1
|
Gu S, Chen C, Wang J, Wang Y, Zhao L, Xiong Z, Zhang H, Deng T, Pan Q, Zheng Y, Li Y. Camellia Japonica Radix modulates gut microbiota and 9(S)-HpODE-mediated ferroptosis to alleviate oxidative stress against MASLD. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156806. [PMID: 40334428 DOI: 10.1016/j.phymed.2025.156806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/04/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Camellia japonica radix (CJR), derived from the root of Camellia japonica L., has the potential to function as an herbal tea substitute for the prevention and intervention of metabolic dysfunction-associated steatotic liver disease (MASLD). It can provide systemic therapeutic benefits, boast a favorable safety profile, facilitate convenient consumption, and support long-term applicability. Despite its potential, research on CJR remains limited. PURPOSE The aim of this study aims is to elucidate the therapeutic mechanisms of CJR in MASLD, thereby providing evidence to support its clinical application. METHODS The therapeutic effects of CJR were evaluated using a water-supplementation model in MASLD mice. Integrated microbiome, transcriptome, proteome, and metabolome analyses were employed to comprehensively explore the mechanisms involved. A drug-target pull-down assay was performed to identify specific protein targets of small molecule metabolites in vitro. Fecal microbiota transplantation in antibiotic-treated ABX mice was conducted to confirm the critical role of gut microbiota and its metabolites. Furthermore, customized medicated feed supplemented with linoleic acid was used to explore the intervention effect of its metabolite, 9(S)-HpODE, as well as to evaluate its dietary intervention potential. RESULTS This present study explicitly elucidates the efficacy of CJR extract in alleviating hepatic inflammation and steatosis in a MASLD model mice, with its pharmacological mechanism associated with gut microbiota, linoleic acid metabolism, and GPX4-mediated ferroptosis. Notably, 9(S)-HpODE was discovered to be a key metabolite of linoleic acid, which could target both KEAP1 and SLC7A11, bidirectionally regulating GPX4-mediated ferroptosis, while acting as a signaling molecule at low doses to induce redox adaptation via oxidative preconditioning, thus ameliorating oxidative stress in MASLD. CONCLUSION Our findings indicate that both CJR and linoleic acid exhibit significant potential as dietary interventions for the management of MASLD, offering promising avenues for future research and clinical application.
Collapse
Affiliation(s)
- Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanping Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Zhekun Xiong
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Hui Zhang
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Taoying Deng
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Qihui Pan
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Chen Y, Xiao J, Zhang L, Mu J, Wang J, Yu X, Li L, Xiao Z, Liang Y. Diacylglycerol from camellia oil improves hyperuricemia by inhibiting xanthine oxidase and modulating gut microbiota. Int J Biol Macromol 2025; 309:142451. [PMID: 40158583 DOI: 10.1016/j.ijbiomac.2025.142451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Camellia oil exhibits multiple beneficial effects on cardiovascular, glucose, and lipid metabolism. However, the impact of camellia oil and diacylglycerol (DAG), which is one of the active compounds of camellia oil, is uncertain in terms of hyperuricemia (HUA). It was found that the physicochemical characterization of camellia oil and DAG shows a rich content of unsaturated fatty acids (UFA), particularly oleic acid and linoleic acid, thereby supporting their potential in treating HUA. In hyperuricemic mice, camellia oil and DAG dose-dependently reduced urine and serum uric acid (UA), serum creatinine, and xanthine oxidase (XOD) activity. High doses of camellia oil and DAG treatment dramatically reduced pro-inflammatory mediators in hyperuricemic mice's renal tissue, showing a dose-dependent reduction in hepatic XOD activity and inflammation. HUA may be treated by modulating gut flora with camellia oil and DAG. The alteration of Lactobacillus and Helicobacter abundance play key roles. PICRUSt2 functional prediction showed that phenylalanine, tyrosine, and tryptophan metabolic pathways may be mediated by camellia oil and DAG in HUA mice.
Collapse
Affiliation(s)
- Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jingjing Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Oils &Fats Molecular Structure and Function, Hunan Academy of Forestry, Changsha, China
| | - Lingyu Zhang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xudong Yu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Li Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Oils &Fats Molecular Structure and Function, Hunan Academy of Forestry, Changsha, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Oils &Fats Molecular Structure and Function, Hunan Academy of Forestry, Changsha, China.
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
4
|
González-Zamorano L, Cámara RM, Morales P, Cámara M. Harnessing Edible Wild Fruits: Sustainability and Health Aspects. Nutrients 2025; 17:412. [PMID: 39940270 PMCID: PMC11820366 DOI: 10.3390/nu17030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
Our health, well-being, and development are intrinsically linked to the preservation of biodiversity. This situation has driven the establishment of numerous treaties, international agreements, and regulatory frameworks that address sustainable food systems from multiple perspectives, including agriculture, food security, biodiversity, and environmental sustainability. The objective of this study is to review the potential of wild edible fruits in terms of sustainability and implications for human health. Specifically, this work examines the contribution of these fruits to promoting biodiversity, and their support for sustainable food systems as well as their beneficial role in human health. Additionally, it considers the evolution of relevant international treaties related to the preservation of wild fruits. An in-depth review of international treaties related to the conservation of wild fruits was conducted by consulting information available on official websites of international organizations such as the United Nations and the Food and Agriculture Organization of the United Nations (FAO), among others. Next, a review of the sustainability and health benefits of edible wild fruits was performed. Results showed that although numerous studies have demonstrated the health benefits of wild edible fruits, there is still a lack of scientific evidence showing that the use of these species could have positive effects not only on human health and well-being but also on the environment and biodiversity. Thus, integrating these fruits into sustainable practices could play a key role in supporting future food security and the well-being of communities.
Collapse
Affiliation(s)
| | | | | | - Montaña Cámara
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-Z.); (R.M.C.); (P.M.)
| |
Collapse
|
5
|
Li Q, Zhu W, Sun S, Cui M, Zhang W, Shu J, Mo R, Tang F, Guo Y, Liu Y. Unraveling the metabolic profile regulation of camellia oilseeds under insect and heat stress: Insights into functional effects and mechanistic basis. Food Chem X 2024; 23:101619. [PMID: 39100249 PMCID: PMC11295998 DOI: 10.1016/j.fochx.2024.101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
There is very little information on the impacts of pre/post-harvest stresses on oilseeds. Individual and combined insect (pre-harvest) and heat stress (post-harvest) impacts on the metabolic profile of camellia oilseeds (COs) were investigated using a combination of widely-targeted metabolomics and network pharmacology. A total of 1875 metabolites were identified. In response to individual and combined stresses, 169 (insect),149 (heat), and 21 (insect + heat) metabolites were screened as differential metabolic markers (DEMs), Terpenoids, phenolic acids, and flavonoids are the most impacted metabolite species, accounting for almost 49% of total DEMs. Then network pharmacological analysis identifies 98 key active ingredients (AIs) in CO. A single stress may induce CO to impede cardiovascular system function, but the combined stress induced AI-promoting effects of CO in the urinary system. The individual and combined perturbed biological mechanisms were related to the flavonoid biosynthesis and the biosynthesis of various plant secondary metabolites pathway, respectively.
Collapse
Affiliation(s)
- Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Wei Zhu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, PR China
| | - Shiman Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Wei Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Jinping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Runhong Mo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| |
Collapse
|
6
|
Wei J, Wang S, Huang J, Zhou X, Qian Z, Wu T, Fan Q, Liang Y, Cui G. Network medicine-based analysis of the hepatoprotective effects of Amomum villosum Lour. on alcoholic liver disease in rats. Food Sci Nutr 2024; 12:3759-3773. [PMID: 38726425 PMCID: PMC11077240 DOI: 10.1002/fsn3.4046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Alcoholic liver disease (ALD) is characterized by high morbidity and mortality, and mainly results from prolonged and excessive alcohol use. Amomum villosum Lour. (A. villosum), a well-known traditional Chinese medicine (TCM), has hepatoprotective properties. However, its ability to combat alcohol-induced liver injury has not been fully explored. The objective of this study was to investigate the hepatoprotective effects of A. villosum in a rat model of alcohol-induced liver disease, thereby establishing a scientific foundation for the potential preventive use of A. villosum in ALD. We established a Chinese liquor (Baijiu)-induced liver injury model in rats. Hematoxylin and eosin (HE) staining, in combination with biochemical tests, was used to evaluate the protective effects of A. villosum on the liver. The integration of network medicine analysis with experimental validation was used to explore the hepatoprotective effects and potential mechanisms of A. villosum in rats. Our findings showed that A. villosum ameliorated alcohol-induced changes in body weight, liver index, hepatic steatosis, inflammation, blood lipid metabolism, and liver function in rats. Network proximity analysis was employed to identify 18 potentially active ingredients of A. villosum for ALD treatment. These potentially active ingredients in the blood were further identified using mass spectrometry (MS). Our results showed that A. villosum plays a hepatoprotective role by modulating the protein levels of estrogen receptor 1 (ESR1), anti-nuclear receptor subfamily 3 group C member 1 (NR3C1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). In conclusion, the results of the current study suggested that A. villosum potentially exerts hepatoprotective effects on ALD in rats, possibly through regulating the protein levels of ESR1, NR3C1, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Jing Wei
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Sihua Wang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Junze Huang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Xinhua Zhou
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | | | - Tingbiao Wu
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Qing Fan
- Basic Medical Science DepartmentZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Yongyin Liang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Guozhen Cui
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| |
Collapse
|
7
|
Qin P, Shen J, Wei J, Chen Y. A critical review of the bioactive ingredients and biological functions of camellia oleifera oil. Curr Res Food Sci 2024; 8:100753. [PMID: 38725963 PMCID: PMC11081779 DOI: 10.1016/j.crfs.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Camellia oleifera oil is a pure and natural high-grade oil prevalent in South China. Camellia oleifera oil is known for its richness in unsaturated fatty acids and high nutritional value. There is increasing evidence indicating that a diet rich in unsaturated fatty acids is beneficial to health. Despite the widespread production of Camellia oleifera oil and its bioactive components, reports on its nutritional components are scarce, especially regarding systematic reviews of extraction methods and biological functions. This review systematically summarized the latest research on the bioactive components and biological functions of Camellia oleifera oil reported over the past decade. In addition to unsaturated fatty acids, Camellia oleifera oil contains six main functional components contributing to its antioxidant, antibacterial, anti-inflammatory, antidiabetic, anticancer, neuroprotective, and cardiovascular protective properties. These functional components are vitamin E, saponins, polyphenols, sterols, squalene, and flavonoids. This paper reviewed the biological activity of Camellia oleifera oil and its extraction methods, laying a foundation for further development of its bioactive components.
Collapse
Affiliation(s)
- Peiju Qin
- Hunan Provincial Key Laboratory of Forestry Biotechnology & International, Cooperation Base of Science and Technology Innovation on Forest Resource, Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - Junjun Shen
- Hunan Provincial Key Laboratory of Forestry Biotechnology & International, Cooperation Base of Science and Technology Innovation on Forest Resource, Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Molecular Nutrition, National Engineering Research Center for Rice and Byproducts, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jeigen Wei
- Hunan Provincial Key Laboratory of Forestry Biotechnology & International, Cooperation Base of Science and Technology Innovation on Forest Resource, Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - Yuqi Chen
- Hunan Provincial Key Laboratory of Forestry Biotechnology & International, Cooperation Base of Science and Technology Innovation on Forest Resource, Biotechnology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
8
|
Wang X, Gu Y, Lin W, Zhang Q. Rapid quantitative authentication and analysis of camellia oil adulterated with edible oils by electronic nose and FTIR spectroscopy. Curr Res Food Sci 2024; 8:100732. [PMID: 38699681 PMCID: PMC11063990 DOI: 10.1016/j.crfs.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Camellia oil, recognized as a high-quality edible oil endorsed by the Food and Agriculture Organization, is confronted with authenticity issues arising from fraudulent adulteration practices. These practices not only pose health risks but also lead to economic losses. This study proposes a novel machine learning framework, referred to as a transformer encoder backbone with a support vector machine regressor (TES), coupled with an electronic nose (E-nose), for detecting varying adulteration levels in camellia oil. Experimental results indicate that the proposed TES model exhibits the best performance in identifying the adulterated concentration of camellia oi, compared with five other machine learning models (the support vector machine, random forest, XGBoost, K-nearest neighbors, and backpropagation neural network). The results obtained by E-nose detection are verified by complementary Fourier transform infrared (FTIR) spectroscopy analysis for identifying functional groups, ensuring accuracy and providing a comprehensive assessment of the types of adulterants. The proposed TES model combined with E-nose offers a rapid, effective, and practical tool for detecting camellia oil adulteration. This technique not only safeguards consumer health and economic interests but also promotes the application of E-nose in market supervision.
Collapse
Affiliation(s)
- Xiaoran Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Gu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- School of Automation, Guangdong University of Petrochemical Technology, Maoming, 525000, China
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Basic Research in Clinical Applied Biomechanics, China
| | - Weiqi Lin
- Xiamen Products Quality Supervision and Inspection Institute, Xiamen, 361004, China
| | - Qian Zhang
- Xiamen Products Quality Supervision and Inspection Institute, Xiamen, 361004, China
| |
Collapse
|
9
|
Yang G, Qi Z, Shan S, Xie D, Tan X. Advances in Separation, Biological Properties, and Structure-Activity Relationship of Triterpenoids Derived from Camellia oleifera Abel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4574-4586. [PMID: 38385335 DOI: 10.1021/acs.jafc.3c09168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Extensive research has been conducted on Camellia oleifera Abel., a cultivar predominantly distributed in China, to investigate its phytochemical composition, owning to its potential as an edible oil crop. Pentacyclic triterpene saponins, as essential active constituents, play a significant role in contributing to the pharmacological effects of this cultivar. The saponins derived from C. oleifera (CoS) offer a diverse array of bioactivity benefits, including antineoplastic/bactericidal/inflammatory properties, cardiovascular protection, neuroprotection, as well as hypoglycemic and hypolipidemic effects. This review presents a comprehensive analysis of the isolation and pharmacological properties of CoS. Specially, we attempt to reveal the antitumor structure-activity relationship (SAR) of CoS-derived triterpenoids. The active substitution sites of CoS, namely, C-3, C-15, C-16, C-21, C-22, C-23, and C-28 pentacyclic triterpenoids, make it a unique and highly valuable substance with significant medicinal and culinary applications. As such, CoS can play a critical role in transforming people's lives, providing unique medicinal benefits, and contributing to the advancement of both medicine and cuisine.
Collapse
Affiliation(s)
- Guliang Yang
- National Engineering Laboratory for Rice and Byproducts Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan 410004, People's Republic of China
| | - Zhiwen Qi
- National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Nanjing, Jiangsu 210042, People's Republic of China
| | - Sijie Shan
- National Engineering Laboratory for Rice and Byproducts Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan 410004, People's Republic of China
| | - Di Xie
- Loudi City Farmer Quality Education Center, Loudi, Hunan 417000, People's Republic of China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Collaborative Innovation Center of Cultivation and Utilization for Non-Wood Forest Tree, Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan 410004, People's Republic of China
| |
Collapse
|
10
|
Wang Y, Zou Z, Wang S, Ren A, Ding Z, Li Y, Wang Y, Qian Z, Bian B, Huang B, Xu G, Cui G. Golden bile powder prevents drunkenness and alcohol-induced liver injury in mice via the gut microbiota and metabolic modulation. Chin Med 2024; 19:39. [PMID: 38431607 PMCID: PMC10908100 DOI: 10.1186/s13020-024-00912-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Drunkenness and alcoholic liver disease (ALD) are critical public health issues associated with significant morbidity and mortality due to chronic overconsumption of alcohol. Traditional remedies, such as bear bile powder, have been historically acclaimed for their hepatoprotective properties. This study assessed the efficacy of a biotransformed bear bile powder known as golden bile powder (GBP) in alleviating alcohol-induced drunkenness and ALD. METHODS A murine model was engineered to simulate alcohol drunkenness and acute hepatic injury through the administration of a 50% ethanol solution. Intervention with GBP and its effects on alcohol-related symptoms were scrutinized, by employing an integrative approach that encompasses serum metabolomics, network medicine, and gut microbiota profiling to elucidate the protective mechanisms of GBP. RESULTS GBP administration significantly delayed the onset of drunkenness and decreased the duration of ethanol-induced inebriation in mice. Enhanced liver cell recovery was indicated by increased hepatic aldehyde dehydrogenase levels and superoxide dismutase activity, along with significant decreases in the serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride, and total cholesterol levels (P < 0.05). These biochemical alterations suggest diminished hepatic damage and enhanced lipid homeostasis. Microbiota analysis via 16S rDNA sequencing revealed significant changes in gut microbial diversity and composition following alcohol exposure, and these changes were effectively reversed by GBP treatment. Metabolomic analyses demonstrated that GBP normalized the alcohol-induced perturbations in phospholipids, fatty acids, and bile acids. Correlation assessments linked distinct microbial genera to serum bile acid profiles, indicating that the protective efficacy of GBP may be attributable to modulatory effects on metabolism and the gut microbiota composition. Network medicine insights suggest the prominence of two active agents in GBP as critical for addressing drunkenness and ALD. CONCLUSION GBP is a potent intervention for alcohol-induced pathology and offers hepatoprotective benefits, at least in part, through the modulation of the gut microbiota and related metabolic cascades.
Collapse
Affiliation(s)
- Yarong Wang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Zhenzhuang Zou
- Department of Pediatrics, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Sihua Wang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Airong Ren
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Zhaolin Ding
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Yingying Li
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Yifang Wang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Zhengming Qian
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Huang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Guiwei Xu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Guozhen Cui
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
11
|
Shu Q, Liu YX, Tang YJ, Cheng HY, Wu YY, Xu W, Zhang YB, Zhou GX. Phenolic and flavonoid compounds from the fruit shell of Camellia oleifera. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:91-101. [PMID: 38192081 DOI: 10.1080/10286020.2023.2293079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
A new phenolic compound oleiphenol (1), and a new dihydrochalcone oleifechalcone (2) along with seven known compounds (3-9) were isolated from the fruit shell of Camellia oleifera Abel. The planar structures of compounds 1 and 2 were determined on the basis of extensive spectroscopic analyses (IR, UV, NMR, and HR-ESI-MS) and comparison with literature data. The absolute configurations of the new structures were determined by ECD calculations and chemical methods. In addition, compounds 1-9 underwent a series of pharmacological activity tests, including cytotoxic, anti-inflammatory, anti-RSV and antioxidant activities.
Collapse
Affiliation(s)
- Qing Shu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yi-Xia Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yu-Jun Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Huai-Yu Cheng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Ya-Yu Wu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Wei Xu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yu-Bo Zhang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 511443, China
| | - Guang-Xiong Zhou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 511443, China
| |
Collapse
|
12
|
Liu S, Huang X, Bin Z, Yu B, Lu Z, Hu R, Long C. Wild edible plants and their cultural significance among the Zhuang ethnic group in Fangchenggang, Guangxi, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:52. [PMID: 37940945 PMCID: PMC10631048 DOI: 10.1186/s13002-023-00623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Fangchenggang is situated in the Guangxi Zhuang Autonomous Region, China, renowned for its rich biodiversity and ethnically diverse population. The Zhuang people, constituting the largest minority group in the area, possess a wealth of traditional knowledge concerning wild edible plants (WEPs) owing to the region's favorable environment and dietary customs. With the rapid development of urbanization, tourism, and trade, the Zhuang people's food culture, including the consumption of wild edible plants, has become an attractive aspect of urban development. However, there is almost no comprehensive report available on WEPs consumed by the Zhuang people. The objectives of this study were to: (1) conduct a comprehensive ethnobotanical investigation of the WEPs among the Zhuang people in the region; (2) evaluate the cultural food significance index (CFSI) for the local communities; (3) summarize the cultural characteristics of the wild edible plants consumed, providing scientific support for the development of Fangchenggang as a sustainable and attractive tourism destination. METHODS Ethnobotanical investigation including market surveys, semi-structured interviews, key informant interviews and participatory observations was conducted in Fangchenggang from January 2021 to March 2023. A total of 137 informants were selected using the snowball method. Information about WEPs, including vernacular names, food categories, parts used, mode of consumption, collecting season, and recipes, was collected and recorded. The CFSI (cultural food significance index) was calculated to identify the most culturally significant WEPs. RESULTS A total of 163 species of wild edible plants consumed by the Zhuang people were identified, belonging to 67 families. The main categories of WEPs include wild vegetables (69) and tea substitutes (42). The most commonly consumed parts are fruits (37), followed by whole plants (33) and leaves (21), with herbaceous plants (74) being the most numerous. The availability of wild edible plants remains high throughout the year, with the peak seasons occurring in August and October, and significant abundance also noted in July and November. In the highly significant category (CFSI > 500), a total of 15 plant species were identified, which play a crucial role in the local diet. Additionally, 17 alien species have become part of the local consumption of wild plants, with 7 species listed as invasive alien species. DISCUSSION AND CONCLUSIONS: This study documented 163 wild edible plant species and their associated traditional knowledge of the Zhuang people. The research identified culturally significant WEPs and analyzed their multiple uses. The historical development of wild plant consumption in Fangchenggang showed the strong influence of natural and social environments on the Zhuang ethnic group's dietary traditions. The WEPs are characterized by "sour food", "fresh ingredients" and "cold dishes", aligning with their health-oriented philosophy of "homology of medicine and food". Future prospects encompass the cultivation of economically sustainable wild edible plants (WEPs), the preservation of their traits through cross-breeding, ensuring safe consumption through research and safety evaluations, and advocating for the preservation of WEPs' culinary culture to support tourism and sustainable urban development.
Collapse
Affiliation(s)
- Sizhao Liu
- School of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China
- Guangxi Subtropical Crops Research Institute, Nanning, 530010, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xinyi Huang
- Guangxi Subtropical Crops Research Institute, Nanning, 530010, China
| | - Zhenjun Bin
- Guangxi Subtropical Crops Research Institute, Nanning, 530010, China
| | - Bingning Yu
- Guangxi Subtropical Crops Research Institute, Nanning, 530010, China
| | - Zushuang Lu
- Guangxi Subtropical Crops Research Institute, Nanning, 530010, China
| | - Renchuan Hu
- Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards (Guangxi Institute of Chinese Medicine and Pharmaceutical Science), Nanning, 530022, China.
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
13
|
Chilakala R, Moon HJ, Kim K, Yang S, Cheong SH. Anti-obesity effects of Camellia (Camellia oleifera Abel) oil treatment on high-fat diet-induced obesity in C57BL/6J mice. Phys Act Nutr 2023; 27:50-61. [PMID: 37583072 PMCID: PMC10440180 DOI: 10.20463/pan.2023.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE In the current study, we investigated the effects of camellia oil and camellia oil infused with herbs (Camellia oleifera Abel) on obesity in obese mice fed a high-fat diet (HFD). METHODS The antioxidant activity of camellia oil in scavenging free radicals was investigated. Additionally, body and organ weight changes, serum and liver marker parameters, antioxidant enzyme activities, liver and epididymal fat histology, protein and gene expression associated with lipogenesis and hyperglycemia effect on adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, were examined in HFD-induced obese mice. RESULTS The hepatic steatosis and epididymal fat were significantly reduced by the oral administration of camellia oil and herb-infused camellia oil. Moreover, hepatic and serum marker parameters such as total cholesterol, insulin, triglycerides, tumor necrosis factor-α, adiponectin, thiobarbituric acid reactive substances, aspartate aminotransferase, and alanine transaminase were beneficially impacted. Additionally, the activity of antioxidant enzymes also increased. Camellia oil and herb-infused camellia oil treatments reduced the expression of genes linked to hyperglycemia and lipogenesis via activation of AMPK phosphorylation. CONCLUSION For many people, exercise poses an obstacle in the daily routine due to lack of ease, difficulty in maintaining consistency, and hard work. Camellia oil combined with herbs has anti-obesity and antihyperglycemic effects. These findings indicate that treatment with herb-infused camellia oil is most beneficial for elderly individuals who do not prefer frequent exercise.
Collapse
Affiliation(s)
- Ramakrishna Chilakala
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Hyeon Jeong Moon
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | | | | | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|