1
|
Ehnert P, Krücken J, Fiedler S, Horn F, Helm CS, Neubert A, Weiher W, Terhalle W, Steuber S, Daher R, von Samson-Himmelstjerna G. Anthelmintic resistance against benzimidazoles and macrocyclic lactones in strongyle populations on cattle farms in northern Germany. Sci Rep 2025; 15:17973. [PMID: 40410299 PMCID: PMC12102382 DOI: 10.1038/s41598-025-02838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
Anthelmintic resistance (AR) in cattle gastrointestinal nematodes (GIN) is an increasing global concern, with low to moderate levels recently documented in Central Europe. This study reports on resistance against both macrocyclic lactones (MLs) and benzimidazoles (BZs) in northern Germany, highlighting that AR is spreading. The fecal egg count reduction test (FECRT) remains the primary tool for AR assessment, yet differing methodologies and recent guideline updates complicate resistance interpretation across studies. Statistical methods, such as Bayesian approaches used by eggCounts and bayescount, yield varying confidence intervals, further influencing results. Notably, the nemabiome analysis identified Ostertagia ostertagi and Cooperia oncophora as predominant species in the region, though unexpected diversity among farms with additional GIN species occurring sometimes even at high frequency, suggests morphological analysis of coprocultures may underestimate species prevalence. Detecting AR against both drug classes on some farms underscores the urgency of implementing sustainable strategies, such as targeted selective treatment and combinations of anthelmintics with different mode of action, to prevent scenarios of multi-drug resistance observed elsewhere. Effective resistance management requires immediate discussions with veterinarians and stakeholders to steer toward informed, preventive measures in cattle farming.
Collapse
Affiliation(s)
- Paula Ehnert
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Fabian Horn
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Christina S Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Ann Neubert
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Wiebke Weiher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Werner Terhalle
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Ricarda Daher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Bull KE, Hodgkinson J, Allen K, Poissant J, Peachey LE. Quantitative DNA metabarcoding reveals species composition of a macrocyclic lactone and pyrantel resistant cyathostomin population in the UK. Int J Parasitol Drugs Drug Resist 2025; 27:100576. [PMID: 39778419 PMCID: PMC11762968 DOI: 10.1016/j.ijpddr.2024.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Cyathostomins are the most abundant equid endoparasites globally. There are approximately fifty cyathostomin species and, whilst they occupy distinct niches within the large intestine, they are generally considered to share similar characteristics in terms of pathogenicity and response to drug treatment. There are three classes of anthelmintic licensed in the UK to treat cyathostomins (benzimidazoles, tetrahydropyrimidines and macrocyclic lactones) and cases of resistance have been documented for all classes. Previously, faecal egg count reduction tests (FECRT) on four UK Thoroughbred studs revealed multidrug resistant cyathostomins on one stud (A), with evidence of resistance to the macrocyclic lactones (MLs) ivermectin (IVM) and moxidectin (MOX), and to pyrantel (PYR). The remaining three studs (B-D) lacked resistance to IVM and MOX but had a shortened egg reappearance period post treatment. To determine whether specific species could be associated with the observed resistance and shortened egg reappearance period, strongyle eggs collected from between six and 15 individual horses per stud were copro-cultured to third larval stage (L3), before and after anthelmintic treatment, over a three-year timeframe (2021-2023). Quantitative DNA metabarcoding of the ITS-2 region was carried out on all samples. On stud A, single but differing species were found to be responsible for ML and pyrantel resistance in yearlings, Cyathostomum catinatum and Cylicocyclus nassatus, respectively. On studs B-D, with shortened egg reappearance periods, species composition remained largely unchanged post treatment. This study is the first to quantitatively profile cyathostomin species composition pre- and post-treatment in a multidrug resistant population in the UK, revealing that resistance in cyathostomins was species specific. This raises the question of whether these species may be responsible for ML and PYR resistance more widely and indicates that anthelmintic resistance in cyathostomins may not be a multi-species phenomenon.
Collapse
Affiliation(s)
- K E Bull
- Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU, UK.
| | - J Hodgkinson
- Department of Infection and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Neston, CH64 7TE, UK
| | - K Allen
- Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU, UK
| | - J Poissant
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - L E Peachey
- Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU, UK
| |
Collapse
|
3
|
Diekmann I, Krücken J, Kuzmina TA, Bredtmann CM, Louro M, Kharchenko VA, Tzelos T, Matthews JB, Madeira de Carvalho LM, von Samson-Himmelstjerna G. Comparative phylogenetic and sequence identity analysis of internal transcribed spacer 2 and cytochrome c oxidase subunit I as DNA barcode markers for the most common equine Strongylidae species. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 129:105729. [PMID: 39955017 DOI: 10.1016/j.meegid.2025.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Morphologically, 64 strongylid species have been described in equines. Co-infections are common, with up to 29 species reported in a single horse. Morphological identification of these species is time consuming and requires expert knowledge due to their similar appearance. Therefore, non-invasive identification methods are needed. DNA barcoding offers a rapid and reliable tool for species identification and the discovery of cryptic species for these most common parasitic nematodes of equines. In total, 269 cytochrome c oxidase subunit I (COI) gene and 312 internal transcribed spacer 2 (ITS-2) sequences from 27 equine Strongylidae species, including sequences from two uncharacterised species, Coronocyclus sagittatus and Triodontophorus tenuicollis, were generated and combined with COI and ITS-2 sequences data from six Cyathostominae species from previous studies. This study represents a comprehensive DNA barcoding analysis of 22 Cyathostominae and six Strongylinae species using mitochondrial COI gene and ITS-2 sequences. Maximum likelihood phylogenetic trees were constructed and the intra- and interspecific genetic distances for both markers were compared. Analysis revealed complex phylogenetic relationships. Para- and polyphyletic relationships were observed among most genera within Strongylinae and Cyathostominae. This challenges current morphological classifications. Although both markers showed overlapping pairwise identities in intra- and inter-species comparisons, COI had higher discriminatory power than ITS-2. Expanding the COI and ITS-2 reference database, including the first sequences for Coronocyclus sagittatus and Triodontophorus tenuicollis, improve a reliable species identification and advanced studies on Strongylinae and Cyathostominae diversity using barcoding and metabarcoding.
Collapse
Affiliation(s)
- Irina Diekmann
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| | - Tetiana A Kuzmina
- I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Institute of Parasitology, Slovak Academy of Sciences, Kosice, Slovakia.
| | - Christina M Bredtmann
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Mariana Louro
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Vitaliy A Kharchenko
- I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Thomas Tzelos
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.
| | | | - Luís M Madeira de Carvalho
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Mohtasebi S, Ahn S, Rosa B, Moyes K, Kuzmina TA, Gilleard JS, Poissant J. 'First record of Hsiungia pekingensis (Nematoda: Strongylidae) in North America: Morphological and molecular identification of a rare equine strongyle. J Helminthol 2025; 99:e35. [PMID: 39988803 DOI: 10.1017/s0022149x25000185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Equids are infected by a diversity of gastrointestinal nematode parasites, including 64 species of equine strongyle nematodes from19 genera. Despite numerous surveys of horse strongyles worldwide, certain geographic regions and rare species remain understudied. In 1964, a new species of equine strongyle, Cylicocyclus pekingensis, was described from a donkey in China. Subsequently, this species was recorded in horses from Kazakhstan and reclassified as Hsiungia pekingensis (K'ung and Yang, 1964), the only species in this genus. Since then, H. pekingensis has not been reported elsewhere, with limited knowledge on its distribution and phylogeny.This study documents the first record of H. pekingensis in North America. Adult specimens were recovered from fecal samples of a domestic horse in Alberta, Canada, following treatment with ivermectin. Species identification involved detailed morphological examination, complemented with sequencing of the internal transcribed spacer 1 (ITS1), 5.8S rRNA gene, and the internal transcribed spacer 2 (ITS2) regions of the nuclear genome. Phylogenetic analysis indicated a close evolutionary relationship with species from Poteriostomum and Parapoteriostomum genera. Nemabiome ITS2 sequencing of a paired pre-treatment sample also detected the presence of H. pekingensis in the studied horse. Re-analysis of public equine nemabiome datasets further detected H. pekingensis in feral horses in Alberta, but not in other regions considered. This study expands the known distribution of this rare species and enhances our knowledge of its placement in the phylogeny of equine strongyles. Furthermore, our re-analysis of public nemabiome datasets highlights the value of this approach for studying the global distribution of parasite species.
Collapse
Affiliation(s)
- S Mohtasebi
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - S Ahn
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - B Rosa
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - K Moyes
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - T A Kuzmina
- I. I. Schmalhausen Institute of Zoology National Academy of Sciences of Ukraine, 15, Bogdan Khmelnytsky Street, Kyiv01054, Ukraine
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Kosice, Slovakia
| | - J S Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - J Poissant
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
5
|
Byrne O, Gangotia D, Crowley J, Zintl A, Kiser L, Boxall O, McSweeney D, O'Neill F, Dunne S, Lamb BR, Walshe N, Mulcahy G. Molecular species determination of cyathostomins from horses in Ireland. Vet Parasitol 2024; 328:110168. [PMID: 38547830 DOI: 10.1016/j.vetpar.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 05/18/2024]
Abstract
Cyathostomins are globally important equine parasites, responsible for both chronic and acute pathogenic effects. The occurrence of mixed infections with numerous cyathostomin species hinders our understanding of parasite epidemiology, host-parasite dynamics, and species pathogenicity. There have been few studies of cyathostomin species occurring in horses in Ireland, where temperate climatic conditions with year-round rainfall provide suitable conditions for infection of grazing animals with bursate nematodes. Here, we amplified and sequenced the ITS-2 region of adult worms harvested at post-mortem from eleven adult horses between August 2018 and June 2020, and recorded species prevalence and abundance of worms recovered from the caecum, right ventral colon and left dorsal colon, using both BLAST and IDTAXA for taxonomic attribution. Phylogenetic relationships and community composition were also recorded and compared with other relevant studies, including a global meta-analysis. Overall, our results agree with previous studies that there does not seem to be a major difference in cyathostomin species occurrence in equids in different geographical regions. We confirmed the results of other workers in relation to the difficulties in discriminating between Cylicostephanus calicatus and Coronocyclus coronatus on the basis of ITS-2 sequences.
Collapse
Affiliation(s)
- Orla Byrne
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | - Disha Gangotia
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crowley
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Annetta Zintl
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Liam Kiser
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Olivia Boxall
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Daniel McSweeney
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Fiona O'Neill
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stacey Dunne
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breanna Rose Lamb
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Nicola Walshe
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| |
Collapse
|
6
|
Pires LSA, Abrahão C, Dias de Castro LL, Hammerschmidt J, Antunes J, Molento CFM, Molento MB. Welfare assessment of Thoroughbred horses naturally infected with gastrointestinal parasites in Southern Brazil: Quantifying the host-parasite relationship. J Equine Vet Sci 2024; 136:105062. [PMID: 38588754 DOI: 10.1016/j.jevs.2024.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Horse welfare assessment (HWA) does not account for individual or herd parasite infection. This study investigated the connection between HWA and individual parasite fecal egg count (FEC) in 90 Thoroughbred horses. All horses were naturally infected with gastrointestinal parasites and were evaluated for individual welfare indicators and FEC monthly, for 12 months. Horses were divided into three groups of 30 mares, 30 foals aged between 13 and 16 months (G2013), and 30 foals aged between two months and one year (G2014). A horse welfare protocol was developed and 1024 assessments were carried out by five trained assessors. FEC ranged from 0 to 5,760 with 98.8 % showing small strongyle eggs. Body condition scores were ideal in 94.4 % of the evaluations (n = 967), and 95.8 % of all horses had good clinical and behavioral indicators. Despite the variation in FEC, the data found no significant association between FEC and the behavioral indicators. The study suggests that FEC alone should not be used as a determinant of welfare when animals are managed with good nutritional and health management practices.
Collapse
Affiliation(s)
- L S Abrahão Pires
- Veterinary Clinical Parasitology Laboratory. Department of Veterinary Medicine. Federal University of Parana. Rua dos Funcionários, 1540. Curitiba, PR, Brazil. CEP: 80035-050.
| | - C Abrahão
- Veterinary Clinical Parasitology Laboratory. Department of Veterinary Medicine. Federal University of Parana. Rua dos Funcionários, 1540. Curitiba, PR, Brazil. CEP: 80035-050
| | - L L Dias de Castro
- Parasitology Laboratory. Department of Veterinary Medicine. University of Caxias do Sul. R. Francisco Getúlio Vargas 1130. Caxias do Sul, RS, Brazil. CEP: 95070-560
| | - J Hammerschmidt
- Pinhais Municipal Environmental Office. R. Cairo, 76. Pinhais, PR, Brazil. CEP: 83320-130
| | - J Antunes
- Private Practitioner. Rua Passos de Oliveira 675. São José dos Pinhais, PR, Brazil. CEP: 83030-720
| | - C F M Molento
- Animal Welfare Laboratory. Department of Animal Science. Federal University of Parana. Rua dos Funcionários, 1540. Curitiba, PR, Brazil. CEP: 80.035-050
| | - M B Molento
- Veterinary Clinical Parasitology Laboratory. Department of Veterinary Medicine. Federal University of Parana. Rua dos Funcionários, 1540. Curitiba, PR, Brazil. CEP: 80035-050
| |
Collapse
|
7
|
Abbas G, Ghafar A, McConnell E, Beasley A, Bauquier J, Wilkes EJA, El-Hage C, Carrigan P, Cudmore L, Hurley J, Gauci CG, Beveridge I, Ling E, Jacobson C, Stevenson MA, Nielsen MK, Hughes KJ, Jabbar A. A national survey of anthelmintic resistance in ascarid and strongylid nematodes in Australian Thoroughbred horses. Int J Parasitol Drugs Drug Resist 2024; 24:100517. [PMID: 38064906 PMCID: PMC10757041 DOI: 10.1016/j.ijpddr.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 01/02/2024]
Abstract
This study quantified the extent of anthelmintic resistance (AR) in ascarid and strongylid nematodes against commonly used anthelmintics in Australian Thoroughbred horses. Faecal egg count reduction tests (FECRTs, n = 86) and egg reappearance period (ERP) tests were conducted on 22 farms across Australia. Faecal egg counts (FECs) were determined using the modified McMaster technique, and percent faecal egg count reduction (%FECR) was calculated using the Bayesian hierarchical model and hybrid Frequentist/Bayesian analysis method. The results were interpreted using old (published in 1992) and new (2023) research guidelines of the World Association for the Advancement of Veterinary Parasitology (WAAVP). The species composition of strongylid nematodes was detected utilising a DNA-metabarcoding method using pre- and post-treatment samples. Resistance was observed in strongylid nematodes to commonly used single-active and combination anthelmintics, including ivermectin (IVM %FECR range: 82%-92%; 95% lower credible interval (LCI) range: 80%-90%), abamectin (ABM: 73%-92%; 65%-88%), moxidectin (MOX: 89%-91%; 84%-89%), oxfendazole (OFZ: 0%-56%; 0%-31%) and its combination with pyrantel (OFZ + PYR: 0%-82%; 0%-78%). Resistance in Parascaris spp. was observed to IVM (10%-43%; 0%-36%), ABM (0%; 0%) and MOX (0%; 0%). When the new thresholds recommended by the WAAVP were used, AR was detected in six additional FECRTs for strongylids and three more tests for Parascaris spp., introducing resistance to OFZ and OFZ + PYR in the latter. Shortened ERPs (4-6 weeks) of strongylids were observed in 31 FECRTs in which AR was not detected at 2 weeks post-treatment for all the anthelmintics tested. Among cyathostomins, Cylicocyclus nassatus, Cylicostephanus longibursatus and Coronocyclus coronatus were the most prevalent species at 2 weeks post-treatment, whereas the main species appearing at five weeks following treatments with macrocyclic lactones were Cylicocyclus nassatus, Cylicostephanus longibursatus and Cylicocyclus ashworthi. After treatment with OFZ + PYR, the latter three, plus Coronocyclus coronatus and Cyathostomum catinatum, were detected at 5 weeks post-treatment. Overall, the study highlights the prevalence of AR in both ascarids and strongylid nematodes against commonly used anthelmintic products to control worms in Australian horses. The results indicate that ML combination products provided acceptable efficacy at 2 weeks. However, ERP calculations suggest that products work less effectively than previously measured. It is suggested to regularly monitor the efficacy of the anthelmintics and consider changing the worm control practices to better manage worms and AR in Australian horses.
Collapse
Affiliation(s)
- Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Abdul Ghafar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Emma McConnell
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Anne Beasley
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, Queensland 4343, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | | | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria 3608, Australia
| | - Charles G Gauci
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Elysia Ling
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A Stevenson
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kristopher J Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
8
|
Malsa J, Boudesocque-Delaye L, Wimel L, Auclair-Ronzaud J, Dumont B, Mach N, Reigner F, Guégnard F, Chereau A, Serreau D, Théry-Koné I, Sallé G, Fleurance G. Chicory (Cichorium intybus) reduces cyathostomin egg excretion and larval development in grazing horses. Int J Parasitol Drugs Drug Resist 2024; 24:100523. [PMID: 38368671 PMCID: PMC10884488 DOI: 10.1016/j.ijpddr.2024.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/20/2024]
Abstract
Cyathostomins are the most prevalent parasitic nematodes of grazing horses. They are responsible for colic and diarrhea in their hosts. After several decades of exposure to synthetic anthelmintics, they have evolved to become resistant to most compounds. In addition, the drug-associated environmental side-effects question their use in the field. Alternative control strategies, like bioactive forages, are needed to face these challenges. Among these, chicory (Cichorium intybus, Puna II cultivar (cv.)) is known to convey anthelmintic compounds and may control cyathostomins in grazing horses. To challenge this hypothesis, we measured fecal egg counts and the rate of larval development in 20 naturally infected young saddle horses (2-year-old) grazing either (i) a pasture sown with chicory (n = 10) or (ii) a mesophile grassland (n = 10) at the same stocking rate (2.4 livestock unit (LU)/ha). The grazing period lasted 45 days to prevent horse reinfection. Horses in the chicory group mostly grazed chicory (89% of the bites), while those of the control group grazed mainly grasses (73%). Cyathostomins egg excretion decreased in both groups throughout the experiment. Accounting for this trajectory, the fecal egg count reduction (FECR) measured in individuals grazing chicory relative to control individuals increased from 72.9% at day 16 to 85.5% at the end of the study. In addition, larval development in feces from horses grazed on chicory was reduced by more than 60% from d31 compared to control individuals. Using a metabarcoding approach, we also evidenced a significant decrease in cyathostomin species abundance in horses grazing chicory. Chicory extract enriched in sesquiterpenes lactones was tested on two cyathostomins isolates. The estimated IC50 was high (1 and 3.4 mg/ml) and varied according to the pyrantel sensitivity status of the worm isolate. We conclude that the grazing of chicory (cv. Puna II) by horses is a promising strategy for reducing cyathostomin egg excretion and larval development that may contribute to lower the reliance on synthetic anthelmintics. The underpinning modes of action remain to be explored further.
Collapse
Affiliation(s)
- Joshua Malsa
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France.
| | | | - Laurence Wimel
- Institut Français Du Cheval et de L'équitation, Plateau Technique de Chamberet, Chamberet, France
| | - Juliette Auclair-Ronzaud
- Institut Français Du Cheval et de L'équitation, Plateau Technique de Chamberet, Chamberet, France
| | - Bertrand Dumont
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR 1213 Herbivores, Saint-Genès-Champanelle, France
| | - Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, Cedex 3, 31076, France
| | - Fabrice Reigner
- INRAE, Unité Expérimentale de Physiologie Animale de L'Orfrasière, Nouzilly, France
| | - Fabrice Guégnard
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Angélique Chereau
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Delphine Serreau
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Isabelle Théry-Koné
- Université de Tours, EA 7502 Synthèse et Isolement de Molécules Bioactives, Tours, France
| | - Guillaume Sallé
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Géraldine Fleurance
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR 1213 Herbivores, Saint-Genès-Champanelle, France; Institut Français Du Cheval et de L'équitation, Pôle Développement, Innovation et Recherche, Saint-Genès-Champanelle, France
| |
Collapse
|
9
|
Abbas G, Ghafar A, Beasley A, Stevenson MA, Bauquier J, Koehler AV, Wilkes EJA, McConnell E, El-Hage C, Carrigan P, Cudmore L, Hurley J, Gauci CG, Beveridge I, Jacobson C, Nielsen MK, Hughes KJ, Jabbar A. Understanding temporal and spatial distribution of intestinal nematodes of horses using faecal egg counts and DNA metabarcoding. Vet Parasitol 2024; 325:110094. [PMID: 38091893 DOI: 10.1016/j.vetpar.2023.110094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
This study reports the spatial and temporal distribution of ascarid and strongylid nematodes in Thoroughbred horses by age category across different climatic zones in Australia over an 18-month period. Faecal samples (n = 2046) from individual horses were analysed using the modified McMaster technique for faecal egg counts (FECs). Strongylids were identified using PCR-directed next-generation sequencing of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA. Yearlings had the highest prevalence (82%) of strongyle eggs followed by weanlings (79%), foals (58%), wet mares (49%) and dry mares (46%). For Parascaris spp., foals had the highest prevalence (35%) followed by weanlings (21%) and yearlings (10%). The highest mean FECs for Parascaris spp. were observed in foals (525 eggs per gram [EPG] of faeces) while those for strongyles were in yearlings (962 EPG). Among horses that were classified as adults at the time of sampling, 77% (860 of 1119) of mares were low (i.e., <250 EPG) strongyle egg-shedders. Mean strongyle FEC counts were highest in the Mediterranean (818 EPG) followed by summer (599 EPG), winter (442 EPG), and non-seasonal (413 EPG) rainfall zones. Twenty-six nematode species were detected, with Cylicostephanus longibursatus (26.5%), Cylicocyclus nassatus (23.7%) and Coronocyclus coronatus (20.5%) being the most frequently detected species. Their richness and relative abundance varied with horse age, season and climatic zone. In addition, Strongylus equinus and Triodontophorus spp. (T. brevicauda and T. serratus) were also detected. This comprehensive study elucidates spatial (climatic zone) and temporal (i.e., seasonal) trends in prevalence and burdens of intestinal nematodes in Australian horses using non-invasive conventional and molecular methods. The information presented in this study is crucial for developing integrated management strategies to control horse parasites in farmed horses.
Collapse
Affiliation(s)
- Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Abdul Ghafar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Anne Beasley
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, Queensland 4343, Australia
| | - Mark A Stevenson
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Anson V Koehler
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | | | - Emma McConnell
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria 3608, Australia
| | - Charles G Gauci
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kristopher J Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
10
|
Hedberg Alm Y, Halvarsson P, Martin F, Osterman-Lind E, Törngren V, Tydén E. Demonstration of reduced efficacy against cyathostomins without change in species composition after pyrantel embonate treatment in Swedish equine establishments. Int J Parasitol Drugs Drug Resist 2023; 23:78-86. [PMID: 37979235 PMCID: PMC10690405 DOI: 10.1016/j.ijpddr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Consisting of approximately 50 different species, the cyathostomin parasites are ubiquitous in grazing horses. Co-infection with several species is common, and large burdens can cause the fatal disease of larval cyathostominosis. Due to intense anthelmintic drug use, cyathostomin resistance has developed to all available anthelmintic drug groups. Resistance to the anthelmintic drug pyrantel (PYR) has been documented in over 90% of studies published over the past two decades. In Sweden, a study performed in the early 2000s only confirmed resistance in 4.5% of farms. Further, prescription-only administration of equine anthelmintic drugs was enforced in Sweden in 2007. However, it is unknown if this conservative drug use has maintained PYR efficacy in cyathostomins. The aim of the present study was to investigate the effect of PYR on cyathostomin infection in Sweden using fecal egg count reduction tests (FECRTs). Further, the effect of PYR treatment on cyathostomin species composition was studied using metabarcoding. Sixteen farms with at least six horses excreting a minimum of 100 eggs per gram feces were included. Using the current World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines, PYR resistance was demonstrated in nine of farms, with seven farms showing full susceptibility. Farms with low biosecurity measures had significantly lower efficacy of PYR treatment. The most common cyathostomin species were Cylicocyclus nassatus, Cyathostomum catinatum, Cylicostephanus longibursatus, Cys. calicatus, Cys. goldi, Cys. minutus, Coronocyclus coronatus and Cya. pateratum, accounting for 97% of all sequence reads prior to treatment. Of these, Cyc. nassatus and Cya. catinatum had the highest occurrence, accounting for 68% of all sequence reads prior to PYR treatment. Treatment did not significantly affect the species composition. The results highlight the importance of drug efficacy testing when using PYR to treat cyathostomin infection, even when selective anthelmintic treatment and thus low treatment intensity, is used on the farm.
Collapse
Affiliation(s)
- Ylva Hedberg Alm
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.
| | - Peter Halvarsson
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Frida Martin
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Eva Osterman-Lind
- Department of Microbiology, Section for Parasitology, National Veterinary Institute (SVA), SE-751 89, Uppsala, Sweden
| | - Vendela Törngren
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| |
Collapse
|
11
|
Abbas G, Ghafar A, Bauquier J, Beasley A, Ling E, Gauci CG, El-Hage C, Wilkes EJA, McConnell E, Carrigan P, Cudmore L, Hurley J, Beveridge I, Nielsen MK, Stevenson MA, Jacobson C, Hughes KJ, Jabbar A. Prevalence and diversity of ascarid and strongylid nematodes in Australian Thoroughbred horses using next-generation sequencing and bioinformatic tools. Vet Parasitol 2023; 323:110048. [PMID: 37844388 DOI: 10.1016/j.vetpar.2023.110048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
The study presents the results of a cross-sectional survey to describe the epidemiology of ascarid and strongylid nematodes in horses, the impact of diverse climatic conditions on parasite diversity and the levels of faecal egg shedding in different age groups of managed Thoroughbred horses. Individual faecal samples (n = 1377) collected from 62 Thoroughbred farms across four climatic zones in Australia were analysed using the modified McMaster technique for faecal egg counts (FECs) and strongylid nematodes were identified utilising PCR-directed next-generation sequencing (NGS) of the second internal transcribed spacer of the nuclear ribosomal DNA (ITS-2). Across all age groups, the prevalence of ascarid and strongylid nematodes was 12% (95% confidence interval 10-14%) and 72% (70-74%), respectively. Based on strongylid FECs, yearlings had the highest prevalence (89%) followed by weanlings (83%), foals (79%), wet mares (61%), dry mares (59%) and stallions (54%). However, for Parascaris spp., foals had the highest prevalence (46%) followed by weanlings (32%) and yearlings (13%). The highest mean FECs for Parascaris spp. were observed in foals (418 eggs per gram [EPG] of faeces) while those for strongylids were in yearlings (1002 EPG). Of the adult horses (mares and stallions), 67% (489 of 729) and 11% (77 of 729) were low (i.e., ≤250 EPG) and moderate (i.e., 251-500 EPG) strongylid egg-shedders, respectively. Strongylid egg shedding varied across climatic zones, with the highest mean FECs in the summer rainfall (723 EPG) followed by non-seasonal rainfall (629 EPG), winter rainfall (613 EPG), and Mediterranean (606 EPG) rainfall zones. Twenty-three nematode species were detected using NGS, with Cylicostephanus longibursatus (28%), Cylicocyclus nassatus (23%) and Coronocyclus coronatus (23%), being the most abundant species. Three species of Strongylus (i.e., S. vulgaris, S. equinus and S. edentatus) were also detected. The nemabiome composition, species richness and relative abundance varied within horse age and between climatic zones. These empirical findings provide a comprehensive understanding of the prevalence of parasites within horse populations and the multifaceted factors that influence their occurrence, thereby allowing for the formulation of tailored strategies aimed at parasite control in domestic horses.
Collapse
Affiliation(s)
- Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Abdul Ghafar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Anne Beasley
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, Queensland 4343, Australia
| | - Elysia Ling
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Charles G Gauci
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | | | - Emma McConnell
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria 3608, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Mark A Stevenson
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Kristopher J Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
12
|
Molecular diagnostics for gastrointestinal helminths in equids: Past, present and future. Vet Parasitol 2023; 313:109851. [PMID: 36521296 DOI: 10.1016/j.vetpar.2022.109851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This review is aimed to (i) appraise the literature on the use of molecular techniques for the detection, quantification and differentiation of gastrointestinal helminths (GIH) of equids, (ii) identify the knowledge gaps and, (iii) discuss diagnostic prospects in equine parasitology. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews, we retrieved 54 studies (horses: 50/54; donkeys and zebras: 4/54) from four databases. Polymerase chain reaction (PCR) was employed in all of the studies whereas PCR amplicons were sequenced in only 18 of them. Other techniques used (including modifications of PCR) were reverse line blot, quantitative (q)PCR, restriction fragment length polymorphism, nested-PCR, PCR-directed next-generation sequencing, Southern blotting, single strand conformation polymorphism, PCR-enzyme linked immunosorbent assay, matrix-assisted laser desorption/ionisation-time of flight and random amplification of polymorphic DNA. Most of the studies (53/54) used nuclear ribosomal RNA (including the internal transcribed spacers, intergenic spacer, 5.8 S, 18 S, 28 S and 12 S) as target loci while cytochrome c oxidase subunit 1 and random genomic regions were targeted in only three and one studies, respectively. Overall, to date, the majority of molecular studies have focused on the diagnosis and identification of GIHs of equids (i.e. species of Anoplocephala, Craterostomum, cyathostomins, Oesophagodontus, Parascaris, Strongylus, Strongyloides and Triodontophorus), with a recent shift towards investigations on anthelmintic resistance and the use of high-throughput nemabiome metabarcoding. With the increasing reports of anthelmintic resistance in equid GIHs, it is crucial to develop and apply techniques such as advanced metabarcoding for surveillance of parasite populations in order to gain detailed insights into their diversity and sustainable control. To the best of our knowledge, this is the first systematic review that evaluates molecular investigations published on the diagnosis and quantification of equid GIHs and provides useful insights into important knowledge gaps and future research directions in equid molecular parasitology.
Collapse
|
13
|
Diagnostic Methods of Common Intestinal Protozoa: Current and Future Immunological and Molecular Methods. Trop Med Infect Dis 2022; 7:tropicalmed7100253. [PMID: 36287994 PMCID: PMC9606991 DOI: 10.3390/tropicalmed7100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal protozoan infection is a persisting public health problem affecting the populations of developing countries in the tropical and subtropical regions. The diagnosis of intestinal protozoa remains a challenge especially in developing countries due to a shortage of laboratory facilities, limited health funding, and the remoteness of communities. Despite still being widely used, conventional diagnoses using microscopy and staining methods pose important limitations, particularly due to their low sensitivities and specificities. The selection of diagnostic methods needs to be carefully considered based on the objective of examination, availability of resources, and the expected parasite to be found. In this review, we describe various immunodiagnosis and molecular diagnostic methods for intestinal protozoa infection, including their advantages, disadvantages, and suitability for different settings, with a focus on Entamoeba histolytica, Giardia duodenalis, and Cryptosporidium spp.
Collapse
|
14
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Smith MA, Carpenter AB, Nielsen MK. Precision of cyathostomin luminal worm counts: Investigation of storage duration and fixative. Vet Parasitol 2022; 309:109773. [DOI: 10.1016/j.vetpar.2022.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
|
16
|
Effect of sainfoin ( Onobrychis viciifolia) on cyathostomin eggs excretion, larval development, larval community structure, and efficacy of ivermectin treatment in horses. Parasitology 2022; 149:1439-1449. [PMID: 35929352 PMCID: PMC10090777 DOI: 10.1017/s0031182022000853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alternative strategies to chemical anthelmintics are needed for the sustainable control of equine strongylids. Bioactive forages like sainfoin (Onobrychis viciifolia) could contribute to reducing drug use, with the first hints of in vitro activity against cyathostomin free-living stages observed in the past. We analysed the effect of a sainfoin-rich diet on cyathostomin population and the efficacy of oral ivermectin treatment. Two groups of 10 naturally infected horses were enrolled in a 78-day experimental trial. Following a 1-week adaptation period, they were either fed with dehydrated sainfoin pellets (70% of their diet dry matter) or with alfalfa pellets (control group) for 21-days. No difference was found between the average fecal egg counts (FECs) of the two groups, but a significantly lower increase in larval development rate was observed for the sainfoin group, at the end of the trial. Quantification of cyathostomin species abundances with an ITS-2-based metabarcoding approach revealed that the sainfoin diet did not affect the nemabiome structure compared to the control diet. Following oral ivermectin treatment of all horses on day 21, the drug concentration was lower in horses fed with sainfoin, and cyathostomin eggs reappeared earlier in that group. Our results demonstrated that short-term consumption of a sainfoin-rich diet does not decrease cyathostomin FEC but seems to slightly reduce larval development. Consumption of dehydrated sainfoin pellets also negatively affected ivermectin pharmacokinetics, underscoring the need to monitor horse feeding regimes when assessing ivermectin efficacy in the field.
Collapse
|
17
|
Geurden T, Smith ER, Vercruysse J, Yazwinski T, Rehbein S, Nielsen MK. Reflections and future directions for continued development and refinement of guidelines for anthelmintic efficacy studies. Vet Parasitol 2022; 307-308:109741. [PMID: 35667202 DOI: 10.1016/j.vetpar.2022.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022]
Abstract
This reflection paper complements the WAAVP (World Association for the Advancement of Veterinary Parasitology) general anthelmintic efficacy guideline, which outlines the general principles of anthelmintic efficacy evaluation across all animal host species. It provides background to the recommendations made in the WAAVP general anthelmintic efficacy guideline, with insights into the discussions leading to specific recommendations in the general guideline or the absence thereof. Furthermore, this paper discusses recent technological advancements with potential value to the evaluation of anthelmintic efficacy that may be considered for future versions of the general or species-specific guidelines if supported by sufficient levels of evidence. Finally, it also identifies potential research questions, such as the statistical approach for comparing worm counts between groups of animals.
Collapse
Affiliation(s)
| | - Emily R Smith
- Center for Veterinary Medicine, USA Food and Drug Administration, Rockville, USA
| | - Jozef Vercruysse
- Faculty of Veterinary Medicine, University of Gent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Tom Yazwinski
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Steffen Rehbein
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
18
|
Tombak KJ, Hansen CB, Kinsella JM, Pansu J, Pringle RM, Rubenstein DI. The gastrointestinal nematodes of plains and Grevy's zebras: Phylogenetic relationships and host specificity. Int J Parasitol Parasites Wildl 2021; 16:228-235. [PMID: 34712556 PMCID: PMC8529100 DOI: 10.1016/j.ijppaw.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023]
Abstract
Equids are chronically infected with parasitic strongyle nematodes. There is a rich literature on horse strongyles, but they are difficult to identify morphologically and genetic studies on strongyles infecting other equid species are few, hampering studies of host specificity. We sequenced expelled worms from two sympatric zebra species in central Kenya to expand the strongyle phylogeny and used DNA metabarcoding on faecal samples to genetically characterize zebra nemabiomes for the first time. We generated sequences for several species new to public genetic reference databases, all of which are typical strongyles in wild zebras (i.e., the three species of Cylindropharynx and Cyathostomum montgomeryi), and identified their closest relatives. We also discovered an apparent fungus infecting a quarter of the expelled Crossocephalus viviparus worms, a hyperabundant nematode species in the family Atractidae, hinting at the possibility that zebra host-parasite dynamics may involve a zebra-fungus mutualism. The two zebra species had similar nemabiomes; we found a complete overlap in the list of nematode species they carry and very similar prevalence (i.e., proportion of hosts infected) for the different nematode species. Our study suggests limited host-specificity in zebra strongyles and high potential for transmission between the plains zebra and the endangered Grevy's zebra.
Collapse
Affiliation(s)
- Kaia J. Tombak
- Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ, USA, 08544
- Department of Anthropology, Hunter College of the City University of New York, 695 Park Ave, New York, NY, USA, 10065
- Corresponding author. Department of Anthropology, Hunter College of the City University of New York, 695 Park Ave, New York, NY, 10065, USA.
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ, USA, 08544
| | | | - Johan Pansu
- Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ, USA, 08544
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Robert M. Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ, USA, 08544
| | - Daniel I. Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ, USA, 08544
| |
Collapse
|
19
|
Characterizing parasitic nematode faunas in faeces and soil using DNA metabarcoding. Parasit Vectors 2021; 14:422. [PMID: 34419166 PMCID: PMC8380370 DOI: 10.1186/s13071-021-04935-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Background Gastrointestinal parasitic nematodes can impact fecundity, development, behaviour, and survival in wild vertebrate populations. Conventional monitoring of gastrointestinal parasitic nematodes in wild populations involves morphological identification of eggs, larvae, and adults from faeces or intestinal samples. Adult worms are typically required for species-level identification, meaning intestinal material from dead animals is needed to characterize the nematode community with high taxonomic resolution. DNA metabarcoding of environmental samples is increasingly used for time- and cost-effective, high-throughput biodiversity monitoring of small-bodied organisms, including parasite communities. Here, we evaluate the potential of DNA metabarcoding of faeces and soil samples for non-invasive monitoring of gastrointestinal parasitic nematode communities in a wild ruminant population. Methods Faeces and intestines were collected from a population of wild reindeer, and soil was collected both from areas showing signs of animal congregation, as well as areas with no signs of animal activity. Gastrointestinal parasitic nematode faunas were characterized using traditional morphological methods that involve flotation and sedimentation steps to concentrate nematode biomass, as well as using DNA metabarcoding. DNA metabarcoding was conducted on bulk samples, in addition to samples having undergone sedimentation and flotation treatments. Results DNA metabarcoding and morphological approaches were largely congruent, recovering similar nematode faunas from all samples. However, metabarcoding provided higher-resolution taxonomic data than morphological identification in both faeces and soil samples. Although concentration of nematode biomass by sedimentation or flotation prior to DNA metabarcoding reduced non-target amplification and increased the diversity of sequence variants recovered from each sample, the pretreatments did not improve species detection rates in soil and faeces samples. Conclusions DNA metabarcoding of bulk faeces samples is a non-invasive, time- and cost-effective method for assessing parasitic nematode populations that provides data with comparable taxonomic resolution to morphological methods that depend on parasitological investigations of dead animals. The successful detection of parasitic gastrointestinal nematodes from soils demonstrates the utility of this approach for mapping distribution and occurrences of the free-living stages of gastrointestinal parasitic nematodes. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04935-8.
Collapse
|
20
|
Halvarsson P, Höglund J. Sheep nemabiome diversity and its response to anthelmintic treatment in Swedish sheep herds. Parasit Vectors 2021; 14:114. [PMID: 33602321 PMCID: PMC7890823 DOI: 10.1186/s13071-021-04602-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/23/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND A novel way to study the species composition and diversity of nematode parasites in livestock is to perform deep sequencing on composite samples containing a mixture of different species. Herein we describe for the first time the nematode community structures (nemabiomes) inhabiting Swedish sheep and how these are/were affected by host age and recent anthelmintic treatments. METHODS A total of 158 fecal samples were collected (n = 35 in 2007 and n = 123 in 2013-2016) and cultured from groups of sheep on 61 commercial farms in the south-central part of the country where most animals are grazed. Among the samples, 2 × 44 (56%) were paired collections from the same groups pre- and post-treatment with anthelmintics such as macrocyclic lactones, benzimidazoles or levamisole. Samples were analyzed for their nemabiome using the PacBio platform followed by bioinformatic sequence analysis with SCATA. Species richness and diversity were calculated and analyzed in R. RESULTS Nematode ITS2 sequences were found in all larval culture samples except two, even though the fecal egg counts were below the McMaster threshold in 20 samples. Sequencing yielded, on average, 1008 sequences per sample. In total, 16 operational taxonomical units (OTU), all with ≥ 98 % identity to sequences in the NCBI database, were recognized. The OTUs found represented nematode species of which ten are commonly associated with sheep. Multiple species were identified in all pre-anthelmintic treatment larval culture samples. No effects on nematode diversity were found in relation to host age. On the other hand, recent anthelmintic treatment lowered species richness, especially after use of ivermectin and albendazole. Interestingly, despite zero egg counts after use of levamisole, these samples still contained nematode DNA and especially H. contortus. CONCLUSIONS Our findings provide evidence that nemabiome analysis combined with diversity index analysis provides an objective methodology in the study of the efficacy of anthelmintic treatment as both high and low abundant species were detected.
Collapse
Affiliation(s)
- Peter Halvarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Section for Parasitology, Uppsala, Sweden.
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Section for Parasitology, Uppsala, Sweden
| |
Collapse
|
21
|
Poissant J, Gavriliuc S, Bellaw J, Redman EM, Avramenko RW, Robinson D, Workentine ML, Shury TK, Jenkins EJ, McLoughlin PD, Nielsen MK, Gilleard JS. A repeatable and quantitative DNA metabarcoding assay to characterize mixed strongyle infections in horses. Int J Parasitol 2020; 51:183-192. [PMID: 33242465 DOI: 10.1016/j.ijpara.2020.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023]
Abstract
Horses are ubiquitously infected by a diversity of gastro-intestinal parasitic helminths. Of particular importance are nematodes of the family Strongylidae, which can significantly impact horse health and performance. However, knowledge about equine strongyles remains limited due to our inability to identify most species non-invasively using traditional morphological techniques. We developed a new internal transcribed spacer 2 (ITS2) DNA metabarcoding 'nemabiome' assay to characterise mixed strongyle infections in horses and assessed its performance by applying it to pools of infective larvae from fecal samples from an experimental herd in Kentucky, USA and two feral horse populations from Sable Island and Alberta, Canada. In addition to reporting the detection of 33 different species with high confidence, we illustrate the assay's repeatability by comparing results generated from aliquots from the same fecal samples and from individual horses sampled repeatedly over multiple days or months. We also validate the quantitative potential of the assay by demonstrating that the proportion of amplicon reads assigned to different species scales linearly with the number of larvae present. This new tool significantly improves equine strongyle diagnostics, presenting opportunities for research on species-specific anthelmintic resistance and the causes and consequences of variation in mixed infections.
Collapse
Affiliation(s)
- Jocelyn Poissant
- Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada.
| | - Stefan Gavriliuc
- Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada
| | - Jennifer Bellaw
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Elizabeth M Redman
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada
| | - Russell W Avramenko
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada
| | - David Robinson
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada
| | - Matthew L Workentine
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada
| | - Todd K Shury
- Parks Canada Agency, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Emily J Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus drive, Saskatoon, SK S7N 5B4, Canada
| | - Philip D McLoughlin
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
22
|
Queiroz C, Levy M, Avramenko R, Redman E, Kearns K, Swain L, Silas H, Uehlinger F, Gilleard JS. The use of ITS-2 rDNA nemabiome metabarcoding to enhance anthelmintic resistance diagnosis and surveillance of ovine gastrointestinal nematodes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:105-117. [PMID: 33027723 PMCID: PMC7548992 DOI: 10.1016/j.ijpddr.2020.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/02/2022]
Abstract
A lack of quantitative information on the species composition of parasite communities present in fecal samples is a major limiting factor for the sensitivity, accuracy and interpretation of the diagnostic tests commonly used to assess anthelmintic efficacy and resistance. In this paper, we investigate the ability of ITS-2 rDNA nemabiome metabarcoding to enhance fecal egg count reduction testing by providing information on the effect of drug treatments on individual parasite species. Application of ITS-2 rDNA nemabiome metabarcoding to fecal samples from ewes from over 90 flocks across western Canada revealed high gastrointestinal nematode infection intensities in many flocks with Haemonchus contortus being the most abundant species followed by Teladorsagia circumcincta and then Trichostrongylus colubriformis. Integration of ITS-2 rDNA nemabiome metabarcoding with pre- and post-treatment fecal egg counting revealed consistently poor efficacy of producer-applied ivermectin and benzimidazole treatments against H. contortus, but much better efficacy against T. circumcincta and T. colubriformis, except for in a small number of flocks. Integration of nemabiome ITS-2 rDNA metabarcoding with Fecal Egg Count Reduction Tests (FECRT), undertaken on farm visits, confirmed that ivermectin and fenbendazole resistance is widespread in H. contortus but is currently less common in T. circumcincta and T. colubriformis in western Canada. FECRT/nemabiome testing did not detect moxidectin resistance in any GIN species but suggested the early emergence of levamisole resistance specifically in T. circumcincta. It also revealed that although poor efficacy to closantel was relatively common, based on total fecal egg counts, this was due to its narrow spectrum of activity rather than the emergence of anthelmintic resistance. This study illustrates the value of ITS-2 rDNA nemabiome metabarcoding to improve fecal egg count resistance testing, perform large-scale anthelmintic resistance surveillance and direct more targeted rational anthelmintic use. Nemabiome metabarcoding in anthelmintic resistance diagnostics and surveillance. Producer-applied treatment results were consistent with controlled FECRT. Widespread BZ and IVM resistance in H. contortus in western Canada. Only sporadic BZ and IVM resistance T. circumcincta and T. colubriformis. Early levamisole resistance in T. circumcincta, closantel resistance not prevalent.
Collapse
Affiliation(s)
- Camila Queiroz
- Department of Comparative Medicine and Experimental Biology, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, 3330, Canada Hospital Dr T2N4N1, Canada
| | - Michel Levy
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, 3330, Canada Hospital Dr T2N4N1, Canada
| | - Russell Avramenko
- Department of Comparative Medicine and Experimental Biology, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, 3330, Canada Hospital Dr T2N4N1, Canada
| | - Elizabeth Redman
- Department of Comparative Medicine and Experimental Biology, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, 3330, Canada Hospital Dr T2N4N1, Canada
| | - Kelsey Kearns
- Department of Comparative Medicine and Experimental Biology, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, 3330, Canada Hospital Dr T2N4N1, Canada
| | - Lana Swain
- Department of Comparative Medicine and Experimental Biology, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, 3330, Canada Hospital Dr T2N4N1, Canada
| | - Haley Silas
- Department of Comparative Medicine and Experimental Biology, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, 3330, Canada Hospital Dr T2N4N1, Canada
| | - Fabienne Uehlinger
- Department of Large Animal Clinical Sciences, University of Saskatchewan 52 Campus Dr S7N5B4
| | - John S Gilleard
- Department of Comparative Medicine and Experimental Biology, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, 3330, Canada Hospital Dr T2N4N1, Canada.
| |
Collapse
|
23
|
Abstract
Helminth parasitology is an important discipline, which poses often unique technical challenges. One challenge is that helminth parasites, particularly those in humans, are often difficult to obtain alive and in sufficient quantities for study; another is the challenge of studying these organisms in vitro - no helminth parasite life cycle has been fully recapitulated outside of a host. Arguably, the key issue retarding progress in helminth parasitology has been a lack of experimental tools and resources, certainly relative to the riches that have driven many parasitologists to adopt free-living model organisms as surrogate systems. In response to these needs, the past 10-12 years have seen the beginnings of helminth parasitology's journey into the 'omics' era, with the release of abundant sequencing resources, and the functional genomics tools with which to test biological hypotheses. To reflect this progress, the 2019 Autumn Symposium of the British Society for Parasitology was held in Queen's University Belfast on the topic of 'post-genomic progress in helminth parasitology'. This issue presents examples of the current state of play in the field, while this editorial summarizes how genomic datasets and functional genomic tools have stimulated impressive recent progress in our understanding of parasite biology.
Collapse
Affiliation(s)
- Paul McVeigh
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|