1
|
Duda-Madej A, Viscardi S, Niezgódka P, Szewczyk W, Wińska K. The Impact of Plant-Derived Polyphenols on Combating Efflux-Mediated Antibiotic Resistance. Int J Mol Sci 2025; 26:4030. [PMID: 40362268 PMCID: PMC12071758 DOI: 10.3390/ijms26094030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The global healthcare system is increasingly challenged by the rising prevalence of multidrug-resistant bacteria and the limited therapeutic options for related infections. Efflux-mediated antibiotic resistance represents a significant obstacle, primarily due to the absence of drugs specifically designed to target bacterial efflux pumps. Recent research has identified polyphenols, a broad class of plant-derived organic compounds, as potential inhibitors of efflux pump activity. This review consolidates data on the inhibitory properties of eight widely distributed polyphenols: curcumin, quercetin, luteolin, tannic acid, naringenin, epigallocatechin-3-gallate, ellagic acid, and resveratrol. These compounds have demonstrated the capacity to inhibit efflux pumps, either through direct interference with bacterial protein function or by downregulating the expression of genes encoding pump subunits. Importantly, several polyphenols exhibit synergistic interactions with antibiotics, including colistin, ciprofloxacin, and tetracycline. For instance, quercetin has shown inhibitory potency comparable to that of established efflux pump inhibitors such as verapamil and reserpine. These findings suggest that polyphenols represent promising candidates for the development of novel efflux pump inhibitors. However, further research is required to validate their efficacy and safety and facilitate their translation into clinical applications for combating antibiotic resistance.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (P.N.); (W.S.)
| | - Piotr Niezgódka
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (P.N.); (W.S.)
| | - Wiktoria Szewczyk
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (P.N.); (W.S.)
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
2
|
Thakur M, Verma R, Kumar D, Sivakumar M, Malik T. Investigation Into the Impact of Solvents on the Phytochemical Composition, Antioxidant Capacities, and Antihyperglycemic Activities of Erigeron annuus (L.) Pers. BIOMED RESEARCH INTERNATIONAL 2025; 2025:6650124. [PMID: 40264643 PMCID: PMC12014270 DOI: 10.1155/bmri/6650124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025]
Abstract
This study aims to assess the phytochemical composition, antioxidant potential, and antidiabetic properties of Erigeron annuus (L.) Pers. The ethyl acetate fraction of Erigeron annuus leaves exhibited the highest extraction rate (22.42%). The preliminary qualitative phytochemical analysis in crude extract and fractions is often performed using chemical tests. For quantitative analysis, spectrophotometric methods are widely used to estimate the concentration of phytochemicals. The antioxidant properties were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay, which measures the reduction of Fe3+ to Fe2+. Qualitative screening revealed the presence of tannins, flavonoids, phenols, saponins, and alkaloids. Notably, the ethyl acetate fraction showed significantly (p < 0.05) higher total phenolic content (70.01 ± 1.1 mg/g) and total flavonoid content (80.29 ± 1.03 mg/g). This fraction also demonstrated substantial α-amylase inhibitory activity and antioxidant potential, suggesting the ability of polyphenols to reduce α-amylase activity. The α-amylase inhibition (23.15 ± 1.22% to 67.31 ± 2.01%) activity and IC50 value (40.59 ± 0.03 μg/mL) were notably higher in the ethyl acetate fraction compared with the standard drug metformin (19.88 ± 1.51 μg/mL). Erigeron annuus ethyl acetate fraction exhibited significantly higher glucose levels (10.88% ± 1.29% to 65.11 ± 0.94%) and conducted a lipid peroxidation experiment utilizing egg yolk as the source of lipids with high content. The most bioactive fraction was evaluated for cytotoxicity against the HEK293 cell line. The cytotoxicity assay revealed that 50% cell viability was observed at a concentration of 50 μg/mL, indicating that the plant extract is nontoxic at concentrations below this threshold. Furthermore, the dominant fraction was further investigated using liquid chromatography-mass spectroscopy and high-performance thin-layer chromatography techniques from the selected plant. Moreover, an in vivo study will be performed to evaluate the antidiabetic efficacy of Erigeron annuus, isolate and characterize its bioactive components, and examine its molecular mechanism of action to improve its therapeutic applicability.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advance Innovation Technologies, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Manickam Sivakumar
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Tabarak Malik
- Department of Biomedical Science, Institute of Health, Jimma University, Jimma, Oromia Region, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Sabbagh BA, Palanirajan VK, Chew YL, Chin JH, Ahmad M, Akowuah GA. UHPLC-MS/MS standardized extract of Vernonia amygdalina leaf inhibits CYP2C9 and CYP3A4 activities in hepatic cells of control and streptozotocin-induced diabetic rats. Drug Metab Pers Ther 2024; 39:231-241. [PMID: 39658558 DOI: 10.1515/dmpt-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES Vernonia amygdalina Del. is a perennial tropical shrub from Asteraceae. The fresh leaf of V. amygdalina is consumed as a vegetable due to its medicinal and nutritional properties. The present study focused on the quantification of bioactive compounds, luteolin-7-O-glucoside, luteolin-7-O-glucuronide, and 1,5-O-dicaffeoylquinic acid from aqueous leaf extract of V. amygdalina. The study also aims to investigate the effects of the aqueous leaf extract of V. amygdalina on cytochrome P450 2C9 (CYP2C9), and cytochrome P450 3A4 (CYP3A4) in hepatic cells of control and diabetic rats. METHODS The quantification of the bioactive compounds was conducted using ultra-high-performance liquid chromatography multiple reactions monitoring tandem mass spectrometry (UHPLC-MS/MS-MRM) technique. The effect of the extract on CYP2C9 and CYP3A4 activities was determined using a fluorometric screening kit according to the manufacturer's instructions. RESULTS The three bioactive compounds were detected and quantified in the aqueous leaf extract. Results showed that the content of luteolin-7-O-glucuronide (47 μg/mg) was the highest followed by luteolin-7-O-glucoside (3.5 μg/mg) and 1,5-O-dicaffeoylquinic acid (1.07 μg/mg). The extract showed an inhibitory effect on CYP3A4 and CYP2C9 enzyme activities in control and diabetic rats. CONCLUSIONS The UHPLC-MS/MS-MRM method is sensitive and reliable for the quality control of V. amygdalina leaf extract. The inhibitory effect of the extract suggests that concomitant use of V. amygdalina leaf preparations with conventional drugs metabolized and eliminated from the body by CYP3A4 and CYP2C9 enzymes may lead to possible interaction.
Collapse
Affiliation(s)
- Bassel Al Sabbagh
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Jin Han Chin
- Faculty of Medicine, MAHSA University, Kuala Langat, Selangor, Malaysia
| | - Mariam Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gabriel Akyirem Akowuah
- %2065210 School of Pharmacy, Monash University Malaysia , Jalan Lagoon Selatan, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Rauf A, Wilairatana P, Joshi PB, Ahmad Z, Olatunde A, Hafeez N, Hemeg HA, Mubarak MS. Revisiting luteolin: An updated review on its anticancer potential. Heliyon 2024; 10:e26701. [PMID: 38455556 PMCID: PMC10918152 DOI: 10.1016/j.heliyon.2024.e26701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Numerous natural products found in our diet, such as polyphenols and flavonoids, can prevent the progression of cancer. Luteolin, a natural flavone, present in significant amounts in various fruits and vegetables plays a key role as a chemopreventive agent in treating various types of cancer. By inducing apoptosis, initiating cell cycle arrest, and decreasing angiogenesis, metastasis, and cell proliferation, luteolin is used to treat cancer. Its anticancer properties are attributed to its capability to engage with multiple molecular targeted sites and modify various signaling pathways in tumor cells. Luteolin has been shown to slow the spread of cancer in breast, colorectal, lung, prostate, liver, skin, pancreatic, oral, and gastric cancer models. It exhibits antioxidant properties and can be given to patients receiving Doxorubicin (DOX) chemotherapy to prevent the development of unexpected adverse reactions in the lungs and hematopoietic system subjected to DOX. Furthermore, it could be an excellent candidate for synergistic studies to overcome drug resistance in cancer cells. Accordingly, this review covers the recent literature related to the use of luteolin against different types of cancer, along with the mechanisms of action. In addition, the review highlights luteolin as a complementary medicine for preventing and treating cancer.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Payal B. Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, (East)-421501, Maharashtra, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, KPK, Pakistan
| | - Hassan A. Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Medinah, Al-Monawara Postcode, Saudi Arabia
| | | |
Collapse
|
5
|
Oh KK, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Jeong MK, Min BH, Hyun JY, Eom JA, Park HJ, Yoon SJ, Choi MR, Kim DJ, Suk KT. The seamless integration of dietary plant-derived natural flavonoids and gut microbiota may ameliorate non-alcoholic fatty liver disease: a network pharmacology analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:217-232. [PMID: 37129458 DOI: 10.1080/21691401.2023.2203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
We comprised metabolites of gut microbiota (GM; endogenous species) and dietary plant-derived natural flavonoids (DPDNFs; exogenous species) were known as potent effectors against non-alcoholic fatty liver disease (NAFLD) via network pharmacology (NP). The crucial targets against NAFLD were identified via GM and DPDNFs. The protein interaction (PPI), bubble chart and networks of GM or natural products- metabolites-targets-key signalling (GNMTK) pathway were described via R Package. Furthermore, the molecular docking test (MDT) to verify the affinity was performed between metabolite(s) and target(s) on a key signalling pathway. On the networks of GNMTK, Enterococcus sp. 45, Escherichia sp.12, Escherichia sp.33 and Bacterium MRG-PMF-1 as key microbiota; flavonoid-rich products as key natural resources; luteolin and myricetin as key metabolites (or dietary flavonoids); AKT Serine/Threonine Kinase 1 (AKT1), CF Transmembrane conductance Regulator (CFTR) and PhosphoInositide-3-Kinase, Regulatory subunit 1 (PIK3R1) as key targets are promising components to treat NAFLD, by suppressing cyclic Adenosine MonoPhosphate (cAMP) signalling pathway. This study shows that components (microbiota, metabolites, targets and a key signalling pathway) and DPDNFs can exert combinatorial pharmacological effects against NAFLD. Overall, the integrated pharmacological approach sheds light on the relationships between GM and DPDNFs.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Haripriya Gupta
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Raja Ganesan
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Satya Priya Sharma
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Sung-Min Won
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Jin-Ju Jeong
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Su-Been Lee
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Min-Gi Cha
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Goo-Hyun Kwon
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Min-Kyo Jeong
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Byeong-Hyun Min
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Ji-Ye Hyun
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Jung-A Eom
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Hee-Jin Park
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Sang-Jun Yoon
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Mi-Ran Choi
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Dong Joon Kim
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Ki-Tae Suk
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| |
Collapse
|
6
|
Hussain MS, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Fuloria S, Meenakshi DU, Jakhmola V, Pandey M, Singh SK, Dua K. From nature to therapy: Luteolin's potential as an immune system modulator in inflammatory disorders. J Biochem Mol Toxicol 2023; 37:e23482. [PMID: 37530602 DOI: 10.1002/jbt.23482] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Inflammation is an essential immune response that helps fight infections and heal tissues. However, chronic inflammation has been linked to several diseases, including cancer, autoimmune disorders, cardiovascular diseases, and neurological disorders. This has increased interest in finding natural substances that can modulate the immune system inflammatory signaling pathways to prevent or treat these diseases. Luteolin is a flavonoid found in many fruits, vegetables, and herbs. It has been shown to have anti-inflammatory effects by altering signaling pathways in immune cells. This review article discusses the current research on luteolin's role as a natural immune system modulator of inflammatory signaling mechanisms, such as its effects on nuclear factor-kappa B, mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and inflammasome signaling processes. The safety profile of luteolin and its potential therapeutic uses in conditions linked to inflammation are also discussed. Overall, the data point to Luteolin's intriguing potential as a natural regulator of immune system inflammatory signaling processes. More research is needed to fully understand its mechanisms of action and possible therapeutic applications.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | | | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Miao L, Liu C, Cheong MS, Zhong R, Tan Y, Rengasamy KRR, Leung SWS, Cheang WS, Xiao J. Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Crit Rev Food Sci Nutr 2023; 63:11640-11667. [PMID: 35821658 DOI: 10.1080/10408398.2022.2095349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes, being the most widespread illness, poses a serious threat to global public health. It seems that inflammation plays a critical role in the pathophysiology of diabetes. This review aims to demonstrate a probable link between type 2 diabetes mellitus (T2DM) and chronic inflammation during its development. Additionally, the current review examined the bioactivity of natural flavones and the possible molecular mechanisms by which they influence diabetes and inflammation. While natural flavones possess remarkable anti-diabetic and anti-inflammatory bioactivities, their therapeutic use is limited by the low oral bioavailability. Several factors contribute to the low bioavailability, including poor water solubility, food interaction, and unsatisfied metabolic behaviors, while the diseases (diabetes, inflammation, etc.) causing even less bioavailability. Throughout the years, different strategies have been developed to boost flavones' bioavailability, including structural alteration, biological transformation, and innovative drug delivery system design. This review addresses current advancements in improving the bioavailability of flavonoids in general, and flavones in particular. Clinical trials were also analyzed to provide insight into the potential application of flavonoids in diabetes and inflammatory therapies.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Conghui Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meang Sam Cheong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruting Zhong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yi Tan
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Kannan R R Rengasamy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
8
|
Roy S, Teron R, Nikku Linga R. PhytoSelectDBT: A database for the molecular models of anti-diabetic targets docked with bioactive peptides from selected ethno-medicinal plants. Bioinformation 2023; 19:908-917. [PMID: 37928486 PMCID: PMC10625370 DOI: 10.6026/97320630019908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
It is of interest to assess the effectiveness of bioactive peptides derived from 41 ethno-medicinal plants, classify them according to their anti-diabetic protein targets (DPP-IV, alpha-amylase, alpha-glucosidase, GRK2, GSK3B, GLP-1R, and AdipoR1), and create a web tool named PhytoSelectDBT by using the top seven peptides per target. If one of the target-based medicinal plant suggestions made by PhytoSelectDBT is unsuccessful, alternative target-based possibilities are presented by PhytoSelectDBT for treating the condition and any other related complications. The results provide a useful resource for the management of type 2 diabetes and emphasize the significance of utilising ethnomedical knowledge for the identification of potent anti-diabetic plants and their peptides. We used molecular docking to investigate interactions between anti-diabetic targets (DPP-IV, alpha-amylase, alpha-glucosidase, GRK2, GSK3B, GLP-1R, and AdipoR1) and projected bioactive peptides from 41 ethnomedicinal plants. All bioactive peptides were cross-checked against several databases to determine their allergenicity, toxicity, and cross-reactivity. The presence of B and T cell epitopes was also examined in all simulated digested bioactive peptides for reference. This data is archived at the PhytoselectDBT database.
Collapse
Affiliation(s)
- Susanta Roy
- Department of Life Science, Assam University - Diphu Campus, Diphu, Karbi Anglong, ASSAM - 782 462
| | - Robindra Teron
- North Eastern Institute of Ayurveda and Folk Medicine Research (NEIAFMR) Pasighat, East Siang District, Arunachal Pradesh - 791102
| | - Raju Nikku Linga
- Department of Life Science, Assam University - Diphu Campus, Diphu, Karbi Anglong, ASSAM - 782 462
| |
Collapse
|
9
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Luo W, Deng J, He J, Yin L, You R, Zhang L, Shen J, Han Z, Xie F, He J, Guan Y. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J Cell Mol Med 2023. [PMID: 37257051 DOI: 10.1111/jcmm.17787] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/15/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
Fenugreek is an ancient herb that has been used for centuries to treat diabetes. However, how the fenugreek-derived chemical compounds work in treating diabetes remains unclarified. Herein, we integrate molecular docking and network pharmacology to elucidate the active constituents and potential mechanisms of fenugreek against diabetes. First, 19 active compounds from fenugreek and 71 key diabetes-related targets were identified through network pharmacology analysis. Then, molecular docking and simulations results suggest diosgenin, luteolin and quercetin against diabetes via regulation of the genes ESR1, CAV1, VEGFA, TP53, CAT, AKT1, IL6 and IL1. These compounds and genes may be key factors of fenugreek in treating diabetes. Cells results demonstrate that fenugreek has good biological safety and can effectively improve the glucose consumption of IR-HepG2 cells. Pathway enrichment analysis revealed that the anti-diabetic effect of fenugreek was regulated by the AGE-RAGE and NF-κB signalling pathways. It is mainly associated with anti-oxidative stress, anti-inflammatory response and β-cell protection. Our study identified the active constituents and potential signalling pathways involved in the anti-diabetic effect of fenugreek. These findings provide a theoretical basis for understanding the mechanism of the anti-diabetic effect of fenugreek. Finally, this study may help for developing anti-diabetic dietary supplements or drugs based on fenugreek.
Collapse
Affiliation(s)
- Wenfeng Luo
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Jie Deng
- Shunde Polytecnic, Foshan, China
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou, China
| | - Lingkun Zhang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jian Shen
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Zeping Han
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Yanqing Guan
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
11
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
12
|
Moldovan R, Mitrea DR, Florea A, David L, Mureşan LE, Chiş IC, Suciu ŞM, Moldovan BE, Lenghel M, Chiriac LB, Ielciu I, Hanganu D, Bab T, Clichici S. Effects of Gold Nanoparticles Functionalized with Cornus mas L. Fruit Extract on the Aorta Wall in Rats with a High-Fat Diet and Experimental-Induced Diabetes Mellitus-An Imaging Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1101. [PMID: 36985995 PMCID: PMC10051497 DOI: 10.3390/nano13061101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus and high-fat diets trigger the mechanisms that alter the walls of blood vessels. Gold nanoparticles, as new pharmaceutical drug delivery systems, may be used in the treatment of different diseases. In our study, the aorta was investigated via imaging after the oral administration of gold nanoparticles functionalized with bioactive compounds derived from Cornus mas fruit extract (AuNPsCM) in rats with a high-fat diet and diabetes mellitus. Sprague Dawley female rats that received a high-fat diet (HFD) for 8 months were injected with streptozotocin to develop diabetes mellitus (DM). The rats were randomly allocated into five groups and were treated, for one additional month with HFD, with carboxymethylcellulose (CMC), insulin, pioglitazone, AuNPsCM solution or with Cornus mas L. extract solution. The aorta imaging investigation consisted of echography, magnetic resonance imaging and transmission electron microscopy (TEM). Compared to the rats that received only CMC, the oral administration of AuNPsCM produced significant increases in aorta volume and significant decreases in blood flow velocity, with ultrastructural disorganization of the aorta wall. The oral administration of AuNPsCM altered the aorta wall with effects on the blood flow.
Collapse
Affiliation(s)
- Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Luminiţa David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Laura Elena Mureşan
- Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Irina Camelia Chiş
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Şoimița Mihaela Suciu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Bianca Elena Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Liviu Bogdan Chiriac
- Medical Biophysics, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400394 Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400010 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hatieganu, 400000 Cluj-Napoca, Romania
| | - Timea Bab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hatieganu, 400000 Cluj-Napoca, Romania
- SC PlantExtrakt SRL, Radaia, 407059 Cluj, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Fajinmi OO, Olarewaju OO, Van Staden J. Propagation of Medicinal Plants for Sustainable Livelihoods, Economic Development, and Biodiversity Conservation in South Africa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1174. [PMID: 36904034 PMCID: PMC10007054 DOI: 10.3390/plants12051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
South Africa is blessed with vast plant resources and unique vegetation types. Indigenous South African medicinal plants have been well-harnessed to generate income in rural communities. Many of these plants have been processed into natural products to heal a variety of diseases, making them valuable export commodities. South Africa has one of the most effective bio-conservation policies in Africa, which has protected the South African indigenous medicinal vegetation. However, there is a strong link between government policies for biodiversity conservation, the propagation of medicinal plants as a source of livelihood, and the development of propagation techniques by research scientists. Tertiary institutions nationwide have played a crucial role in the development of effective propagation protocols for valuable South African medicinal plants. The government-restricted harvest policies have also helped to nudge natural product companies and medicinal plant marketers to embrace the cultivated plants for their medicinal uses, and thus have helped support the South African economy and biodiversity conservation. Propagation methods used for the cultivation of the relevant medicinal plants vary according to plant family and vegetation type, among others. Plants from the Cape areas, such as the Karoo, are often resuscitated after bushfires, and propagation protocols mimicking these events have been established through seed propagation protocols with controlled temperatures and other conditions, to establish seedlings of such plants. Thus, this review highlights the role of the propagation of highly utilized and traded medicinal plants in the South African traditional medicinal system. Some valuable medicinal plants that sustain livelihoods and are highly sought-after as export raw materials are discussed. The effect of South African bio-conservation registration on the propagation of these plants and the roles of the communities and other stakeholders in the development of propagation protocols for highly utilized and endangered medicinal plants are also covered. The role of various propagation methods on the bioactive compounds' composition of medicinal plants and issues of quality assurance are addressed. The available literature, media online news, newspapers, and other resources, such as published books and manuals, were scrutinized for information.
Collapse
Affiliation(s)
- Olufunke O. Fajinmi
- Department of Nature Conservation, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Olaoluwa O. Olarewaju
- Department of Nature Conservation, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| |
Collapse
|
14
|
Evaluation of Antidiabetic Effect of Luteolin in STZ Induced Diabetic Rats: Molecular Docking, Molecular Dynamics, In Vitro and In Vivo Studies. J Funct Biomater 2023; 14:jfb14030126. [PMID: 36976050 PMCID: PMC10053838 DOI: 10.3390/jfb14030126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Despite the existence of modern antidiabetic medications, diabetes still affects millions of individuals worldwide, with a high death and disability rate. There has been a concerted search for alternative natural medicinal agents; luteolin (LUT), a polyphenolic molecule, might be a good choice, both because of its efficacy and because of it having fewer side effects, compared to conventional medicines. This study aims to explore the antidiabetic potential of LUT in diabetic rats, induced by streptozotocin (STZ; 50 mg/kg b.w.), intraperitoneally. The level of blood glucose, oral glucose tolerance test (OGTT), body weight, glycated hemoglobin A1c (HbA1c), lipidemic status, antioxidant enzymes, and cytokines were assessed. Also, its action mechanism was explored through molecular docking and molecular dynamics simulations. Oral supplementation of LUT for 21 days resulted in a significant decrease in the blood glucose, oxidative stress, and proinflammatory cytokine levels, and modulated the hyperlipidemia profile. LUT also ameliorated the tested biomarkers of liver and kidney function. In addition, LUT markedly reversed the damage to the pancreas, liver, and kidney cells. Moreover, molecular docking and molecular dynamics simulations revealed excellent antidiabetic behavior of LUT. In conclusion, the current investigation revealed that LUT possesses antidiabetic activity, through the reversing of hyperlipidemia, oxidative stress, and proinflammatory status in diabetic groups. Therefore, LUT might be a good remedy for the management or treatment of diabetes.
Collapse
|
15
|
Mao J, Wang G, Yang L, Tan L, Tian C, Tang L, Fang L, Mu Z, Zhu Z, Li Y. Combined Network Pharmacology and Molecular Docking to Verify the Treatment of Type 2 Diabetes with Pueraria Lobata Radix and Salviae Miltiorrhizae Radix. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9150324. [PMID: 36820318 PMCID: PMC9938769 DOI: 10.1155/2023/9150324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 02/13/2023]
Abstract
OBJECTIVE To explore the potential molecular mechanism of Pueraria Lobata Radix (RP) and Salviae Miltiorrhizae Radix (RS) in the treatment of type 2 diabetes mellitus (T2DM) based on network pharmacology and molecular docking. METHODS The chemical constituents and core targets of RP and RS were searched by Traditional Chinese Medicine System Pharmacology (TCMSP); target genes related to T2DM were obtained through GeneCards database, component target network diagram was constructed, intersection genes of active compounds and T2DM were synthesized, protein-protein interaction (PPI) relationship was obtained, and core targets were screened by using Cytoscape 3.7.2. Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were analyzed utilizing R studio 4.0.4 according to David database. Based on molecular docking, the screened active components of RP and RS were verified by molecular docking with the core target using Discovery Studio 2019. RESULTS There were totally 92 components and 29 corresponding targets in the component target network of RP and RS drug pair, of which 6 were the core targets of RP and RS in the treatment of T2DM. Molecular docking results showed that the active compounds of puerarin, formononetin, tanshinone iia, and luteolin had better binding activity with AKT1, VEGFA, NOS3, PPARG, MMP9, and VCAM1, respectively. Among them, puerarin showed significant effects in activating NOS3 pathway and luteolin exhibited significant effects in activating MMP9 pathway, respectively. The main biological processes mainly including xenobiotic stimulus, response to peptide, gland development, response to radiation, cellular response to chemical stress, response to oxygen levels, and the main signal pathways include response to xenobiotic stimulus, cellular response to chemical stress, response to peptide, gland development, and response to oxygen levels. CONCLUSION Network pharmacology is an effective tool to explain the action mechanism of Traditional Chinese Medicine (TCM) from the overall perspective. RP and RS pair could alleviate T2DM via the molecular mechanism predicted by the network pharmacology, which provided new ideas and further research on the molecular mechanism of T2DM.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lin Yang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Lijing Tang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Ling Fang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhenqiang Mu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| |
Collapse
|
16
|
Bajaj S, Gupta S. Nutraceuticals: A Promising Approach Towards Diabetic Neuropathy. Endocr Metab Immune Disord Drug Targets 2023; 23:581-595. [PMID: 36263482 DOI: 10.2174/1871530323666221018090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various nutraceuticals from different sources have various beneficial actions and have been reported for many years. The important findings from the research conducted using various nutraceuticals exhibiting significant physiological and pharmacological activities have been summarized. METHODS An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct, Google Scholar, etc. The entire manuscript is available in the English language that is used for our various compounds of interest. These databases were thoroughly reviewed and summarized. RESULTS Nutraceuticals obtained from various sources play a vital role in the management of peripheral neuropathy associated with diabetes. Treatment with nutraceuticals has been beneficial as an alternative in preventing the progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DPN. CONCLUSION Nutraceuticals obtained from different sources like a plant, an animal, and marine have been properly utilized for the safety of health. In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective on the management of DPN. Trials with a well-defined patient and symptom selection have shown robust pharmacological design as pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
Affiliation(s)
- Sakshi Bajaj
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| |
Collapse
|
17
|
Sayed HM, Awaad AS, Abdel Rahman FEZS, Al-Dossari M, Abd El-Gawaad NS, Ahmed OM. Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats. Pharmaceuticals (Basel) 2022; 16:34. [PMID: 36678531 PMCID: PMC9863970 DOI: 10.3390/ph16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to see how chrysin and/or bone marrow-derived mesenchymal stem cells (BM-MSCs) affected streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats as an animal model of type 2 diabetes mellitus (T2DM). Male Wistar rats were given a single intraperitoneal (i.p.) injection of 60 mg STZ/kg bodyweight (bw) 15 min after an i.p. injection of NA (120 mg/kg bw) to induce T2DM. The diabetic rats were given chrysin orally at a dose of 100 mg/kg bw every other day, BM-MSCs intravenously at a dose of 1 × 106 cells/rat/week, and their combination for 30 days after diabetes induction. The rats in the diabetic group displayed impaired oral glucose tolerance and a decrease in liver glycogen content and in serum insulin, C-peptide, and IL-13 levels. They also had significantly upregulated activities in terms of liver glucose-6-phosphatase and glycogen phosphorylase and elevated levels of serum free fatty acids, IL-1β, and TNF-α. In addition, the diabetic rats exhibited a significant elevation in the adipose tissue resistin protein expression level and a significant decrease in the expression of adiponectin, insulin receptor-beta subunit, insulin receptor substrate-1, and insulin receptor substrate-2, which were associated with a decrease in the size of the pancreatic islets and in the number of β-cells and insulin granules in the islets. The treatment of diabetic rats with chrysin and/or BM-MSCs significantly improved the previously deteriorated alterations, with chrysin combined with BM-MSCs being the most effective. Based on these findings, it can be concluded that combining chrysin with BM-MSCs produced greater additive therapeutic value than using them separately in NA/STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Hesham M. Sayed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| | - Ashraf S. Awaad
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | | | - M. Al-Dossari
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| |
Collapse
|
18
|
Ahmed ES, Mohamed HE, Farrag MA. Luteolin loaded on zinc oxide nanoparticles ameliorates non-alcoholic fatty liver disease associated with insulin resistance in diabetic rats via regulation of PI3K/AKT/FoxO1 pathway. Int J Immunopathol Pharmacol 2022; 36:3946320221137435. [PMID: 36319192 PMCID: PMC9630902 DOI: 10.1177/03946320221137435] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a worldwide health problem with high prevalence and morbidity associated with obesity, insulin resistance, type 2 diabetes mellitus (T2DM), and dyslipidemia. Nano-formulation of luteolin with Zn oxide in the form of Lut/ZnO NPs may improve the anti-diabetic property of each alone and ameliorate the insulin resistance thus management of NAFLD. This study aimed to measure the efficiency of Lut/ZnO NPs against insulin resistance coupled with NAFLD and T2DM. METHODS A diabetic rat model with NAFLD was induced by a high-fat diet and streptozotocin (30 mg/kg I.P). Serum diabetogenic markers levels, lipid profile, and activity of liver enzymes were measured beside liver oxidative stress markers. Moreover, the hepatic expressions of PI3K/AKT/FoxO1/SERBP1c as well as heme oxygenase-1 were measured beside the histopathological examination. RESULTS Lut/ZnO NPs treatment effectively reduced hyperglycemia, hyperinsulinemia, and ameliorated insulin resistance. Additionally, Lut/ZnO NPs improved the hepatic functions, the antioxidant system, and reduced the oxidative stress markers. Furthermore, the lipid load in the liver, as well as the circulating TG and TC, was minified via the suppression of lipogenesis and gluconeogenesis. Moreover, Lut/ZnO NPs activated the PI3K/AKT signaling pathway, hence inactivating FoxO1, therefore enhancing the hepatic cells' insulin sensitivity. CONCLUSION Lut/ZnO NPs have a hepatoprotective effect and may relieve the progression of NAFLD by alleviating insulin resistance, ameliorating the antioxidant status, and regulating the insulin signal pathway.
Collapse
Affiliation(s)
- Esraa Sa Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hebatallah E Mohamed
- Radiation Biology Research, National Center for Radiation Research and Technology, 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A Farrag
- Radiation Biology Research, National Center for Radiation Research and Technology, 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
19
|
Analgesic, Anti-inflammatory, Antipyretic, and In Silico Measurements of Sonneratia caseolaris (L.) Fruits from Sundarbans, Bangladesh. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1405821. [PMID: 36060147 PMCID: PMC9433288 DOI: 10.1155/2022/1405821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Sonneratia caseolaris is a widely distributed mangrove plant having much therapeutic importance in traditional medicine. This plant is reported for possessing numerous compounds that are already used for many therapeutic purposes. After finding the presence of antioxidant components in the qualitative antioxidative assay, we went to conduct quantitative tests where the total contents of phenolics, flavonoids, and tannins were estimated as 122 mg GAE/gm, 613 mg QE/gm, and 30 mg GAE/gm, respectively. In DPPH free radical, H2O2, and superoxide radical scavenging assay, the SC50 values were found to be 87, 66, and 192 μg/ml, respectively. In FeCl3 reducing power assay, the RC50 of SC extract and ascorbic acid were 80 and 28 μg/ml, respectively. This extract revealed a significant peripheral analgesic effect in the acetic acid-induced writhing model in mice by reducing the writhing impulse by about 21% and 39% at 250 and 500 mg/kg doses, respectively, and a central analgesic effect in the tail immersion method by elongating the time up to about 22% and 37% at the same doses. In the anti-inflammatory test in mice, this extract reduced the paw edema size over the observed period in a dose-dependent manner. It also showed a significant reduction in the elevated rectal temperature of mice in the observing period in Brewer's yeast-induced pyrexia model. In silico analysis revealed better binding characteristics of ellagic acid and luteolin among other compounds with various receptors that might be responsible for antioxidative and anti-inflammatory properties. From our observation, we suppose that SC fruits might be a potential source of drug leads for various inflammatory disorders.
Collapse
|
20
|
Ansari P, Akther S, Hannan JMA, Seidel V, Nujat NJ, Abdel-Wahab YHA. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022; 27:molecules27134278. [PMID: 35807526 PMCID: PMC9268530 DOI: 10.3390/molecules27134278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-1323-879720
| | - Samia Akther
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - J. M. A. Hannan
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Nusrat Jahan Nujat
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | | |
Collapse
|
21
|
Anti-Inflammatory and Active Biological Properties of the Plant-Derived Bioactive Compounds Luteolin and Luteolin 7-Glucoside. Nutrients 2022; 14:nu14061155. [PMID: 35334812 PMCID: PMC8949538 DOI: 10.3390/nu14061155] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are interesting molecules synthetized by plants. They can be found abundantly in seeds and fruits, determining the color, flavor, and other organoleptic characteristics, as well as contributing to important nutritional aspects. Beyond these characteristics, due to their biochemical properties and characteristics, they can be considered bioactive compounds. Several interesting studies have demonstrated their biological activity in different cellular and physiological processes in high-order organisms including humans. The flavonoid molecular structure confers the capability of reacting with and neutralizing reactive oxygen species (ROS), behaving as scavengers in all processes generating this class of molecules, such as UV irradiation, a process widely present in plant physiology. Importantly, the recent scientific literature has demonstrated that flavonoids, in human physiology, are active compounds acting not only as scavengers but also with the important role of counteracting the inflammation process. Among the wide variety of flavonoid molecules, significant results have been shown by investigating the role of the flavones luteolin and luteolin-7-O-glucoside (LUT-7G). For these compounds, experimental results demonstrated an interesting anti-inflammatory action, both in vitro and in vivo, in the interaction with JAK/STAT3, NF-κB, and other pathways described in this review. We also describe the effects in metabolic pathways connected with inflammation, such as cellular glycolysis, diabetes, lipid peroxidation, and effects in cancer cells. Moreover, the inhibition of inflammatory pathway in endothelial tissue, as well as the NLRP3 inflammasome assembly, demonstrates a key role in the progression of such phenomena. Since these micronutrient molecules can be obtained from food, their biochemical properties open new perspectives with respect to the long-term health status of healthy individuals, as well as their use as a coadjutant treatment in specific diseases.
Collapse
|
22
|
Bioactive Luteolin Entrapped Chitosan-PLGA Nanoparticles: Formulation Optimization to In-Vivo Preclinical Evaluation. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
El-Hawary SS, Mubarek MM, Lotfy RA, Sleem AA, Okba MM. In vivo antidiabetic potential of standardized Gymnocarpos decandrus Forssk. Extract. J Diabetes Metab Disord 2021; 20:1129-1135. [PMID: 34900766 DOI: 10.1007/s40200-021-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022]
Abstract
Background Gymnocarpos decandrus (Caryophyllaceae) is a well-known wild plant used as a food for grazing animals. Recently it showed potent antidiabetic potential beside its established anti-inflammatory, analgesic and diuretic activities. G. decandrus antidiabetic potential was reported through in-vitro models and resulted in promising α-amylase, α-glucosidase and antiviral Coxsackie B4 inhibitory activities; however no in-vivo studies were conducted. Purpose This study aims to examine Gymnocarpos decandrus ethanol extract (GDEE) safety and to evaluate its in vivo antidiabetic potential. Method Adult albino rats were injected intraperitoneally with alloxan to induce diabetes mellitus and the glucose level was measured after two and four weeks against metformin as a standard drug. Additionally, GDEE characterization and standardization were carried out. Results GDEE LD50 was up to 5.8 mg/kg and exhibited significant antidiabetic activity 77.17% comparable to the standard drug metformin. Its total phenolics, and flavonoids amounted 127.2 ± 0.23 and 85.5 ± 0.21 mg/g respectively. Vitexin was used as a marker compound for GDEE (140.70 mg/100 gm). Conclusion This study represents the sole in vivo scientific validation of G. decandrus recently documented in vitro antidiabetic potential.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Ainy, Cairo, 11562 Egypt
| | - Mahmoud M Mubarek
- Department of Medicinal and Aromatic Plants, Desert Research Center, Matariya, 11753 Egypt
| | - Rehab A Lotfy
- Department of Medicinal and Aromatic Plants, Desert Research Center, Matariya, 11753 Egypt
| | - Amany A Sleem
- Department of Pharmacology, National Research Centre, Dokki, Giza, 12622 Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Ainy, Cairo, 11562 Egypt
| |
Collapse
|
24
|
Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary Luteolin: A Narrative Review Focusing on Its Pharmacokinetic Properties and Effects on Glycolipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1441-1454. [PMID: 33522240 DOI: 10.1021/acs.jafc.0c08085] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Luteolin, a flavone subclass of flavonoids, is commonly found in food plants and has multiple biological activities. Recently, evidence is growing with regard to the potential of luteolin intake to beneficially affect glycolipid metabolism disorders (GLMDs), particularly insulin resistance, diabetes, and obesity. The aim of this contribution is to provide an overview of recent advances in identifying and understanding the pharmacokinetic properties (absorption, metabolism, and bioavailability) of luteolin, its regulatory effects on glycolipid metabolism, and the underlying mechanisms of action of luteolin in the brain, liver, adipose tissues, and other tissues/organs. Collectively, luteolin or its principal metabolites may contribute to counteracting GLMDs, especially for human obesity and diabetes.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
25
|
Sun C, Zhao C, Guven EC, Paoli P, Simal‐Gandara J, Ramkumar KM, Wang S, Buleu F, Pah A, Turi V, Damian G, Dragan S, Tomas M, Khan W, Wang M, Delmas D, Portillo MP, Dar P, Chen L, Xiao J. Dietary polyphenols as antidiabetic agents: Advances and opportunities. FOOD FRONTIERS 2020; 1:18-44. [DOI: 10.1002/fft2.15] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractDietary polyphenols have been widely investigated as antidiabetic agents in cell, animals, human study, and clinical trial. The number of publication (Indexed by Web of Science) on “polyphenols and diabetes” significantly increased since 2010. This review highlights the advances and opportunities of dietary polyphenols as antidiabetic agents. Dietary polyphenols prevent and manage Type 2 diabetes mellitus via the insulin‐dependent approaches, for instance, protection of pancreatic islet β‐cell, reduction of β‐cell apoptosis, promotion of β‐cell proliferation, attenuation of oxidative stress, activation of insulin signaling, and stimulation of pancreas to secrete insulin, as well as the insulin‐independent approaches including inhibition of glucose absorption, inhibition of digestive enzymes, regulation of intestinal microbiota, modification of inflammation response, and inhibition of the formation of advanced glycation end products. Moreover, dietary polyphenols ameliorate diabetic complications, such as vascular dysfunction, nephropathy, retinopathy, neuropathy, cardiomyopathy, coronary diseases, renal failure, and so on. The structure–activity relationship of polyphenols as antidiabetic agents is still not clear. The individual flavonoid or isoflavone has no therapeutic effect on diabetic patients, although the clinical data are very limited. Resveratrol, curcumin, and anthocyanins showed antidiabetic activity in human study. How hyperglycemia influences the bioavailability and bioactivity of dietary polyphenols is not well understood. An understanding of how diabetes alters the bioavailability and bioactivity of dietary polyphenols will lead to an improvement in their benefits and clinical outcomes.
Collapse
Affiliation(s)
- Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Zhejiang University Hangzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Esra Capanoglu Guven
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering İstanbul Technical University Istanbul Turkey
| | - Paolo Paoli
- Department of Biomedical, Experimental, and Clinical Sciences University of Florence Florence Italy
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense Spain
| | - Kunka Mohanram Ramkumar
- Life Science Division SRM Research Institute SRM University Kattankulathur India
- Department of Biotechnology School of Bio‐engineering SRM University Kattankulathur India
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Florina Buleu
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Ana Pah
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Vladiana Turi
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Georgiana Damian
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Simona Dragan
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences Food Engineering Department Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Washim Khan
- National Center for Natural Products Research School of Pharmacy The University of Mississippi, University Mississippi
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Dominique Delmas
- INSERM U866 Research Center Université de Bourgogne Franche‐Comté Dijon France
- INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team Bioactive Molecules and Health Research Group Dijon France
- Centre Anticancéreux Georges François Leclerc Center Dijon France
| | - Maria Puy Portillo
- Nutrition and Obesity Group Department of Nutrition and Food Science Faculty of Pharmacy and Lucio Lascaray Research Institute University of País Vasco (UPV/EHU) Vitoria‐Gasteiz Spain
- CIBEROBN Physiopathology of Obesity and Nutrition Institute of Health Carlos III (ISCIII) Vitoria‐Gasteiz Spain
| | - Parsa Dar
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Lei Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| |
Collapse
|