1
|
Cai Y, Liu S, Ge X, Cheng L, Zhang X. Inhibitory effect of tea flower polysaccharides on oxidative stress and microglial oxidative damage in aging mice by regulating gut microbiota. Food Funct 2024; 15:11444-11457. [PMID: 39479919 DOI: 10.1039/d4fo03484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Tea flower polysaccharides (TFPS) have prominent anti-aging effect. In this study, we used an animal model of aging induced by D-galactose in mice to investigate the effect of TFPS on reducing inflammatory factors, lowering oxidative stress levels, and inhibiting oxidative damage to microglia from the perspective of regulating gut microbiota. The results showed that TFPS could improve the homeostasis of gut microbiota in aging mice, reduce the ratio of Firmicutes to Bacteroidota, and significantly increase the abundance of Lactobacillus. At the same time, TFPS reduced the excessive activation of hippocampal microglia in aging mice, significantly down-regulated the levels of pro-inflammatory factors IL-6, IL-1β, TNF-α, and nuclear transcription factor NF-κB, increased the activity of antioxidant enzymes SOD, CAT, and POD, and reduced the content of MDA. Our research results indicate that TFPS can improve the disorder of gut microbiota, alleviate oxidative damage to glial cells, alleviate neuroinflammation, and play a role in delaying aging.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Siyu Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Xing Ge
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
2
|
Pușcașu C, Negreș S, Zbârcea CE, Chiriță C. Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research. Life (Basel) 2024; 14:1500. [PMID: 39598298 PMCID: PMC11595627 DOI: 10.3390/life14111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Vincristine, a vinca alkaloid, is used in chemotherapy protocols for cancers such as acute leukemia, Hodgkin's disease, neuroblastoma, cervical carcinoma, lymphomas, breast cancer, and melanoma. Among the common adverse effects of vincristine is peripheral neuropathy, with most patients receiving a cumulative dose over 4 mg/m2 who develop varying degrees of sensory neuropathy. The onset of vincristine-induced peripheral neuropathy can greatly affect patients' quality of life, often requiring dose adjustments or the discontinuation of treatment. Moreover, managing vincristine-induced peripheral neuropathy is challenging, with few effective therapeutic strategies available. In the past decade, preclinical studies have explored diverse substances aimed at preventing or alleviating VIPN. Our review consolidates these findings, focusing on the analgesic efficacy and potential mechanisms of various agents, including pharmaceutical drugs, natural compounds, and antioxidants, that show promise in reducing neuropathic pain and protecting neural integrity in preclinical models. Key novel therapeutic options, such as metabolic agents (liraglutide), enzyme inhibitors (ulinastatin), antipsychotics (aripiprazole), interleukin-1 receptor antagonists (anakinra), hormones (oxytocin), and antioxidants (thioctic acid), are highlighted for their neuroprotective, anti-inflammatory, and antioxidant effects. Through this synthesis, we aim to enhance the current understanding of VIPN management by identifying pharmacological strategies that target critical molecular pathways, laying the groundwork for future clinical studies. By clarifying these novel pharmacological approaches and elucidating their mechanisms of action, this review provides a foundation for developing more effective VIPN treatment strategies to ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Cristina Elena Zbârcea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (C.C.)
| | | |
Collapse
|
3
|
WANG L, FENG J, ZHAN D, WANG J, ZHOU D. Protective effects of tanshinone ⅡA on sepsis-induced multiple organ dysfunction: a literature review. J TRADIT CHIN MED 2023; 43:1040-1046. [PMID: 37679993 PMCID: PMC10465841 DOI: 10.19852/j.cnki.jtcm.20230727.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 09/09/2023]
Abstract
TanshinoneⅡA (TanⅡA) is a noteworthy lipophilic diterpene compound derived from the dried roots of the Traditional Chinese Medicine Danshen () that has various pharmacological properties, including anti-inflammatory, antibacterial, and antioxidative effects. Sepsis is a life-threatening organ dysfunction induced by a dysregulated host response to infection. Recently, increasing attention has been paid to sepsis-induced dysfunction of the intestine, car-diovascular system, lungs, kidneys, liver, and other organs. Experimental studies have shown that TanⅡA has therapeutic potential for sepsis-induced organ dysfunction owing to its anti-inflammatory, anti-apoptotic and regulatory effects on multiple signalling pathways. The purpose of this article is to evaluate the potential multiorgan protective effects of TanⅡA in sepsis.
Collapse
Affiliation(s)
- Lili WANG
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ju FENG
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Daqian ZHAN
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junshuai WANG
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Daixing ZHOU
- Emergency Department and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Orso R, Creutzberg KC, Lumertz FS, Kestering-Ferreira E, Stocchero BA, Perrone MK, Begni V, Grassi-Oliveira R, Riva MA, Viola TW. A systematic review and multilevel meta-analysis of the prenatal and early life stress effects on rodent microglia, astrocyte, and oligodendrocyte density and morphology. Neurosci Biobehav Rev 2023; 150:105202. [PMID: 37116770 DOI: 10.1016/j.neubiorev.2023.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Exposure to stress during early development may lead to altered neurobiological functions, thus increasing the risk for psychiatric illnesses later in life. One potential mechanism associated with those outcomes is the disruption of glial density and morphology, despite results from rodent studies have been conflicting. To address that we performed a systematic review and meta-analysis of rodent studies that investigated the effects of prenatal stress (PNS) and early life stress (ELS) on microglia, astrocyte, and oligodendrocyte density and morphology within the offspring. Our meta-analysis demonstrates that animals exposed to PNS or ELS showed significant increase in microglia density, as well as decreased oligodendrocyte density. Moreover, ELS exposure induced an increase in microglia soma size. However, we were unable to identify significant effects on astrocytes. Meta-regression indicated that experimental stress protocol, sex, age, and type of tissue analyzed are important covariates that impact those results. Importantly, PNS microglia showed higher estimates in young animals, while the ELS effects were stronger in adult animals. This set of data reinforces that alterations in glial cells could play a role in stress-induced dysfunctions throughout development.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Francisco Sindermann Lumertz
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Erika Kestering-Ferreira
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Bruna Alvim Stocchero
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Mariana Kude Perrone
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Aarhus University - Entrance A, Palle Juul-Jenses Blvd. 11, 6(th) floor, 8200 - Aarhus (Denmark).
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy); Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli - Via Pilastroni 4, 25125- Brescia (Italy).
| | - Thiago Wendt Viola
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| |
Collapse
|
5
|
Comprehensive Analysis Identified Glycosyltransferase Signature to Predict Glioma Prognosis and TAM Phenotype. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6082635. [PMID: 36685667 PMCID: PMC9859707 DOI: 10.1155/2023/6082635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 01/15/2023]
Abstract
Glycosylation is the most common posttranslational modification of proteins. Glycosyltransferase gene differential expression dictates the glycosylation model and is epigenetically regulating glioma progression and immunity. This study is aimed at identifying the glycosyltransferase gene signature to predict the prognosis and immune characteristics of glioma. The glycosyltransferase gene signature of glioma was identified in the TCGA database and validated in the CGGA database. Glioma patients were then divided into high- and low-risk groups based on risk scores to compare survival differences and predictive capacity. Subsequently, validation of glycosyltransferase gene signature merits by comparing with other signatures and utility in clinical judgment. The immune cell infiltration, immune pathways, and immune checkpoint expression level were also analyzed and compared in the high- and low-risk groups. Finally, the signature and its gene function were tested in our cohort and in vitro experiments. Eight glycosyltransferase genes were identified to establish the glycosyltransferase signature to predict the prognosis of glioma patients. The survival time was shorter in the high-risk group compared to the low-risk group based on glycosyltransferase signature and was confirmed in an independent external cohort. The glycosyltransferase signature displayed outstanding predictive capacity than other signatures in the TCGA and CGGA database cohorts. Furthermore, patients in the high-risk group were positively correlated with TAM infiltration, immune checkpoint expression level, and protumor immune pathways in TCGA cohorts. Validation of clinical tissue specimens revealed that the high-risk group was closely associated with infiltration of M2 TAMs. High-risk genes in the signature promote glioma proliferation, invasion, and macrophage recruitment in an in vitro validation of U87 and U251 cell lines. This carefully constructed that glycosyltransferase signature can predict the prognosis and immune profile of gliomas and help us evaluate subsequent macrophage-targeted therapies as well as other immune microenvironment modulation therapeutic strategies.
Collapse
|
6
|
Hwang JW, Myeong SH, Lee NH, Kim H, Son HJ, Chang JW, Lee NK, Na DL. Immunosuppressant Drugs Mitigate Immune Responses Generated by Human Mesenchymal Stem Cells Transplanted into the Mouse Parenchyma. Cell Transplant 2021; 30:9636897211019025. [PMID: 34044601 PMCID: PMC8168027 DOI: 10.1177/09636897211019025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has been widely accepted that mesenchymal stem cells (MSCs) can evade the immune surveillance of the recipient. However, emerging research cast doubt on whether MSCs are intrinsically immune-privileged. Previously, we observed that the transplantation of human MSCs (hMSCs) into the mouse parenchyma attracted a high infiltration of leukocytes into the injection tract. Thus, in order to reduce the immune responses generated by hMSCs, the aim of this study was to assess which immunosuppressant condition (dexamethasone only, tacrolimus only, or dexamethasone and tacrolimus together) would not only reduce the overall immune response but also enhance the persistence of MSCs engrafted into the caudate putamen of wild-type C57BL/6 mice. According to immunohistochemical analysis, compared to the hMSC only group, the administration of immunosuppressants (for all three conditions) reduced the infiltration of CD45-positive leukocytes and neutrophils at the site of injection. The highest hMSC persistence was detected from the group that received combinatorial administrations of dexamethasone and tacrolimus. Moreover, compared to the immunocompetent WT mouse, higher MSC engraftment was observed from the immunodeficient BALB/c mice. The results of this study support the use of immunosuppressants to tackle MSC-mediated immune responses and to possibly prolong the engraftment of transplanted MSCs.
Collapse
Affiliation(s)
- Jung Won Hwang
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Su Hyeon Myeong
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Na-Hee Lee
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeongseop Kim
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell Institute, ENCell Co. Ltd., Seoul, Republic of Korea
| | - Hyo Jin Son
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell Institute, ENCell Co. Ltd., Seoul, Republic of Korea
| | - Na Kyung Lee
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| | - Duk L Na
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Qin B, Luo N, Li Y, Gong D, Zheng J, Tan X, Zheng W. Protective effect of gastrodin on peripheral neuropathy induced by anti-tumor treatment with vincristine in rat models. Drug Chem Toxicol 2021; 44:84-91. [PMID: 30554535 DOI: 10.1080/01480545.2018.1547739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 12/29/2022]
Abstract
Cancer is a common disease threatening human health, chemotherapy is widely used in clinical treatment of cancer, but chemotherapy-induced peripheral neuropathy (CIPN) has a relevant impact on life quality of cancer patients. Administration of gastrodin can relieve chronic pain to cancer patients with CIPN and attenuated the inflammatory response by reducing the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). However, its exact molecular mechanisms remain unclear. In this study, we established an animal model of CIPN using Walker-256 breast cancer cell and vincristine. We found that the mechanical and thermal pain threshold of rats was decreased with treatment of vincristine. Using gastrodin could restore the mechanical and thermal threshold without interfering anti-tumor effect of vincristine. Gastrodin relieved CIPN by inhibiting activation of spinal microglia through Fractalkine (CX3CL1) and its receptor CX3CR1, then inhibited P38/mitogen-activated protein kinase (MAPK) signaling pathway and reduced the expression of inflammatory factor TNF-α and interleukin-1β (IL-1β). Taking together, our study demonstrated that gastrodin is a potential drug for the treatment of CIPN and likely to improve cancer patient's life quality.
Collapse
Affiliation(s)
- Bingjie Qin
- Third-Grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang, PR China
| | - Ni Luo
- Third-Grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang, PR China
| | - Yuxing Li
- Third-Grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang, PR China
| | - Denghui Gong
- Third-Grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang, PR China
| | - Jun Zheng
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang, PR China
| | - Xiao Tan
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical School of China Three Gorges University, Yichang, PR China
| | - Weihong Zheng
- Third-Grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang, PR China
| |
Collapse
|
8
|
Song WY, Ding H, Dunn T, Gao JL, Labastida JA, Schlagal C, Ning GZ, Feng SQ, Wu P. Low-dose metformin treatment in the subacute phase improves the locomotor function of a mouse model of spinal cord injury. Neural Regen Res 2021; 16:2234-2242. [PMID: 33818507 PMCID: PMC8354108 DOI: 10.4103/1673-5374.310695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metformin, a first-line drug for type-2 diabetes, has been shown to improve locomotor recovery after spinal cord injury. However, there are studies reporting no beneficial effect. Recently, we found that high dose of metformin (200 mg/kg, intraperitoneal) and acute phase administration (immediately after injury) led to increased mortality and limited locomotor function recovery. Consequently, we used a lower dose (100 mg/kg, i.p.) metformin in mice, and compared the effect of immediate administration after spinal cord injury (acute phase) with that of administration at 3 days post-injury (subacute phase). Our data showed that metformin treatment starting at the subacute phase significantly improved mouse locomotor function evaluated by Basso Mouse Scale (BMS) scoring. Immunohistochemical studies also revealed significant inhibitions of microglia/macrophage activation and astrogliosis at the lesion site. Furthermore, metformin treatment at the subacute phase reduced neutrophil infiltration. These changes were in parallel with the increased survival rate of spinal neurons in animals treated with metformin. These findings suggest that low-dose metformin treatment for subacute spinal cord injury can effectively improve the functional recovery possibly through anti-inflammation and neuroprotection. This study was approved by the Institute Animal Care and Use Committee at the University of Texas Medical Branch (approval No. 1008041C) in 2010.
Collapse
Affiliation(s)
- Wen-Ye Song
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiffany Dunn
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jun-Ling Gao
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Javier Allende Labastida
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Caitlin Schlagal
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Guang-Zhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Wu
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
9
|
Lee NK, Kim H, Chang JW, Jang H, Kim H, Yang J, Kim J, Son JP, Na DL. Exploring the Potential of Mesenchymal Stem Cell-Based Therapy in Mouse Models of Vascular Cognitive Impairment. Int J Mol Sci 2020; 21:ijms21155524. [PMID: 32752272 PMCID: PMC7432487 DOI: 10.3390/ijms21155524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Closely linked to Alzheimer’s disease (AD), the pathological spectrum of vascular cognitive impairment (VCI) is known to be wide and complex. Considering that multiple instead of a single targeting approach is considered a treatment option for such complicated diseases, the multifaceted aspects of mesenchymal stem cells (MSCs) make them a suitable candidate to tackle the heterogeneity of VCI. MSCs were delivered via the intracerebroventricular (ICV) route in mice that were subjected to VCI by carotid artery stenosis. VCI was induced in C57BL6/J mice wild type (C57VCI) mice by applying a combination of ameroid constrictors and microcoils, while ameroid constrictors alone were bilaterally applied to 5xFAD (transgenic AD mouse model) mice (5xVCI). Compared to the controls (minimal essential medium (MEM)-injected C57VCI mice), changes in spatial working memory were not noted in the MSC-injected C57VCI mice, and unexpectedly, the mortality rate was higher. In contrast, compared to the MEM-injected 5xVCI mice, mortality was not observed, and the spatial working memory was also improved in MSC-injected 5xVCI mice. Disease progression of the VCI-induced mice seems to be affected by the method of carotid artery stenosis and due to this heterogeneity, various factors must be considered to maximize the therapeutic benefits exerted by MSCs. Factors, such as the optimal MSC injection time point, cell concentration, sacrifice time point, and immunogenicity of the transplanted cells, must all be adequately addressed so that MSCs can be appropriately and effectively used as a treatment option for VCI.
Collapse
Affiliation(s)
- Na Kyung Lee
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Hyeongseop Kim
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Stem Cell Institute, ENCell Co. Ltd., Seoul 06072, Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Stem Cell Institute, ENCell Co. Ltd., Seoul 06072, Korea
| | - Hyemin Jang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Hunnyun Kim
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.Y.); (J.K.)
| | - Jehoon Yang
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.Y.); (J.K.)
| | - Jeyun Kim
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.Y.); (J.K.)
| | - Jeong Pyo Son
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju 28160, Korea;
| | - Duk L. Na
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-3591; Fax: +82-2-3412-3423
| |
Collapse
|
10
|
Vigil FA, Bozdemir E, Bugay V, Chun SH, Hobbs M, Sanchez I, Hastings SD, Veraza RJ, Holstein DM, Sprague SM, M Carver C, Cavazos JE, Brenner R, Lechleiter JD, Shapiro MS. Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-type") K + currents in neurons. J Cereb Blood Flow Metab 2020; 40:1256-1273. [PMID: 31272312 PMCID: PMC7238379 DOI: 10.1177/0271678x19857818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nearly three million people in the USA suffer traumatic brain injury (TBI) yearly; however, there are no pre- or post-TBI treatment options available. KCNQ2-5 voltage-gated K+ channels underlie the neuronal "M current", which plays a dominant role in the regulation of neuronal excitability. Our strategy towards prevention of TBI-induced brain damage is predicated on the suggested hyper-excitability of neurons induced by TBIs, and the decrease in neuronal excitation upon pharmacological augmentation of M/KCNQ K+ currents. Seizures are very common after a TBI, making further seizures and development of epilepsy disease more likely. Our hypothesis is that TBI-induced hyperexcitability and ischemia/hypoxia lead to metabolic stress, cell death and a maladaptive inflammatory response that causes further downstream morbidity. Using the mouse controlled closed-cortical impact blunt TBI model, we found that systemic administration of the prototype M-channel "opener", retigabine (RTG), 30 min after TBI, reduces the post-TBI cascade of events, including spontaneous seizures, enhanced susceptibility to chemo-convulsants, metabolic stress, inflammatory responses, blood-brain barrier breakdown, and cell death. This work suggests that acutely reducing neuronal excitability and energy demand via M-current enhancement may be a novel model of therapeutic intervention against post-TBI brain damage and dysfunction.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - MaryAnn Hobbs
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Isamar Sanchez
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Rafael J Veraza
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shane M Sprague
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jose E Cavazos
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Kútna V, Uttl L, Waltereit R, Krištofiková Z, Kaping D, Petrásek T, Hoschl C, Ovsepian SV. Tuberous Sclerosis (tsc2+/-) Model Eker Rats Reveals Extensive Neuronal Loss with Microglial Invasion and Vascular Remodeling Related to Brain Neoplasia. Neurotherapeutics 2020; 17:329-339. [PMID: 31820275 PMCID: PMC7007483 DOI: 10.1007/s13311-019-00812-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder characterized by frequent noncancerous neoplasia in the brain, which can induce a range of severe neuropsychiatric symptoms in humans, resulting from out of control tissue growth. The causative spontaneous loss-of-function mutations have been also identified in rats. Herein, we studied histopathological and molecular changes in brain lesions of the Eker rat model carrying germline mutation of the tsc2 gene, predisposed to multiple neoplasias. Predominant subcortical tumors were analyzed, along with a rare form occurring within the pyriform lobe. The uniform composition of lesions supports the histochemical parity of malformations, with immunofluorescence data supporting their neuro-glial origin. Massive depletion of mature neurons and axonal loss were evident within lesions, with occasional necrotic foci implying advanced stage of pathology. Enrichment of mesenchymal-derived cell markers with hallmarks of neurogenesis and active microglia imply enhanced cell proliferation, with local immune response. The depletion of capillaries within the core was complemented by the formation of dense mesh of nascent vessels at the interface of neoplasia with healthy tissue, implying large-scale vascular remodeling. Taken as a whole, these findings present several novel features of brain tumors in Eker rat model, rendering it suitable for studies of the pathobiology and progression of primary brain tumors, with therapeutic interventions.
Collapse
Affiliation(s)
- Viera Kútna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Libor Uttl
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Robert Waltereit
- University Hospital Carl Gustav Carus, Technical University, Department of Child and Adolescent Psychiatry, Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Zdenka Krištofiková
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Daniel Kaping
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Tomáš Petrásek
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic
| | - Saak V. Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic
| |
Collapse
|
12
|
Sn S, Pandurangi J, Murumalla R, Dj V, Garimella L, Acharya A, Rai S, Paul A, Yarreiphang H, Pillai MS, Giridharan M, Clement JP, Alladi PA, Saiyed T, Manjithaya R. Small molecule modulator of aggrephagy regulates neuroinflammation to curb pathogenesis of neurodegeneration. EBioMedicine 2019; 50:260-273. [PMID: 31727601 PMCID: PMC6921191 DOI: 10.1016/j.ebiom.2019.10.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/13/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background Plethora of efforts fails to yield a single drug to reverse the pathogenesis of Parkinson's disease (PD) and related α-synucleopathies. Methods Using chemical biology, we identified a small molecule inhibitor of c-abl kinase, PD180970 that could potentially clear the toxic protein aggregates. Genetic, molecular, cell biological and immunological assays were performed to understand the mechanism of action. In vivo preclinical disease model of PD was used to assess its neuroprotection efficacy. Findings In this report, we show the ability of a small molecule inhibitor of tyrosine kinases, PD180970, to induce autophagy (cell lines and mice midbrain) in an mTOR-independent manner and ameliorate the α-synuclein mediated toxicity. PD180970 also exerts anti-neuroinflammatory potential by inhibiting the release of proinflammatory cytokines such as IL-6 (interleukin-6) and MCP-1 (monocyte chemoattractant protein-1) through reduction of TLR-4 (toll like receptor-4) mediated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation. In vivo studies show that PD180970 is neuroprotective by degrading the toxic protein oligomers through induction of autophagy and subsiding the microglial activation. Interpretation These protective mechanisms ensure the negation of Parkinson's disease related motor impairments. Fund This work was supported by Wellcome Trust/DBT India Alliance Intermediate Fellowship (500159-Z-09-Z), DST-SERB grant (EMR/2015/001946), DBT (BT/INF/22/SP27679/2018) and JNCASR intramural funds to RM, and SERB, DST (SR/SO/HS/0121/2012) to PAA, and DST-SERB (SB/YS/LS-215/2013) to JPC and BIRAC funding to ETA C-CAMP.
Collapse
Affiliation(s)
- Suresh Sn
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Centre for Brain Research (CBR), IISc, Bangalore, India
| | - Janhavi Pandurangi
- Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore Life Sciences Cluster (BLiSC), Tata Institute of Fundamental Research, Bangalore, India
| | - Ravi Murumalla
- Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore Life Sciences Cluster (BLiSC), Tata Institute of Fundamental Research, Bangalore, India
| | - Vidyadhara Dj
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Yale University, USA
| | - Lakshmi Garimella
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Achyuth Acharya
- Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore Life Sciences Cluster (BLiSC), Tata Institute of Fundamental Research, Bangalore, India
| | - Shashank Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Malini S Pillai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Mridhula Giridharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Taslimarif Saiyed
- Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore Life Sciences Cluster (BLiSC), Tata Institute of Fundamental Research, Bangalore, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
13
|
Andrographolide derivative ameliorates dextran sulfate sodium-induced experimental colitis in mice. Biochem Pharmacol 2019; 163:416-424. [DOI: 10.1016/j.bcp.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 01/05/2023]
|
14
|
Lin FL, Ho JD, Cheng YW, Chiou GCY, Yen JL, Chang HM, Lee TH, Hsiao G. Theissenolactone C Exhibited Ocular Protection of Endotoxin-Induced Uveitis by Attenuating Ocular Inflammatory Responses and Glial Activation. Front Pharmacol 2018; 9:326. [PMID: 29686615 PMCID: PMC5900795 DOI: 10.3389/fphar.2018.00326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the effects of a natural component, theissenolactone C (LC53), on the ocular inflammation of experimental endotoxin-induced uveitis (EIU) and its related mechanisms in microglia. Evaluation of the severity of anterior uveitis indicated that LC53 treatment significantly decreased iridal hyperemia and restored the clinical scores. Additionally, the deficient retina functions of electroretinography were improved by LC53. LC53 significantly reduced levels of tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1, protein leakage and activation of matrix metalloproteinases in the anterior section during EIU. Moreover, LC53 treatment decreased the oxidative stress as well as neuroinflammatory reactivities of GFAP and Iba-1 in the posterior section. Furthermore, LC53 decreased the phosphorylation of p65, expression of HSP90, Bax, and cleaved-caspase-3 in EIU. According to the microglia studies, LC53 significantly abrogated the productions of TNF-α, PGE2, NO and ROS, as well as inducible NO synthase and cyclooxygenase-2 expression in LPS-stimulated microglial BV2 cells. The microglial activation of IKKβ, p65 phosphorylation and nuclear phosphorylated p65 translocation were strongly attenuated by LC53. On the other hand, LC53 exhibited the inhibitory effects on JNK and ERK MAPKs activation. Our findings indicated that LC53 exerted the ocular-protective effect through its inhibition on neuroinflammation, glial activation, and apoptosis in EIU, suggesting a therapeutic potential with down-regulation of the NF-κB signaling for uveitis and retinal inflammatory diseases.
Collapse
Affiliation(s)
- Fan-Li Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jau-Der Ho
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - George C Y Chiou
- Department of Neuroscience and Experimental Therapeutics and Institute of Ocular Pharmacology, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Noise-Induced Dysregulation of Quaking RNA Binding Proteins Contributes to Auditory Nerve Demyelination and Hearing Loss. J Neurosci 2018; 38:2551-2568. [PMID: 29437856 DOI: 10.1523/jneurosci.2487-17.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.
Collapse
|
16
|
Maternal dendrimer-based therapy for inflammation-induced preterm birth and perinatal brain injury. Sci Rep 2017; 7:6106. [PMID: 28733619 PMCID: PMC5522481 DOI: 10.1038/s41598-017-06113-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/08/2017] [Indexed: 01/06/2023] Open
Abstract
Preterm birth is a major risk factor for adverse neurological outcomes in ex-preterm children, including motor, cognitive, and behavioral disabilities. N-acetyl-L-cysteine therapy has been used in clinical studies; however, it requires doses that cause significant side effects. In this study, we explore the effect of low dose N-acetyl-L-cysteine therapy, delivered using a targeted, systemic, maternal, dendrimer nanoparticle (DNAC), in a mouse model of intrauterine inflammation. Our results demonstrated that intraperitoneal maternal DNAC administration significantly reduced the preterm birth rate and altered placental immune profile with decreased CD8+ T-cell infiltration. Furthermore, we demonstrated that DNAC improved neurobehavioral outcomes and reduced fetal neuroinflammation and long-term microglial activation in offspring. Our study is the first to provide evidence for the role of CD8+ T-cell in the maternal-fetal interface during inflammation and further support the efficacy of DNAC in preventing preterm birth and prematurity-related outcomes.
Collapse
|
17
|
Lee KY, Kang JY, Yun JI, Chung JY, Hwang IK, Won MH, Choi JH. Age-related change of Iba-1 immunoreactivity in the adult and aged gerbil spinal cord. Anat Cell Biol 2017; 50:135-142. [PMID: 28713617 PMCID: PMC5509897 DOI: 10.5115/acb.2017.50.2.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
In the present study, we examined change of ionized calcium-binding adapter molecule 1 (Iba-1) in the adult and aged gerbil spinal cords. Significant change of morphological feature and neuronal cell loss were not observed in both adult and aged spinal cords of gerbil after NeuN immunohistochemistry and Fluoro-Jade B histofluoresce staining. Iba-1-immunoreactive microglia broadly distributed in the spinal cord. Most of Iba-1-immunoreactive microglia showed ramified forms in the adult gerbil cervical and lumbar spinal cords. However, morphological changes of Iba-1-immunoreactive microglia were observed in the cervical and lumbar regions of the aged gerbil spinal cord. These microglia were showed a hypertrophied body with shortened swollen processes which was characteristic of activated microglia. In addition, Iba-1 protein level significantly higher in aged cervical and lumbar spinal cords than those in the adult gerbil. The present study showed an increase of activated forms of Iba-1-immunoreactive microglia and its protein level without marked changes in morphological features and neuronal loss in the aged spinal cord compared to those in the adult gerbil spinal cord. This result suggests that the increase of Iba-1 expression in the aged spinal cord may be closely associated with age-related changes in aged gerbil spinal cord.
Collapse
Affiliation(s)
- Kwon Young Lee
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Joo Yeon Kang
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Moo Ho Won
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
18
|
Elmore SA, Chen VS, Hayes-Bouknight S, Hoane JS, Janardhan K, Kooistra LH, Nolte T, Szabo KA, Willson GA, Wolf JC, Malarkey DE. Proceedings of the 2016 National Toxicology Program Satellite Symposium. Toxicol Pathol 2016; 45:11-51. [PMID: 27821709 DOI: 10.1177/0192623316672074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The 2016 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri" was held in San Diego, CA, at the Society of Toxicologic Pathology's (STP) 35th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks, along with select images that were used by the audience for voting and discussion. Some lesions and topics covered during the symposium included malignant glioma and histiocytic sarcoma in the rodent brain; a new statistical method designed for histopathology data evaluation; uterine stromal/glandular polyp in a rat; malignant plasma cell tumor in a mouse brain; Schwann cell proliferative lesions in rat hearts; axillary schwannoma in a cat; necrosis and granulomatous inflammation in a rat brain; adenoma/carcinoma in a rat adrenal gland; hepatocyte maturation defect and liver/spleen hematopoietic defects in an embryonic mouse; distinguishing malignant glioma, malignant mixed glioma, and malignant oligodendroglioma in the rat; comparison of mammary gland whole mounts and histopathology from mice; and discussion of the International Harmonization of Nomenclature and Diagnostic Criteria collaborations.
Collapse
Affiliation(s)
- Susan A Elmore
- 1 National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Vivian S Chen
- 2 Charles River Laboratories, Inc., Durham, North Carolina, USA
| | | | - Jessica S Hoane
- 2 Charles River Laboratories, Inc., Durham, North Carolina, USA
| | | | | | - Thomas Nolte
- 4 Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | | - Gabrielle A Willson
- 5 Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Jeffrey C Wolf
- 6 Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | - David E Malarkey
- 1 National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
19
|
Elmore SA, Farman CA, Hailey JR, Kovi RC, Malarkey DE, Morrison JP, Neel J, Pesavento PA, Porter BF, Szabo KA, Teixeira LBC, Quist EM. Proceedings of the 2015 National Toxicology Program Satellite Symposium. Toxicol Pathol 2016; 44:502-35. [PMID: 27075180 DOI: 10.1177/0192623316631844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 2015 Annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri" was held in Minneapolis, Minnesota, at the American College of Veterinary Pathologists/American Society for Veterinary Clinical Pathology/Society of Toxicologic Pathology combined meeting. The goal of this symposium is to present and discuss diagnostic pathology challenges or nomenclature issues. Because of the combined meeting, both laboratory and domestic animal cases were presented. This article presents summaries of the speakers' talks, including challenging diagnostic cases or nomenclature issues that were presented, along with select images that were used for audience voting and discussion. Some lesions and topics covered during the symposium included hepatocellular lesions, a proposed harmonized diagnostic approach to rat cardiomyopathy, crop milk in a bird, avian feeding accoutrement, heat exchanger in a tuna, metastasis of a tobacco carcinogen-induced pulmonary carcinoma, neurocytoma in a rat, pituicytoma in a rat, rodent mammary gland whole mounts, dog and rat alveolar macrophage ultrastructure, dog and rat pulmonary phospholipidosis, alveolar macrophage aggregation in a dog, degenerating yeast in a cat liver aspirate, myeloid leukemia in lymph node aspirates from a dog, Trypanosoma cruzi in a dog, solanum toxicity in a cow, bovine astrovirus, malignant microglial tumor, and nomenclature challenges from the Special Senses International Harmonization of Nomenclature and Diagnostic Criteria Organ Working Group.
Collapse
Affiliation(s)
- Susan A Elmore
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | - Ramesh C Kovi
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - David E Malarkey
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Jennifer Neel
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Patricia A Pesavento
- School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | | | | | | | - Erin M Quist
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
20
|
Kynurenic acid modulates experimentally induced inflammation in the trigeminal ganglion. J Headache Pain 2015; 16:99. [PMID: 26627709 PMCID: PMC4666855 DOI: 10.1186/s10194-015-0581-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Background The trigeminal ganglion (TG) plays a central role in cranial pain. Administration of complete Freund’s adjuvant (CFA) into the temporomandibular joint (TMJ) elicits activation of TG. Kynurenic acid (KYNA) is an endogenous excitatory amino acid receptor blocker, which may have an anti-inflammatory effect. We hypothesize that KYNA may reduce CFA-induced activation within the TG. Methods A local inflammation was induced by administration of CFA into the TMJ in rats. KYNA and kynurenic acid amide 2 (KYNAA2) were intraperitoneally administered. We investigated changes of mitogen-activated protein kinases (MAPKs as ERK1/2, p38 and SAPK/JNK), NF-κB, CaMKII and DREAM, in addition to calcitonin gene-related peptide (CGRP) and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) in the TG, with immunohistochemistry and Western blot at 2 and 10 days post-CFA injection. Results We showed CFA-induces increases in pERK1/2, pp38, CaMKII, NF-κB and DREAM immunohistochemistry after 2 and 10 days. KYNAA2 displayed stronger effects on MAPKs than KYNA. Increased expression of CaMKII, NF-κB and DREAM were found in the neurons. Western blot showed significantly increase in pERK expression at 10 days post-CFA, which decreased after 10 days of KYNA treatment. Two days post-CFA, a significantly increase in pp38 expression was found, which decreased after 2 days of KYNA and KYNAA2 treatment. Conclusions The CFA-induced inflammatory model for the TG activation provided a time-related expression of MAPK (pERK1/2, pp38) and NF-κB. It involves both the neuronal and glial activation, which points to possible neuron-glia interactions during this process. The administration of the endogenous NMDA-receptor antagonists, KYNA and its derivative KYNAA2, resulted in the inhibition of the induced signaling system of the TG, which further points the importance of the glutamate receptors in this mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s10194-015-0581-x) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Lei J, Firdaus W, Rosenzweig JM, Alrebh S, Bakhshwin A, Borbiev T, Fatemi A, Blakemore K, Johnston MV, Burd I. Murine model: maternal administration of stem cells for prevention of prematurity. Am J Obstet Gynecol 2015; 212:639.e1-10. [PMID: 25555657 DOI: 10.1016/j.ajog.2014.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/01/2014] [Accepted: 12/21/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Using a mouse model of intrauterine inflammation, we have demonstrated that exposure to inflammation induces preterm birth and perinatal brain injury. Mesenchymal stem cells (MSCs) have been shown to exhibit immunomodulatory effects in many inflammatory conditions. We hypothesized that treatment with human adipose tissue-derived MSCs may decrease the rate of preterm birth and perinatal brain injury through changes in antiinflammatory and regulatory milieu. STUDY DESIGN A mouse model of intrauterine inflammation was used with the following groups: (1) control; (2) intrauterine inflammation (lipopolysaccharide); and (3) intrauterine lipopolysaccharide+intraperitoneal (MSCs). Preterm birth was investigated. Luminex multiplex enzyme-linked immunosorbent assays were performed for protein levels of cytokines in maternal and fetal compartments. Immunofluorescent staining was used to identify and localize MSCs and to examine microglial morphologic condition and neurotoxicity in perinatal brain. Behavioral testing was performed at postnatal day 5. RESULTS Pretreatment with MSCs significantly decreased the rate of preterm birth by 21% compared with the lipopolysaccharide group (P<.01). Pretreatment was associated with increased interleukin-10 in maternal serum, increased interleukin-4 in placenta, decreased interleukin-6 in fetal brain (P<.05), decreased microglial activation (P<.05), and decreased fetal neurotoxicity (P<.05). These findings were associated with improved neurobehavioral testing at postnatal day 5 (P<.05). Injected MSCs were localized to placenta. CONCLUSION Maternally administered MSCs appear to modulate maternal and fetal immune response to intrauterine inflammation in the model and decrease preterm birth, perinatal brain injury, and motor deficits in offspring mice.
Collapse
Affiliation(s)
- Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wance Firdaus
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason M Rosenzweig
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shorouq Alrebh
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ahmed Bakhshwin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Talaibek Borbiev
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ali Fatemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD
| | - Karin Blakemore
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael V Johnston
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD.
| |
Collapse
|
22
|
Hawkins JL, Denson JE, Miley DR, Durham PL. Nicotine stimulates expression of proteins implicated in peripheral and central sensitization. Neuroscience 2015; 290:115-25. [PMID: 25637801 PMCID: PMC5894823 DOI: 10.1016/j.neuroscience.2015.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/19/2014] [Accepted: 01/07/2015] [Indexed: 12/26/2022]
Abstract
Pain patients who are nicotine dependent report a significantly increased incidence and severity of pain intensity. The goal of this study was to determine the effects of prolonged nicotine administration on inflammatory proteins implicated in the development of peripheral and central sensitization of the trigeminal system. Behavioral, immunohistochemical, and microarray studies were utilized to investigate the effects of nicotine administered daily for 14 days via an Alzet® osmotic pump in Sprague Dawley rats. Systemic nicotine administration caused a significant increase in nocifensive withdrawals to mechanical stimulation of trigeminal neurons. Nicotine stimulated expression of the pro-inflammatory signal transduction proteins phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-c-Jun N-terminal kinase (p-JNK), and protein kinase A (PKA) in the spinal trigeminal nucleus. Nicotine also promoted elevations in the expression of glial fibrillary acidic protein (GFAP), a biomarker of activated astrocytes, and the microglia biomarker ionized calcium-binding adapter molecule 1 (Iba1). Similarly, levels of eleven cytokines were significantly elevated with the largest increase in expression of TNF-α. Levels of PKA, p-ERK, and p-JNK in trigeminal ganglion neurons were increased by nicotine. Our findings demonstrate that prolonged systemic administration of nicotine promotes sustained behavioral and cellular changes in the expression of key proteins in the spinal trigeminal nucleus and trigeminal ganglion implicated in the development and maintenance of peripheral and central sensitization.
Collapse
Affiliation(s)
- J L Hawkins
- Center for Biomedical & Life Sciences, Missouri State University, Springfield, MO, USA
| | - J E Denson
- Center for Biomedical & Life Sciences, Missouri State University, Springfield, MO, USA
| | - D R Miley
- Center for Biomedical & Life Sciences, Missouri State University, Springfield, MO, USA
| | - P L Durham
- Center for Biomedical & Life Sciences, Missouri State University, Springfield, MO, USA.
| |
Collapse
|
23
|
Li Q, Dong C, Li W, Bu W, Wu J, Zhao W. Neuropeptide Y protects cerebral cortical neurons by regulating microglial immune function. Neural Regen Res 2014; 9:959-67. [PMID: 25206918 PMCID: PMC4146213 DOI: 10.4103/1673-5374.133140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 11/29/2022] Open
Abstract
Neuropeptide Y has been shown to inhibit the immunological activity of reactive microglia in the rat cerebral cortex, to reduce N-methyl-D-aspartate current (INMDA) in cortical neurons, and protect neurons. In this study, after primary cultured microglia from the cerebral cortex of rats were treated with lipopolysaccharide, interleukin-1β and tumor necrosis factor-α levels in the cell culture medium increased, and mRNA expression of these cytokines also increased. After primary cultured cortical neurons were incubated with the lipopolysaccharide-treated microglial conditioned medium, peak INMDA in neurons increased. These effects of lipopolysaccharide were suppressed by neuropeptide Y. After addition of the neuropeptide Y Y1 receptor antagonist BIBP3226, the effects of neuropeptide Y completely disappeared. These results suggest that neuropeptide Y prevents excessive production of interleukin-1β and tumor necrosis factor-α by inhibiting microglial reactivity. This reduces INMDA in rat cortical neurons, preventing excitotoxicity, thereby protecting neurons.
Collapse
Affiliation(s)
- Qijun Li
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Changzheng Dong
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Wenling Li
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Wei Bu
- Department of Neurosurgery, Third Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jiang Wu
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Wenqing Zhao
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei Province, China ; Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
24
|
Cady RJ, Denson JE, Sullivan LQ, Durham PL. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization. Neuroscience 2014; 269:79-92. [PMID: 24685439 DOI: 10.1016/j.neuroscience.2014.03.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022]
Abstract
Sensitization and activation of trigeminal nociceptors is implicated in prevalent and debilitating orofacial pain conditions including temporomandibular joint (TMJ) disorders. Orexins are excitatory neuropeptides that function to regulate many physiological processes and are reported to modulate nociception. To determine the role of orexins in an inflammatory model of trigeminal activation, the effects of a dual orexin receptor antagonist (DORA-12) on levels of proteins that promote peripheral and central sensitization and changes in nocifensive responses were investigated. In adult male Sprague-Dawley rats, mRNA for orexin receptor 1 (OX₁R) and receptor 2 (OX₂R) were detected in trigeminal ganglia and spinal trigeminal nucleus (STN). OX₁R immunoreactivity was localized primarily in neuronal cell bodies in the V3 region of the ganglion and in laminas I-II of the STN. Animals injected bilaterally with complete Freund's adjuvant (CFA) in the TMJ capsule exhibited increased expression of P-p38, P-ERK, and lba1 in trigeminal ganglia and P-ERK and lba1 in the STN at 2 days post injection. However, levels of each of these proteins in rats receiving daily oral DORA-12 were inhibited to near basal levels. Similarly, administration of DORA-12 on days 3 and 4 post CFA injection in the TMJ effectively inhibited the prolonged stimulated expression of protein kinase A, NFkB, and Iba1 in the STN on day 5 post injection. While injection of CFA mediated a nocifensive response to mechanical stimulation of the orofacial region at 2h and 3 and 5 days post injection, treatment with DORA-12 suppressed the nocifensive response on day 5. Somewhat surprisingly, nocifensive responses were again observed on day 10 post CFA stimulation in the absence of daily DORA-12 administration. Our results provide evidence that DORA-12 can inhibit CFA-induced stimulation of trigeminal sensory neurons by inhibiting expression of proteins associated with sensitization of peripheral and central neurons and nociception.
Collapse
Affiliation(s)
- R J Cady
- Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806, United States
| | - J E Denson
- Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806, United States
| | - L Q Sullivan
- Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806, United States
| | - P L Durham
- Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806, United States.
| |
Collapse
|