predicted, encoding 74 distinct proteins. The gene arrangement is collinear with that of most sequenced varicelloviruses. The virus regenerated from the BAC was very similar to the parental C-27 strain in vitro in terms of plaque morphology and growth characteristics and highly virulent in cats in a preliminary in vivo study.
Collapse
|
14
|
Wilkes RP, Kania SA. Use of interfering RNAs targeted against feline herpesvirus 1 glycoprotein D for inhibition of feline herpesvirus 1 infection of feline kidney cells. Am J Vet Res 2009; 70:1018-25. [PMID: 19645584 DOI: 10.2460/ajvr.70.8.1018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the use of RNA interference targeted against feline herpesvirus 1 (FHV-1) glycoprotein D for inhibition of FHV-1 infection of feline kidney cells. SAMPLE POPULATION Crandell-Rees feline kidney cells. PROCEDURES Crandell-Rees feline kidney cells were transfected with small interfering RNAs (siRNAs) that were designed to inhibit expression of FHV-1 glycoprotein D. The effectiveness of the treatment was determined via measurement of amounts of glycoprotein D mRNA, intracellular glycoprotein D, and glycoprotein D expressed on the surface of infected cells and comparison with appropriate control sample data. RESULTS 2 of 6 siRNAs tested were highly effective in reducing expression (ie, knockdown) of glycoprotein D mRNA; there were 77% and 85% reductions in mRNA in treated samples, compared with findings in the control samples. The knockdown of glycoprotein D mRNA resulted in reduced glycoprotein D protein production, as evidenced by 27% and 43% decreases in expression of glycoprotein D on the surface of siRNA-treated, FHV-1-infected cells and decreased expression of the protein within infected cells, compared with control samples. Treatment with these siRNAs also resulted in inhibition of FHV-1 replication, with reductions of 84% and 77% in amounts of virus released into cell culture supernatant, compared with findings in control samples. CONCLUSIONS AND CLINICAL RELEVANCE 2 chemically produced siRNAs that targeted the glycoprotein D gene significantly reduced FHV-1 titers in treated cells, suggesting that glycoprotein D is necessary for production of infective virions. This gene is a potential target for RNA interference as a means of inhibition of FHV-1 infection of feline cells.
Collapse
Affiliation(s)
- Rebecca P Wilkes
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
15
|
Glorieux S, Favoreel HW, Meesen G, de Vos W, Van den Broeck W, Nauwynck HJ. Different replication characteristics of historical pseudorabies virus strains in porcine respiratory nasal mucosa explants. Vet Microbiol 2008; 136:341-6. [PMID: 19111405 DOI: 10.1016/j.vetmic.2008.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
Different alphaherpesviruses, including pseudorabies virus (PRV), are able to cross the basement membrane barrier in nasal respiratory epithelium. As a first step in investigating this invasion process, a detailed quantitative analysis system was set up to determine the kinetics of horizontal and vertical virus spread in nasal explants, using the virulent PRV strain 89V87. Plaque latitudes, total depths, depths measured from the basement membrane and volumes were determined at 0, 12, 24 and 36h post inoculation (pi). PRV 89V87 was found to spread in a plaquewise manner and to cross the basement membrane between 12 and 24hpi. During the 1960s-1970s, an increase in PRV virulence has been reported. To analyse potential differences in efficiency of infection and spread for different historical PRV strains, single infected cells and plaques of infected cells were quantified at 12 and 36hpi in nasal mucosa explants for seven European PRV strains, isolated in the 1960s (Becker, NIA1), the 1970s (NS374, NIA3, 75V19) and later (89V87, 00V72). All viruses were used at second passage in cell culture, except for the Becker strain, which had an unknown passage history. Older strains, Becker, NIA1 and/or NS374, showed lower numbers of primary infectious centers, lower capacity to form plaques and/or lower capacity to cross the basement membrane. The observed differences in virus-mucosa interactions may aid in understanding the virulence increase of PRV. The quantitative assay established here will be of use in unravelling the mechanism of alphaherpesvirus-mediated invasion through the basement membrane.
Collapse
Affiliation(s)
- Sarah Glorieux
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
16
|
Hussein ITM, Field HJ. Development of a quantitative real-time TaqMan PCR assay for testing the susceptibility of feline herpesvirus-1 to antiviral compounds. J Virol Methods 2008; 152:85-90. [PMID: 18597862 DOI: 10.1016/j.jviromet.2008.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/15/2008] [Accepted: 05/08/2008] [Indexed: 11/16/2022]
Abstract
Feline herpesvirus-1 (FHV-1) is considered as the most common viral infection of domestic cats worldwide. It causes a disease characterized by upper respiratory and ocular clinical signs. Several attempts are currently underway to develop antiviral chemotherapy for treating FHV-1 infections. The availability of a rapid quantitative method for detecting FHV-1 would greatly facilitate prompt therapy, and hence enhance the success of any antiviral regime. In this study, a TaqMan real-time PCR assay was established for measuring FHV-1 DNA levels in culture supernatants. This assay was shown to be highly specific, reproducible and allows quantitation over a range of 2 to 2 x 10(8) copies per reaction. The assay was then applied to measure the reduction of FHV-1 DNA levels in the presence of increasing concentrations of acyclovir (ACV), penciclovir (PCV) and cidofovir (CDV). The 50% inhibitory concentrations (IC(50s)) obtained with the B927 laboratory strain of FHV-1 were 15.8 microM for ACV, 7.93 microM for CDV and 1.2 microM for PCV. The assay described here is sensitive, time-saving and does not involve prior titration of virus stocks or monitoring virus-induced cytopathic effects. Therefore, it is suitable for routine anti-FHV-1 drug susceptibility testing in veterinary clinics.
Collapse
Affiliation(s)
- Islam T M Hussein
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | |
Collapse
|
17
|
Glorieux S, Van den Broeck W, van der Meulen KM, Van Reeth K, Favoreel HW, Nauwynck HJ. In vitro culture of porcine respiratory nasal mucosa explants for studying the interaction of porcine viruses with the respiratory tract. J Virol Methods 2007; 142:105-12. [PMID: 17324473 DOI: 10.1016/j.jviromet.2007.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 12/18/2006] [Accepted: 01/18/2007] [Indexed: 11/29/2022]
Abstract
The mucosal surface of the respiratory tract is a common site of entry of many viruses. Molecular and cellular aspects of the interactions of respiratory viruses with the respiratory nasal mucosa are largely unknown. In order to be able to study those interactions in depth, an in vitro model was set up. This model consists of porcine respiratory nasal mucosa explants, cultured at an air-liquid interface. Light microscopy, scanning electron microscopy and transmission electron microscopy, combined with morphometric analysis and a fluorescent Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labelling (TUNEL) staining were used to evaluate the effects of in vitro culture on the integrity and viability of the explants. The explants were maintained in culture for up to 60 h post-sampling without significant morphometric (epithelial thickness, epithelial morphology, thickness of the lamina reticularis, continuity of the lamina densa, relative amounts of collagen and nuclei) changes and changes in viability. The potential to infect the explants was demonstrated for two porcine respiratory viruses of major importance: suid herpesvirus 1 and swine influenza virus H1N1. In conclusion, this in vitro model represents an ideal tool to study interactions between infectious agents and porcine respiratory nasal mucosa.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Herpesvirus 1, Suid/pathogenicity
- Herpesvirus 1, Suid/physiology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H1N1 Subtype/physiology
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Models, Biological
- Nasal Mucosa/cytology
- Nasal Mucosa/ultrastructure
- Nasal Mucosa/virology
- Respiratory System/virology
- Swine
- Virus Replication
Collapse
Affiliation(s)
- Sarah Glorieux
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Hamano M, Maeda K, Kai K, Mochizuki M, Tohya Y, Akashi H. A novel genetic marker to differentiate feline herpesvirus type 1 field isolates. Vet Microbiol 2005; 106:195-200. [PMID: 15778025 DOI: 10.1016/j.vetmic.2004.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 11/12/2004] [Accepted: 12/24/2004] [Indexed: 11/28/2022]
Abstract
Five recent field isolates of feline herpesvirus type 1 (FHV-1) were compared by digestion with a restriction endonuclease, SalI or MluI. The SalI digestion showed a potentially useful difference in one isolate 00-035 that had an approximately 3.0 kbp fragment instead of a 2.6 kbp fragment in the other strains. After cloning the 3.0 and 2.6 kbp fragments, the nucleotide sequences were analyzed. The result showed that the 3.0 kbp fragment of 00-035 included a complete open reading frame of the herpes simplex virus 1 (HSV-1) homologue of the UL17 gene and a 5'-part of UL16 gene and that only one nucleotide substitution was found in the 5'-region of UL17 gene where the SalI site of the 2.6 kbp fragment locates. Based on these nucleotide sequences, two PCR primers were designed to amplify the region around the SalI site in the UL17 gene and the PCR was carried out using 78 field isolates from various parts of Japan. The SalI digestion of the PCR products revealed an interesting profile in that the genotype without the SalI site in UL17 gene was dominant in Tottori and Yamagata prefectures (69% and 75%, respectively) but minor in the other regions of Japan (0-10%). These results suggest that the SalI digestion method described in the present study can be used as a genetic marker to differentiate some FHV-1 field isolates and this is the first report that showed different distributions of FHV-1 genotypes using the novel genetic marker.
Collapse
Affiliation(s)
- Masataka Hamano
- Department of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Hamano M, Maeda K, Mizukoshi F, Mochizuki M, Tohya Y, Akashi H, Kai K. Genetic rearrangements in the gC gene of the feline herpesvirus type 1. Virus Genes 2004; 28:55-60. [PMID: 14739651 DOI: 10.1023/b:viru.0000012263.87632.1d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the field isolate, 91-58, of feline herpesvirus type 1 (FHV-1), one of the major immunogenic proteins was found to have different molecular masses of 75 and 130 kDa from those in the other field isolates (Maeda et al., J Vet Med Sci 57, 147-150, 1995). Immunoblot analysis using monoclonal antibodies (MAbs) indicated that the protein is glycoprotein C (gC). The gC gene of 91-58 was amplified by polymerase chain reaction (PCR) and shown to have an inserted fragment of approximately 160 base pairs (bp). Restriction endonuclease analysis of the PCR product with various restriction enzymes was carried out, indicating that the insertion located within 262 bp between Eco RV and DraI sites. Nucleotide sequence analysis indicated that the inserted fragment was 156 bp encoding 52 amino acids and composed repeat sequences. Next, five recent isolates were also examined by immunoblot analysis using anti-FHV-1 cat serum or MAbs. The result showed that one isolate, 98-064, also had the gC with different molecular weights. PCR and nucleotide sequence analyses indicated that 98-064 had an inserted sequence of 78 bp at the corresponding region identified in the gC gene of 91-58, although the inserted sequence was different from that of 91-58. These results indicated that some of FHV-1 isolates had the genetic rearrangements in the gC gene and detection of such mutations would be useful for differentiation among FHV-1 field isolates.
Collapse
Affiliation(s)
- Masataka Hamano
- Department of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Hamano M, Maeda K, Mizukoshi F, Une Y, Mochizuki M, Tohya Y, Akashi H, Kai K. Experimental infection of recent field isolates of feline herpesvirus type 1. J Vet Med Sci 2003; 65:939-43. [PMID: 12951431 DOI: 10.1292/jvms.65.939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two field isolates of feline herpesvirus type 1 (FHV-1) designated as 00-015 and 00-035, were obtained from cats diagnosed as feline viral rhinotracheitis (FVR) in Japan. To analyze the character of recent FHV-1, these two isolates and our laboratory strain C7301 were inoculated experimentally to specific-pathogen-free cats. Although all cats showed typical FVR symptoms, more severe clinical symptoms were observed on cats infected with the isolates 00-015 and 00-035 compared with those of C7301-infected cats. Severe ocular lesions including conjunctivitis were found in the cats infected with the isolates, indicating that the recent FHV-1 has a potential to induce severe FVR symptoms including ocular lesions.
Collapse
Affiliation(s)
- Masataka Hamano
- Faculty of Agriculture, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | | | | | | | | | | | | | | |
Collapse
|