1
|
Koleva M, Mollova-Kyosebekirova A, Dikov D. Evidence of Programmed Death-Ligand 1 Expression in a Highly Inflammatory Prostate: A Literature Review and Our Experience. Cureus 2024; 16:e67726. [PMID: 39318940 PMCID: PMC11421409 DOI: 10.7759/cureus.67726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/26/2024] Open
Abstract
Chronic inflammation (CI), a common finding in the human prostate, is associated with the most frequent socially important prostate diseases: prostatitis, benign prostatic hyperplasia, and prostate adenocarcinoma. Programmed cell death protein 1 (PD-1) and its ligand (PD-L1) expression are induced on the surface of immune and epithelial cells of healthy and tumor tissues in response to various cytokines. Here, we provide a comprehensive review of the PD-1/PD-L1 pathway in the non- and peri-tumoral inflammatory prostate, focusing on the structure and expression of PD-L1 and the diverse biological functions of PD-L1 signaling in health, high-grade CI (National Institutes of Health, category IV prostatitis or histologic prostatitis), and immune-related diseases, including autoimmunity, tumor microenvironmental immunity, and immune privilege. This review explores the possible pathophysiological interpretations of clearly visible, selective, and strong PD-L1 expression in the immuno-inflammatory-induced and related, histologically distinct sites of this expression: the ductal lymphoepithelial lesions and prostatic granulomas.
Collapse
Affiliation(s)
- Maria Koleva
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv, BGR
| | | | - Dorian Dikov
- Department of Pathology, Jossigny Hospital, Jossigny, FRA
| |
Collapse
|
2
|
Mantani Y, Sakata N, Kubota N, Shimada A, Nakanishi S, Yokoyama T, Hoshi N. Diurnal changes in bacterial settlement on the Peyer's patch and surrounding mucosa in the rat ileum and its effect against the intestinal immune system. Cell Tissue Res 2023:10.1007/s00441-023-03772-8. [PMID: 37148397 DOI: 10.1007/s00441-023-03772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Our previous study revealed the diurnal change in the indigenous bacteria settling on the terminal region of the rat ileum. In the present study, we investigated the diurnal change in indigenous bacteria on the most distal ileal Peyer's patch (PP) and surrounding ileal mucosa and explored how stimulation from indigenous bacteria for a day affects the intestinal immune system at the beginning of the light phase. Histological measurement revealed that bacteria adjacent to the follicle-associated epithelium of PP and to the villous epithelium of the surrounding ileal mucosa are more abundant at zeitgeber time (ZT)0 and ZT18 than at ZT12. On the other hand, tissue-section 16S rRNA amplicon sequencing revealed no significant difference between ZT0 and ZT12 in the bacterial composition on the ileal tissue including the PP. One-day treatment with an antibiotic (Abx) successfully impaired the settlement of bacteria around the ileal PP. In transcriptome analysis, 1-day Abx treatment led to the downregulation of several chemokines in both PP and ordinary ileal mucosa at ZT0. Histological analysis of the 1-day Abx group revealed decreases in both CD68+ macrophages in PP and naphthol AS-D chloroacetate esterase stain-positive mast cells in the ileal villi. Together, these findings suggest that the colonies of indigenous bacteria on the distal ileal PP and surrounding mucosa expand during the dark phase, which might lead to the expression of genes to regulate the intestinal immune system and contribute to the homeostasis of at least macrophages in PP and mast cells in the ileal mucosa.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Nanami Sakata
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Asaka Shimada
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
3
|
Yuasa H, Mantani Y, Masuda N, Nishida M, Arai M, Yokoyama T, Tsuruta H, Kawano J, Hoshi N, Kitagawa H. Mechanism of M-cell differentiation accelerated by proliferation of indigenous bacteria in rat Peyer's patches. J Vet Med Sci 2017; 79:1826-1835. [PMID: 28993550 PMCID: PMC5709560 DOI: 10.1292/jvms.17-0470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanism by which indigenous bacteria on the follicle-associated epithelium (FAE) of lymphatic follicles (LFs) accelerate the differentiation of microvillous columnar epithelial cells (MV) into M-cells was
immunohistochemically investigated in rat Peyer’s patches. The results showed that the number of Toll-like receptor (TLR) -4+ M-cells was greater in the FAE with expansion of bacterial colonies (LFs with bacterial
colonies on the FAE: b-LF) than the FAE without expansion of bacterial colonies (nb-LF). TLR-4 was also expressed in the striated borders of MV upstream next to M-cells in the FAE of the b-LF. TLR-4+ vesicles were
frequently detected in the cytoplasms of MV with TLR-4+ striated borders upstream next to TLR-4+ M-cells in the FAE of b-LF. These findings suggest that TLR-4+ MV take up TLR-4 ligands and
differentiate into M-cells in the b-LF. Neither the distribution of RANK nor that of RANKL was coincident with that of M-cells in the b-LF. Moreover, RANK, but not RANKL, was expressed in intestinal villi, whereas cleaved
caspase-3 was immunonegative in the MV and M-cells of the FAE, unlike in villous epithelial cells. Therefore, RANK/RANKL signaling in the LF might contribute to the down-regulation of epithelial apoptosis to facilitate the
differentiation of MV into M-cells in rat Peyer’s patches.
Collapse
Affiliation(s)
- Hideto Yuasa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Natsumi Masuda
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Miho Nishida
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaya Arai
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroki Tsuruta
- Center for Collaborative Research and Technology Development, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Junichi Kawano
- Laboratory of Microbiology and Immunology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
4
|
Yuasa H, Mantani Y, Masuda N, Nishida M, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Differential expression of Toll-like receptor-2, -4 and -9 in follicle-associated epithelium from epithelia of both follicle-associated intestinal villi and ordinary intestinal villi in rat Peyer's patches. J Vet Med Sci 2016; 78:1797-1804. [PMID: 27593683 PMCID: PMC5240757 DOI: 10.1292/jvms.16-0349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The expressions of Toll-like receptor (TLR) -2, -4 and -9 were immunohistochemically
investigated in the follicle-associated epithelium (FAE), and epithelia of the
follicle-associated intestinal villus (FAIV) and ordinary intestinal villus (IV) in rat
Peyer’s patch regions with no bacterial colonies on the mucous membranes. TLR-2 was
expressed in the striated borders of microvillous columnar epithelial cells (MV) in both
FAIV and IV except in the apices. However, TLR-2 expression in the striated borders was
weaker in the epithelium of the follicular side of FAIV (f-FAIV) than in epithelia of IV
and the anti-follicular side of FAIV. TLR-4 and -9 were not expressed in the FAIV and IV.
In the FAE, TLR-2, -4 and -9 were not expressed in the striated borders of MV, but the
roofs of some typical M-cells were immunopositive for all TLRs. Especially, no
TLR-positive MV were found at the FAE sites where M-cells appeared most frequently. In the
follicle-associated intestinal crypt (FAIC), immunopositivity for all TLRs was observed in
the striated borders of MV and the luminal substances. In conclusion, the lower levels of
TLR-2 in both FAE and the epithelium of f-FAIV probably reduce recognition of indigenous
bacteria. TLR-2, -4 and -9 appear not to participate directly in differentiation of MV
into M-cells, because TLRs were not expressed in any MV in the upstream region of M-cells
in FAE with no settlement of indigenous bacteria in the rat Peyer’s patches.
Collapse
Affiliation(s)
- Hideto Yuasa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mantani Y, Yuasa H, Nishida M, Takahara EI, Omotehara T, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Peculiar composition of epithelial cells in follicle-associated intestinal crypts of Peyer's patches in the rat small intestine. J Vet Med Sci 2014; 76:833-8. [PMID: 24572630 PMCID: PMC4108766 DOI: 10.1292/jvms.14-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The epithelial cell
composition was investigated in the follicle-associated intestinal crypt (FAIC) of rat
Peyer’s patches. The epithelium of the FAIC mainly consisted of columnar epithelial cells,
goblet cells and Paneth cells. The characteristics of secretory granules in Paneth cells
and goblet cells of both the FAIC and ordinary intestinal crypts (IC) were almost the same
in periodic acid-Schiff (PAS) reaction, Alcian blue (AB) staining and the
immunohistochemical detection of lysozymes and soluble phospholipase A2. Both goblet cells
and Paneth cells were markedly less frequent on the follicular sides than on the
anti-follicular sides of the FAIC. Goblet cells were also markedly less frequent in the
follicle-associated epithelium (FAE) than in the ordinary intestinal villi (IV).
Indigenous bacteria were more frequently adhered to FAE than to follicle-associated
intestinal villi or IV. These findings suggest that the host defense against indigenous
bacteria is inhibited on the follicular sides of FAIC, which might contribute to the
preferential settlement of indigenous bacteria on the FAE; they also suggest that
differentiation into secretory cells is inhibited in the epithelium of the follicular
sides of FAIC, so that differentiation into M cells might be admitted in the FAE of rat
Peyer’s patches. Furthermore, intermediate cells possessing characteristics of both Paneth
cells and goblet cells were rarely found in the FAIC, but not in the IC. This finding
suggests that the manner of differentiation into Paneth cells in the FAIC differs from
that in the IC.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yamamoto K, Qi WM, Yokoo Y, Miyata H, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Lectin histochemical detection of special sugars on the mucosal surfaces of the rat alimentary tract. J Vet Med Sci 2010; 72:1119-27. [PMID: 20379083 DOI: 10.1292/jvms.10-0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfaces of the most luminal positions of mucosae are fundamental settlement sites of indigenous bacteria throughout the rat alimentary tract. In these positions, also epithelial cell-shedding sites, the special sugar expression in the glycocalyx is very important as it provides possible ligands of bacterial lectins for attachment to epithelial cells. Therefore, the sugar expression in glycocalyx of epithelial cells was lectin-histochemically surveyed using 21 lectins throughout the rat alimentary tract. From the tongue to the nonglandular part of the stomach, α-D-Man, α-D-Glc and α-D-GalNAc were detected on the surface of the keratinized stratified squamous epithelium. In the glandular part of the stomach, α-D-Man, β-D-Gal-4GlcNAc, D-Gal, D-GalNAc, D-GlcNAc, α-L-Fuc- α-D-Gal-β(1-4)GlcNAc and bisected triantennary N-glycans were detected on the surface of gastric superficial epithelial cells. From the duodenum to the ileum, (GlcNAc)(2-4) was expressed exclusively on the epithelial cells in the apical portions of the intestinal villi. From the cecum to the rectum, α-D-Man, β-D-Gal-4GlcNAc, D-Gal, D-GalNAc, α-D-Gal(1-3)D-GalNAc, (GalNAc)(n) and NeuNAc were expressed on the intestinal superficial epithelial cells. These results suggest that special sugars are expressed on the most luminal portions of mucosae as exclusive epithelial cell-shedding sites, and that sugar expression differs among the various segments of the alimentary tract. These site differences might reflect differences in resident bacterial species in the rat alimentary tract.
Collapse
Affiliation(s)
- Kenkichi Yamamoto
- Department of Bioresource and Agrobiosciences Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Qi WM, Yamamoto K, Yokoo Y, Miyata H, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the relationship between cellular kinetics of epithelial cells and proliferation of indigenous bacteria in the rat colon. J Vet Med Sci 2009; 71:745-52. [PMID: 19578282 DOI: 10.1292/jvms.71.745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to clarify the regulatory effects of epithelial kinetics on indigenous bacterial proliferation in the large intestine. The lifespan, migration speed and proliferation rate of crypt epithelial cells in the initial 20% of the colon (proximal colon) and the 50% of the colon (middle colon) in bromodeoxyuridine-administrated rats were histoplanimetrically and chronologically compared. The proximal colon possessed well-developed mucosal folds and a large amount of indigenous bacteria which filled the crypt lumen, whereas no folds or bacteria were found to occupy the crypt lumen in the middle colon. The cell lifespans were 32.2, 42.5 and 33.6 hr in the apical and the basal parts of the mucosal folds of the proximal colon, and in the middle colon, respectively. The migration speeds were 4.2, 2.1 and 3.3 microm/hr, respectively, while the appearance frequencies of proliferating cell nuclear antigen (PCNA)-positive crypt epithelial cells were 35.0, 24.6 and 33.8%. These findings suggest that the lifespan was shortened and the migration speed increased in the most luminal mucosa of colon, contributing to the elimination of the adhered bacteria from the most luminal mucosa. By contrast, the elongation of the lifespan and deceleration of the migration of epithelial cells in the basal parts of the mucosal folds might contribute to reliable settlement of indigenous bacteria, resulting in the maintenance of a large amount of indigenous bacteria in the lumen of the proximal colon.
Collapse
Affiliation(s)
- Wang-Mei Qi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamamoto K, Qi WM, Yokoo Y, Miyata H, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the spatial relationship of distribution of indigenous bacteria with mucosal lymphatic follicles in alimentary tract of rat. J Vet Med Sci 2009; 71:621-30. [PMID: 19498289 DOI: 10.1292/jvms.71.621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial relationship between the distribution of indigenous bacteria (IB) and the situation of mucosal lymphatic follicles (LF) is histoplanimetrically studied in the rat alimentary tract. From the oral cavity to the nonglandular part of the stomach, IB adhered to the corneal layer of the most luminal mucosa. In the glandular part of the stomach, IB adhered only to the most luminal mucosa but not in the gastric pits. In the small intestine, IB consistently adhered around the apices of both intestinal villi and the domes, and their amounts decreased toward their basal portions. No IB entered the intestinal crypts. In the large intestine, IB consistently adhered to the most luminal mucosa. Numerous IB were suspended in the intestinal crypts of both the cecum and the proximal colon, whereas there were no IB in the crypts of the distal colon and the rectum. When IB spread over the basal portions of the intestinal villi, IB with the same morphology were detected on the neighboring LF, whereas no bacteria were detected on the neighboring LF, when IB were located in the apical to middle portions of the intestinal villi. This close relationship between the distribution of IB and mucosal LF was also observed in the large intestine. These results suggest that the most luminal mucosae are a fundamental settlement site of IB throughout the alimentary tract and that the hyperproliferation of IB's colonies might be detected by neighboring LF in the rat intestine.
Collapse
Affiliation(s)
- Kenkichi Yamamoto
- Department of Bioresource and Agrobiosciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Qi WM, Yamamoto K, Yokoo Y, Miyata H, Inamoto T, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the relationship between the cell kinetics of villous columnar epithelial cells and the proliferation of indigenous bacteria in rat small intestine. J Vet Med Sci 2009; 71:463-70. [PMID: 19420850 DOI: 10.1292/jvms.71.463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between the kinetics of villous columnar epithelial cells and the expansion of colonies of indigenous bacteria from the narrow apical portions of intestinal villi was immunohistochemically and histoplanimetrically investigated in the small intestine of bromodeoxyuridine administred Wistar rats. As a result, the lifespan of villous columnar epithelial cells was slightly shorter in the distal ileum than in other portions of small intestine, accompanying the minimum height of the intestinal villi of the distal ileum in the small intestine. The migration speed of villous columnar epithelial cells was significantly decreased toward the distal small intestine. The migration speed in the distal ileum was about one-fourth of that in the duodenum. The migration speed of the villous columnar epithelial cells was greater and their lifespans were shorter in the sites with wide expansion of the indigenous bacterial colony from the narrow apical portions of the intestinal villi than that in sites with no or less expansion. Additionally, the expansion of the indigenous bacterial colony from narrow villous apices also immediately shortened the heights of the intestinal villi. These findings suggest that the migration speed of villous columnar epithelial cells might contribute to the regulation of the settlement of bacteria at the villous apices and the inevitable proliferation of indigenous bacteria at the intervillous spaces in the rat small intestine.
Collapse
Affiliation(s)
- Wang-Mei Qi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Inamoto T, Namba M, Qi WM, Yamamoto K, Yokoo Y, Miyata H, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. An immunohistochemical detection of actin and myosin in the indigenous bacteria-adhering sites of microvillous columnar epithelial cells in Peyer's patches and intestinal villi in the rat jejunoileum. J Vet Med Sci 2008; 70:1153-8. [PMID: 19057131 DOI: 10.1292/jvms.70.1153] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of physical elimination of indigenous bacteria was ultrastructurally and immunohistochemically investigated in microvillous columnar epithelial cells of Peyer's patches and intestinal villi of the rat jejunoileum. From ultrastructural observation, the microfilaments accumulated to form several electron-dense layers beneath the bacteria adhering to the cell membrane, which was slightly invaginated in the epithelial cells of Peyer's patches and intestinal villi. As the microfilamentous layers were forming, the end portions of invaginations were deformed into a cone-shape and were finally collapsed. At the same time, the end portions of the adhered bacteria were also deformed into cone-shapes. The bacterial cells were moved back toward the invagination orifices with no morphological change in their inner structure. From immunohistochemical observation, beta-actin and nonmuscle-type myosin were detected at the thin layer just beneath the invaginated cell membrane. These findings suggest that indigenous bacteria which adhere to epithelial cells are removed by only a physical action of actin and myosin filaments, but are not killed. This bacterial cell removal system might lead to the establishment of a settlement of indigenous bacteria on host cells.
Collapse
Affiliation(s)
- Tetsurou Inamoto
- Department of Bioresource and Agrobiosciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Inamoto T, Kawata Y, Qi WM, Yamamoto K, Warita K, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Ultrastructural study on the epithelial responses against attachment of indigenous bacteria to epithelial membranes in peyer's patches of rat small intestine. J Vet Med Sci 2008; 70:235-41. [PMID: 18388422 DOI: 10.1292/jvms.70.235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ultrastructure of epithelial responses against the membrane adhesion of indigenous bacteria was investigated in the follicle-associated epithelium (FAE) of rat small intestine. The most frequent adherence of the various morphological types of bacteria to the epithelial membranes was found at the apex of the FAE. The attachment sites were deeply invaginated, and their bottoms were deformed into a sharp cone shape. Four layers with different electron densities were formed just beneath the apical membranes by microfilaments which surrounded the invaginations. The electron density of each layer was gradually decreased as being apart from the invaginations. The extremities of some bacteria in the invaginations were deformed into sharpened shapes. The cell walls of the extremities of the bacteria were occasionally dissolved in the invaginations, and their cytoplasms were slightly swollen with low electron densities. In some invaginations, the attached bacteria were eliminated to leave their fragments such as filamentous debris and a part of cell walls. Finally these remnants disappeared completely. When the bacterial colonies existed in the middle region of the FAE, the attachment of bacteria resulted in the engulfment of bacteria by M cells. The degenerated bacteria whose cytoplasmic matrices were separated into high electron dense materials and cleared materials were occasionally engulfed by ordinary microvillous columnar epithelial cells or goblet cells throughout the FAE. These findings suggest that the epithelial cells reject the attachment of live indigenous bacteria and that the M cells absorb indigenous bacteria in rat Peyer's patches.
Collapse
Affiliation(s)
- Tetsurou Inamoto
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Onishi S, Miyata H, Inamoto T, Qi WM, Yamamoto K, Yokoyama T, Warita K, Hoshi N, Kitagawa H. Immunohistochemical study on the delayed progression of epithelial apoptosis in follicle-associated epithelium of rat Peyer's patch. J Vet Med Sci 2008; 69:1123-9. [PMID: 18057826 DOI: 10.1292/jvms.69.1123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well known that some caspases in apoptosis is involved in determinant of terminal differentiation and maturation of various cells. Our previous study ultrastructurally clarified the differentiation into M cells from immature microvillous epithelial cells and the redifferentiation from M cells to microvillous epithelial cells in the follicle-associated epithelium (FAE) of rat Peyer's patch. In this study, the difference of epithelial apoptosis between the FAE of Peyer's patch and intestinal villi was immunohistochemically investigated in rat jejunoileum. As a result, cleaved caspase-3 was limited to several epithelial cells at the tip of FAE, whereas almost all of the epithelial cells were cleaved caspase-3 positive in intestinal villi. Cleaved caspase-9 was detected only in a few exfoliating or exfoliated epithelial cells of both FAE and intestinal villi. Nuclear DNA-fragmentation was detected only in several epithelial cells of the tip of FAE, while it was expressed from the middle regions in the intestinal villi. The DNase I expression of the epithelial cytoplasm was much weaker in FAE than in intestinal villi. Bcl-x expression was restricted in the apical cytoplasms of epithelial cells in the FAE, whereas it was restricted in whole cytoplasms in villous epithelial cells. These findings suggest that the progression of the apoptotic process in the epithelial cells of FAE is later than in the intestinal villi, so that the possibility of epithelial differentiation might be remained in the FAE, unlike in the intestinal villi.
Collapse
Affiliation(s)
- Sachiko Onishi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chin K, Onishi S, Yuji M, Inamoto T, Qi WM, Yamamoto K, Warita K, Yokoyama T, Hoshi N, Kitagawa H. Special sugar expression on apoptotic epithelial cells of Peyer's patches and intestinal villi in rat small intestine. J Vet Med Sci 2007; 69:193-9. [PMID: 17339765 DOI: 10.1292/jvms.69.193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous study clarified that the apical regions of both the follicle-associated epithelium (FAE) of Peyer's patches and the intestinal villi are the only adhesion sites of indigenous bacteria in rat jejuno-ileum. To survey the ligands against bacterial lectins, sugar expression patterns on epithelial cells were lectin-histochemically investigated using 21 lectins in the jejuno-ileal Peyer's patches of rats. As a result, (D-glcNAc)(2-4), detected by Solanum tuberosum (STL) and by Lycopersicon esculentum (LEL), and beta-D-gal(1-3)-D-galNAc detected by Peanut agglutinin (PNA), were strongly expressed on the brush borders of the apical regions of the FAE and the intestinal villi. On the other hand, neither sugar was expressed on the brush borders of the basal regions of both FAE and intestinal villi. The positive intensities for the lectins correlated with the progression of epithelial apoptosis in the FAE and in the intestinal villi. Moreover, the double staining with lectin histochemical method and the in situ nick end-labeling method could simultaneously detect the strong expression of both sugars and nuclear DNA fragmentation in epithelial cells at the late apoptotic stage. Other sugar expression patterns in the intestinal villi were similar with those in the FAE. There were no lectins specific for M cells in the FAE. From these findings, the possible sugars of ligands against some indigenous bacterial lectins, expressing specially on the apoptotic epithelial cells, might be narrowed down in rat jejuno-ileum.
Collapse
Affiliation(s)
- Keigi Chin
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yuji M, Fujimoto M, Miyata H, Inamoto T, Qi WM, Yamamoto K, Warita K, Yokoyama T, Hoshi N, Kitagawa H. Persorption Mechanisms of Luminal Antigenic Particulates via Apoptotic Epithelial Cells of Intestinal Villi into Systemic Blood Circulation in Orally Immunized Rats. J Vet Med Sci 2007; 69:339-46. [PMID: 17485920 DOI: 10.1292/jvms.69.339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The possibility of persorption of prefixed bovine serum albumin-coated sheep erythrocytes (BSA-SEs) from mucous epithelial cells and its mechanisms were investigated in rats orally immunized by BSA for 14 consecutive days. On the day after the final oral immunization, the rats were duodenally perfused by BSA-SEs or non-coated SEs. BSA-SEs were also duodenally perfused in non-immunized rats. Thirty min after perfusion, BSA-SEs were significantly more engulfed by late-apoptotic-stage villous columnar epithelial cells in the orally immunized rats than those in other experiments. The specific antibody (SpAb) was detected on the surfaces of BSA-SEs in rats with oral immunization. In Peyer's patches of all animals, no SEs reached the follicle-associated epithelium, because of the close attachment of follicle-associated intestinal villi and the thick mucous layer. BSA-SEs were more frequently persorbed into portal blood in the orally immunized rats than in other rats. Small numbers of BSA-SEs or SEs were detected in the systemic blood of all animals. BSA-SEs were also histologically found in the blood vessels of the liver, but not in mesenteric lymph nodes. These findings suggest that sensitized antigenic particulates are taken up by late-apoptotic-stage villous columnar epithelial cells in the small intestine and are finally persorbed into the systemic blood circulation. The uptake of antigenic particulates might be mediated by its luminal SpAb.
Collapse
Affiliation(s)
- Midori Yuji
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Onishi S, Yokoyama T, Chin K, Yuji M, Inamoto T, Qi WM, Warita K, Hoshi N, Kitagawa H. Ultrastructural Study on the Differentiation and the Fate of M cells in Follicle-Associated Epithelium of Rat Peyer's Patch. J Vet Med Sci 2007; 69:501-8. [PMID: 17551223 DOI: 10.1292/jvms.69.501] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The differentiation process of immature microvillous epithelial cells to M cells and the fate of M cells in the follicle-associated epithelium (FAE) of the mucosa-associated lymphoid tissues are still unclear. In this study, the differentiation process and the fate of M cells were clarified in rat Peyer's patches under a transmission electron microscope. Almost all immature epithelial cells were found to possess long, slender microvilli, which gradually shortened, thickened and dispersed as the immature epithelial cells migrated away from the crypt orifices. These morphological changes started in the centers and moved to the peripheries of the apical surfaces of epithelial cells, accompanied by the protrusion of apical cytoplasm out of the terminal web. During these changes, the bundles of microfilaments of microvilli never shortened, and both small vesicles in the apical cytoplasm and tiny invaginations of the apical membranes were found. The intraepithelial migrating cells gradually accumulated to form typical intraepithelial pockets. In all FAE, there was no morphological sign of cell death in M cells. The rearrangement of microfilament bundles, the reconstruction of microvilli and the disappearance of pockets resulted in the transformation of M cells into microvillous epithelial cells. These serial ultrastructural changes suggest that M cells are a temporal and transitional cell type caused by the active engulfment of luminal substances and that when the engulfment ceases, the M cells transform into mature microvillous epithelial cells.
Collapse
Affiliation(s)
- Sachiko Onishi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|