1
|
Hurlow J, Wolcott RD, Bowler PG. Clinical management of chronic wound infections: The battle against biofilm. Wound Repair Regen 2025; 33:e13241. [PMID: 39600232 DOI: 10.1111/wrr.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Bacteria constitute the most abundant life form on earth, of which the majority exist in a protective biofilm state. Since the 1980s, we have learned much about the role of biofilm in human chronic infections, with associated global healthcare costs recently estimated at ~$386 billion. Chronic wound infection is a prominent biofilm-induced condition that is characterised by persistent inflammation and associated host tissue destruction, and clinical signs that are distinct from signs of acute wound infection. Biofilm also enables greater tolerance to antimicrobial agents in chronic wound infections compared with acute wound infections. Given the difficulty in eliminating wound biofilm, a multi-targeted strategy (namely biofilm-based wound care) involving debridement and antimicrobial therapies were introduced and have been practiced since the early 2000s. More recently, acknowledgement of the speed at which biofilm can develop and hence quickly interfere with wound healing has highlighted the need for an early anti-biofilm strategy to combat biofilm before it takes control and prevents wound healing. This strategy, referred to as wound hygiene, involves multiple tools in combination (debridement, cleansing, and antimicrobial dressings) to maximise success in biofilm removal and encourage wound healing. This review is intended to highlight the issues and challenges associated with biofilm-induced chronic infections, and specifically address the challenges in chronic wound management, and tools required to combat biofilm and encourage wound healing.
Collapse
Affiliation(s)
- Jennifer Hurlow
- ProHeal Wound Clinic, Baptist Memorial Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
2
|
Vijay A, Dirain CO, Chen S, Haberman R, Sharma A, Chiang YH, Antonelli PJ. Microbiome and Otic Quinolone Levels Following Tympanoplasty Assessed by Gelatin Sponge Analysis. Otolaryngol Head Neck Surg 2024; 171:400-407. [PMID: 38529675 DOI: 10.1002/ohn.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE To determine if absorbable gelatin sponge (AGS) can be used to assess the posttympanoplasty microbiome and otic antibiotic exposure. STUDY DESIGN Prospective. SETTING Tertiary hospital. METHODS Patients undergoing tympanoplasty were prospectively enrolled. Intraoperatively, AGS was applied to the medial ear canal/tympanic membrane (TM) for 1 minute after canal incision, then saved for analysis. Ear canals were packed with AGS at the end of surgery. Otic ofloxacin was administered until the first postoperative visit, when AGS was collected. Microbial presence was assessed by culture. Ofloxacin levels were assessed by liquid-chromatography mass-spectrometry. RESULTS Fifty-three patients were included. AGS was collected in 92.9% of patients seen within 21 days compared to 70.8% of those seen at 22 to 35 days. At surgery, AGS yielded bacteria and fungi in 81% and 11%, respectively, including Staphylococcus species (55%) and Pseudomonas species (25%). Postoperatively, AGS yielded bacteria in 71% and fungi in 21% at the meatus, (staphylococci 57% and pseudomonas 25%). TM samples yielded bacteria in 69%, fungi in 6%, staphylococci in 53%, and pseudomonas in 19%. Ofloxacin concentration at the meatus was 248 μg/mL (95% confidence interval [CI]: 119-377) and at the TM was 126 μg/mL (95% CI: 58-194). Ofloxacin-resistant colonies were found in 75% of patients. CONCLUSION Analysis of AGS is a viable technique for noninvasively studying healing metrics posttympanoplasty, including the microbiome and otic antibiotic exposure. Despite exposure to a high concentration of quinolones, the tympanoplasty wound is far from sterile, which may impact healing outcomes.
Collapse
Affiliation(s)
- Arunima Vijay
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, Florida, USA
| | - Carolyn O Dirain
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Si Chen
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, Florida, USA
| | - Rex Haberman
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, Florida, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
| | - Yi-Hua Chiang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
| | - Patrick J Antonelli
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Li Y, Zhang L, He M, Zhao Y. Sequence analysis of microbiota in clinical human cases with diabetic foot ulcers from China. Heliyon 2024; 10:e34368. [PMID: 39104504 PMCID: PMC11298921 DOI: 10.1016/j.heliyon.2024.e34368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Background Diabetic foot ulcers (DFU) seriously threaten the health and quality of life of patients. The microbiota is the primary reason for the refractory and high recurrence of DFU. This study aimed to determine the wound microbiota at different DFU stages. Methods Wound samples were collected from 48 patients with DFU and divided into three phases: inflammatory (I, n = 49), proliferation (P, n = 22), and remodeling (R, n = 19). The wound samples obtained at different stages were then subjected to 16S rRNA gene sequencing. The number of operational taxonomic units (OTUs) in the different groups was calculated according to the criterion of 97 % sequence similarity. The diversity of the microbiota differentially presented bacterial taxa at the phylum and genus levels, and important phyla and genera in the different groups were further explored. Results After sequencing, 3351, 925, and 777 OTUs were observed in groups I, P, and R, respectively, and 175 OTUs overlapped. Compared with the inflammatory stage, the α-diversity of wound microbiota at proliferation and remodeling stages was significantly decreased (P < 0.05). At the phylum level, Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota were the dominant phyla, accounting for more than 90 % of all the phyla. At the genus level, Random Forest and linear discriminant analysis effect size analyses showed that Peptoniphilus, Lactobacillus, Prevotella, Veillonella, Dialister, Streptococcus, and Ruminococcus were the signature wound microbiota for the inflammatory stage; Anaerococcus, Ralstonia, Actinomyces, and Akkermansia were important species for the proliferation stage; and the crucial genera for the remodeling stage were Enterobacter, Pseudomonas, Sondgrassella, Bifidobacterium, and Faecalibacterium. Conclusions There were significant differences in the composition and structure of the wound microbiota in patients with DFU at different stages, which may lay a foundation for effectively promoting wound healing in DFU.
Collapse
Affiliation(s)
- Ying Li
- The Ninth Clinical School of Shanxi Medical University, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Li Zhang
- Department of Endocrinology, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Meifang He
- Department of Endocrinology, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Yuebin Zhao
- Department of Endocrinology, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| |
Collapse
|
4
|
Mihai MM, Bălăceanu-Gurău B, Ion A, Holban AM, Gurău CD, Popescu MN, Beiu C, Popa LG, Popa MI, Dragomirescu CC, Preda M, Muntean AA, Macovei IS, Lazăr V. Host-Microbiome Crosstalk in Chronic Wound Healing. Int J Mol Sci 2024; 25:4629. [PMID: 38731848 PMCID: PMC11083077 DOI: 10.3390/ijms25094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The pathogenesis of chronic wounds (CW) involves a multifaceted interplay of biochemical, immunological, hematological, and microbiological interactions. Biofilm development is a significant virulence trait which enhances microbial survival and pathogenicity and has various implications on the development and management of CW. Biofilms induce a prolonged suboptimal inflammation in the wound microenvironment, associated with delayed healing. The composition of wound fluid (WF) adds more complexity to the subject, with proven pro-inflammatory properties and an intricate crosstalk among cytokines, chemokines, microRNAs, proteases, growth factors, and ECM components. One approach to achieve information on the mechanisms of disease progression and therapeutic response is the use of multiple high-throughput 'OMIC' modalities (genomic, proteomic, lipidomic, metabolomic assays), facilitating the discovery of potential biomarkers for wound healing, which may represent a breakthrough in this field and a major help in addressing delayed wound healing. In this review article, we aim to summarize the current progress achieved in host-microbiome crosstalk in the spectrum of CW healing and highlight future innovative strategies to boost the host immune response against infections, focusing on the interaction between pathogens and their hosts (for instance, by harnessing microorganisms like probiotics), which may serve as the prospective advancement of vaccines and treatments against infections.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| | | | - Ana Ion
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| | - Cristian-Dorin Gurău
- Orthopedics and Traumatology Clinic, Clinical Emergency Hospital, 014451 Bucharest, Romania;
| | - Marius Nicolae Popescu
- Department of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Clinic of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Mircea Ioan Popa
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Cerasella Cristiana Dragomirescu
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Mădălina Preda
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru-Andrei Muntean
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Ioana Sabina Macovei
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Veronica Lazăr
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| |
Collapse
|
5
|
Zong Q, Peng X, Wu H, Ding Y, Ye X, Gao X, Sun W, Zhai Y. Copper-gallate metal-organic framework encapsulated multifunctional konjac glucomannan microneedles patches for promoting wound healing. Int J Biol Macromol 2024; 257:128581. [PMID: 38048929 DOI: 10.1016/j.ijbiomac.2023.128581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
An ideal chronic wound dressing needs to have some properties, such as antibacterial, antioxidant, regulating macrophage polarization and promoting angiogenesis. This work presents a microneedle patch fabricated from oxidized konjac glucomannan (OKGM-MNs), in which Copper-gallate metal-organic framework (CuGA-MOF) is encapsulated for wound healing (denoted as CuGA-MOF@OKGM-MNs). CuGA-MOF is composed of Cu2+ and gallic acid (GA), which are released through microneedles in the deep layer of the dermis. The released Cu2+ is able to act as an antibacterial agent and promote angiogenesis, while GA as a reactive oxygen species scavenger displays antioxidant activity. More attractively, the material OKGM used to prepare the microneedle patch is not only a drug carrier but also plays a role in promoting macrophage polarization M2 phenotype. In vitro experiments showed that CuGA-MOF@OKGM-MNs had good antibacterial and antioxidant properties. The therapeutic effect on wound healing has been confirmed in full-thickness skin wounds of diabetes mice models, which showed that the wound could be completely healed within 21 days under the treatment of CuGA-MOF@OKGM-MNs, and the healing effect was better than other groups. These indicated that the proposed CuGA-MOF@OKGM-MNs could be applicable in the treatment of clinical wound healing.
Collapse
Affiliation(s)
- Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinxuan Peng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Ding
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuanjiayi Ye
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China
| | - Xiuwei Gao
- Shandong Junxiu Biotechnology Co., Ltd., Yantai 264006, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Zielińska M, Pawłowska A, Orzeł A, Sulej L, Muzyka-Placzyńska K, Baran A, Filipecka-Tyczka D, Pawłowska P, Nowińska A, Bogusławska J, Scholz A. Wound Microbiota and Its Impact on Wound Healing. Int J Mol Sci 2023; 24:17318. [PMID: 38139146 PMCID: PMC10743523 DOI: 10.3390/ijms242417318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Wound healing is a complex process influenced by age, systemic conditions, and local factors. The wound microbiota's crucial role in this process is gaining recognition. This concise review outlines wound microbiota impacts on healing, emphasizing distinct phases like hemostasis, inflammation, and cell proliferation. Inflammatory responses, orchestrated by growth factors and cytokines, recruit neutrophils and monocytes to eliminate pathogens and debris. Notably, microbiota alterations relate to changes in wound healing dynamics. Commensal bacteria influence immune responses, keratinocyte growth, and blood vessel development. For instance, Staphylococcus epidermidis aids keratinocyte progression, while Staphylococcus aureus colonization impedes healing. Other bacteria like Group A Streptococcus spp. And Pseudomonas affect wound healing as well. Clinical applications of microbiota-based wound care are promising, with probiotics and specific bacteria like Acinetobacter baumannii aiding tissue repair through molecule secretion. Understanding microbiota influence on wound healing offers therapeutic avenues. Tailored approaches, including probiotics, prebiotics, and antibiotics, can manipulate the microbiota to enhance immune modulation, tissue repair, and inflammation control. Despite progress, critical questions linger. Determining the ideal microbiota composition for optimal wound healing, elucidating precise influence mechanisms, devising effective manipulation strategies, and comprehending the intricate interplay between the microbiota, host, and other factors require further exploration.
Collapse
Affiliation(s)
- Małgorzata Zielińska
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Agnieszka Pawłowska
- Students Research Group of Obstetrics and Gynecology Department at St. Sophia Hospital, 01-004 Warsaw, Poland; (A.P.)
| | - Anna Orzeł
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Luiza Sulej
- Students Research Group of Obstetrics and Gynecology Department at St. Sophia Hospital, 01-004 Warsaw, Poland; (A.P.)
| | - Katarzyna Muzyka-Placzyńska
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Arkadiusz Baran
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Dagmara Filipecka-Tyczka
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Paulina Pawłowska
- Students Scientific Association, Department of Hygiene and Epidemiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Nowińska
- Students Scientific Association, Department of Hygiene and Epidemiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland;
| | - Anna Scholz
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| |
Collapse
|
7
|
Kao PHN, Ch'ng JH, Chong KKL, Stocks CJ, Wong SL, Kline KA. Enterococcus faecalis suppresses Staphylococcus aureus-induced NETosis and promotes bacterial survival in polymicrobial infections. FEMS MICROBES 2023; 4:xtad019. [PMID: 37900578 PMCID: PMC10608956 DOI: 10.1093/femsmc/xtad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen that is frequently co-isolated with other microbes in wound infections. While E. faecalis can subvert the host immune response and promote the survival of other microbes via interbacterial synergy, little is known about the impact of E. faecalis-mediated immune suppression on co-infecting microbes. We hypothesized that E. faecalis can attenuate neutrophil-mediated responses in mixed-species infection to promote survival of the co-infecting species. We found that neutrophils control E. faecalis infection via phagocytosis, ROS production, and degranulation of azurophilic granules, but it does not trigger neutrophil extracellular trap formation (NETosis). However, E. faecalis attenuates Staphylococcus aureus-induced NETosis in polymicrobial infection by interfering with citrullination of histone, suggesting E. faecalis can actively suppress NETosis in neutrophils. Residual S. aureus-induced NETs that remain during co-infection do not impact E. faecalis, further suggesting that E. faecalis possess mechanisms to evade or survive NET-associated killing mechanisms. E. faecalis-driven reduction of NETosis corresponds with higher S. aureus survival, indicating that this immunomodulating effect could be a risk factor in promoting the virulence polymicrobial infection. These findings highlight the complexity of the immune response to polymicrobial infections and suggest that attenuated pathogen-specific immune responses contribute to pathogenesis in the mammalian host.
Collapse
Affiliation(s)
- Patrick Hsien-Neng Kao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Jun-Hong Ch'ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Infectious Disease Translational Research Program, National University Health System, Singapore 117545
| | - Kelvin K L Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Claudia J Stocks
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Siu Ling Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Tan Tock Seng Hospital, National Healthcare Group, Singapore 308433
| | - Kimberly A Kline
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland 1211
| |
Collapse
|
8
|
Xie Y, Hu T, Chen R, Chang H, Wang Q, Cheng J. Predicting acute radiation dermatitis in breast cancer: a prospective cohort study. BMC Cancer 2023; 23:537. [PMID: 37308936 DOI: 10.1186/s12885-023-10821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Acute radiation dermatitis (ARD) is one of the most common acute adverse reactions in breast cancer patients during and immediately after radiotherapy. As ARD affects patient quality of life, it is important to conduct individualized risk assessments of patients in order to identify those patients most at risk of developing severe ARD. METHODS The data of breast cancer patients who received radiotherapy were prospectively collected and analyzed. Serum ferritin, high-sensitivity C-reactive protein (hs-CRP) levels, and percentages of lymphocyte subsets were measured before radiotherapy. ARD was graded (0-6 grade), according to the Oncology Nursing Society Skin Toxicity Scale. Univariate and multivariate logistic regression analyses were used and the odds ratio (OR) and 95% confidence interval (CI) of each factor were calculated. RESULTS This study included 455 breast cancer patients. After radiotherapy, 59.6% and 17.8% of patients developed at least 3 (3+) grade and at least 4 (4+) grade ARD, respectively. Multivariate logistic regression analysis found that body mass index (OR: 1.11, 95% CI: 1.01-1.22), diabetes (OR: 2.70, 95% CI: 1.11-6.60), smoking (OR: 3.04, 95% CI: 1.15-8.02), higher ferritin (OR: 3.31, 95% CI: 1.78-6.17), higher hs-CRP (OR: 1.96, 95% CI: 1.02-3.77), and higher CD3 + T cells (OR: 2.99, 95% CI: 1.10-3.58) were independent risk factors for 4 + grade ARD. Based on these findings, a nomogram model of 4 + grade ARD was further established. The nomogram AUC was 0.80 (95% CI: 0.75-0.86), making it more discriminative than any single factor. CONCLUSION BMI, diabetes, smoking history, higher ferritin, higher hs-CRP, and higher CD3 + T cells prior to radiotherapy for breast cancer are all independent risk factors for 4 + grade ARD. The results can provide evidence for clinicians to screen out high-risk patients, take precautions and carefully follow up on these patients before and during radiotherapy.
Collapse
Affiliation(s)
- Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renwang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haiyan Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Burnet M, Metcalf DG, Milo S, Gamerith C, Heinzle A, Sigl E, Eitel K, Haalboom M, Bowler PG. A Host-Directed Approach to the Detection of Infection in Hard-to-Heal Wounds. Diagnostics (Basel) 2022; 12:2408. [PMID: 36292097 PMCID: PMC9601189 DOI: 10.3390/diagnostics12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
Wound infection is traditionally defined primarily by visual clinical signs, and secondarily by microbiological analysis of wound samples. However, these approaches have serious limitations in determining wound infection status, particularly in early phases or complex, chronic, hard-to-heal wounds. Early or predictive patient-derived biomarkers of wound infection would enable more timely and appropriate intervention. The observation that immune activation is one of the earliest responses to pathogen activity suggests that immune markers may indicate wound infection earlier and more reliably than by investigating potential pathogens themselves. One of the earliest immune responses is that of the innate immune cells (neutrophils) that are recruited to sites of infection by signals associated with cell damage. During acute infection, the neutrophils produce oxygen radicals and enzymes that either directly or indirectly destroy invading pathogens. These granular enzymes vary with cell type but include elastase, myeloperoxidase, lysozyme, and cathepsin G. Various clinical studies have demonstrated that collectively, these enzymes, are sensitive and reliable markers of both early-onset phases and established infections. The detection of innate immune cell enzymes in hard-to-heal wounds at point of care offers a new, simple, and effective approach to determining wound infection status and may offer significant advantages over uncertainties associated with clinical judgement, and the questionable value of wound microbiology. Additionally, by facilitating the detection of early wound infection, prompt, local wound hygiene interventions will likely enhance infection resolution and wound healing, reduce the requirement for systemic antibiotic therapy, and support antimicrobial stewardship initiatives in wound care.
Collapse
Affiliation(s)
- Michael Burnet
- Synovo GmbH, Paul Ehrlich Straße 15, 72076 Tuebingen, Germany
| | - Daniel G. Metcalf
- ConvaTec Ltd., First Avenue, Deeside Industrial Park, Deeside CH5 2NU, UK
| | - Scarlet Milo
- ConvaTec Ltd., First Avenue, Deeside Industrial Park, Deeside CH5 2NU, UK
| | - Clemens Gamerith
- Austrian Centre of Industrial Biotechnology, Krennagsse 37, A-8010 Graz, Austria
| | - Andrea Heinzle
- Qualizyme Diagnostics GmbH & Co. KG, Neue Stiftingtalstrasse 2, A-8010 Graz, Austria
| | - Eva Sigl
- Qualizyme Diagnostics GmbH & Co. KG, Neue Stiftingtalstrasse 2, A-8010 Graz, Austria
| | - Kornelia Eitel
- Synovo GmbH, Paul Ehrlich Straße 15, 72076 Tuebingen, Germany
| | - Marieke Haalboom
- Medical School Twente, Medisch Spectrum Twente, 7512 KZ Enschede, The Netherlands
| | | |
Collapse
|
10
|
Li M, Aveyard J, Doherty KG, Deller RC, Williams RL, Kolegraff KN, Kaye SB, D’Sa RA. Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications. ACS MATERIALS AU 2022; 2:190-203. [PMID: 36855758 PMCID: PMC9888637 DOI: 10.1021/acsmaterialsau.1c00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition, vascularity of the wound bed, and coexisting infection/colonization. Bacterial infections are one of the predominant issues that can stall a wound, causing it to become chronic. Successful wound healing often depends on weeks or months of antimicrobial therapy, but this is problematic given the rise in multidrug-resistant bacteria. As such, alternatives to antibiotics are desperately needed to aid the healing of chronic, and even acutely infected wounds. Nitric oxide (NO) kills bacteria through a variety of mechanisms, and thus, bacteria have shown no tendency to develop resistance to NO as a therapeutic agent and therefore can be a good alternative to antibiotic therapy. In this paper, we report on the development of NO-releasing electrospun membranes fabricated from polycaprolactone (PCL)/gelatin blends and optimized to reduce bacterial infection. The NO payload in the membranes was directly related to the number of amines (and hence the amount of gelatin) in the blend. Higher NO payloads corresponded with a higher degree of antimicrobial efficacy. No cytotoxicity was observed for electrospun membranes, and an in vitro wound closure assay demonstrated closure within 16 h. The results presented here clearly indicate that these NO-releasing electrospun membranes hold significant promise as wound dressings due to their antimicrobial activity and biocompatibility.
Collapse
Affiliation(s)
- Man Li
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Jenny Aveyard
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Kyle G. Doherty
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Robert C. Deller
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Rachel L. Williams
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Keli N. Kolegraff
- Department
of Plastic and Reconstructive Surgery, The
Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
| | - Stephen B. Kaye
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Raechelle A. D’Sa
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom,
| |
Collapse
|
11
|
Wu C, Shen L, Lu Y, Hu C, Liang Z, Long L, Ning N, Chen J, Guo Y, Yang Z, Hu X, Zhang J, Wang Y. Intrinsic Antibacterial and Conductive Hydrogels Based on the Distinct Bactericidal Effect of Polyaniline for Infected Chronic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52308-52320. [PMID: 34709801 DOI: 10.1021/acsami.1c14088] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most chronic wounds suffer from infections, and their treatment is challenging. The usage of antibiotics may lead to bacterial resistance and adverse side effects. Positively charged substances have shown promise, but their applications are usually limited by certain cytotoxicity or complex synthesis. Doped polyaniline that carries a high density of positive charges would be a promising candidate due to its good biocompatibility and easy availability, but its interaction with bacteria has not been elucidated. Herein, the distinct bactericidal effect of polyaniline against Gram-positive bacteria has been verified. The antibacterial activity may result from the specific interaction with lipoteichoic acid to destroy the Gram-positive bacterial cell wall. Polyaniline and a macromolecular dopant (sulfonated hyaluronic acid) are used to construct a flexible hydrogel with skin-mimic electrical conductivity. The in vivo results demonstrate that electrical stimulation (ES) through this hydrogel is superior to ES via separated electrodes (the ES strategy used clinically) for promoting infected chronic wound healing.
Collapse
Affiliation(s)
- Can Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lu Shen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuhui Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhen Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Linyu Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ning Ning
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiali Chen
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Guo
- Rotex Co., Ltd., Chengdu, Sichuan 610043, China
| | - Zeyu Yang
- Rotex Co., Ltd., Chengdu, Sichuan 610043, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
12
|
Rippon MG, Rogers AA, Ousey K. Estrategias de protección antimicrobiana en el cuidado de heridas: evidencia para el uso de apósitos recubiertos con DACC. J Wound Care 2021; 30:21-35. [PMID: 34558974 DOI: 10.12968/jowc.2021.30.latam_sup_1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the most serious health threats globally. The development of new antimicrobials is not keeping pace with the evolution of resistant microorganisms, and novel ways of tackling this problem are required. One of such initiatives has been the development of antimicrobial stewardship programmes (AMS). The use of wound dressings that employ a physical sequestration and retention approach to reduce bacterial burden offers a novel approach to support AMS. Bacterial-binding by dressings and their physical removal can minimise their damage and prevent the release of harmful endotoxins. OBJECTIVE To highlight AMS to promote the correct use of antimicrobials and to investigate how dialkylcarbamyl chloride (DACC)-coated dressings can support AMS. METHOD MEDLINE, Cochrane Database of Systematic Reviews, and Google Scholar were searched to identify articles relating to AMS, and the use of wound dressings in the prevention and treatment of wound infections. The evidence supporting alternative wound dressings that can reduce bioburden and prevent wound infection in a way that does not kill or damage the microorganisms were reviewed. RESULTS The evidence demonstrated that using bacterial-binding wound dressings that act in a physical manner (eg, DACC-coated dressings) to preventing infection in both acute and hard-to-heal wounds does not exacerbate AMR and supports AMS. CONCLUSION Some wound dressings work via a mechanism that promotes the binding and physical sequestration and removal of intact microorganisms from the wound bed (eg, a wound dressing that uses DACC technology to prevent/reduce infection). They provide a valuable tool that aligns with the requirements of AMS by effectively reducing wound bioburden without inducing/selecting for resistant bacteria.
Collapse
Affiliation(s)
| | | | - Karen Ousey
- Huddersfield University, Reino Unido.,School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,Royal College of Surgeons in Ireland, Dublin, Irlanda
| |
Collapse
|
13
|
Rahman MU, Fleming DF, Sinha I, Rumbaugh KP, Gordon VD, Christopher GF. Effect of collagen and EPS components on the viscoelasticity of Pseudomonas aeruginosa biofilms. SOFT MATTER 2021; 17:6225-6237. [PMID: 34109345 PMCID: PMC8283923 DOI: 10.1039/d1sm00463h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes thousands of deaths every year in part due to its ability to form biofilms composed of bacteria embedded in a matrix of self-secreted extracellular polysaccharides (EPS), e-DNA, and proteins. In chronic wounds, biofilms are exposed to the host extracellular matrix, of which collagen is a major component. How bacterial EPS interacts with host collagen and whether this interaction affects biofilm viscoelasticity is not well understood. Since physical disruption of biofilms is often used in their removal, knowledge of collagen's effects on biofilm viscoelasticity may enable new treatment strategies that are better tuned to biofilms growing in host environments. In this work, biofilms are grown in the presence of different concentrations of collagen that mimic in vivo conditions. In order to explore collagen's interaction with EPS, nine strains of P. aeruginosa with different patterns of EPS production were used to grow biofilms. Particle tracking microrheology was used to characterize the mechanical development of biofilms over two days. Collagen is found to decrease biofilm compliance and increase relative elasticity regardless of the EPS present in the system. However, this effect is minimized when biofilms overproduce EPS. Collagen appears to become a de facto component of the EPS, through binding to bacteria or physical entanglement.
Collapse
Affiliation(s)
- Minhaz Ur Rahman
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| | - Derek F Fleming
- Department of Surgery, Texas Tech Health Sciences, Lubbock, TX, USA
| | - Indranil Sinha
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| | | | - Vernita D Gordon
- Department of Physics, Center for Nonlinear Dynamics, Interdisciplinary Life Sciences Graduate Programs, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| | - Gordon F Christopher
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
14
|
Brown HL, Clayton A, Stephens P. The role of bacterial extracellular vesicles in chronic wound infections: Current knowledge and future challenges. Wound Repair Regen 2021; 29:864-880. [PMID: 34132443 DOI: 10.1111/wrr.12949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Chronic wounds are a significant global problem with an increasing economic and patient welfare impact. How wounds move from an acute to chronic, non-healing, state is not well understood although it is likely that it is driven by a poorly regulated local inflammatory state. Opportunistic pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa are well known to stimulate a pro-inflammatory response and so their presence may further drive chronicity. Studies have demonstrated that host cell extracellular vesicles (hEVs), in particular exosomes, have multiple roles in both increasing and decreasing chronicity within wounds; however, the role of bacterial extracellular vesicles (bEVs) is still poorly understood. The aim of this review is to evaluate bEV biogenesis and function within chronic wound relevant bacterial species to determine what, if any, role bEVs may have in driving wound chronicity. We determine that bEVs drive chronicity by both increasing persistence of key pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa and stimulating a pro-inflammatory response by the host. Data also suggest that both bEVs and hEVs show therapeutic promise, providing vaccine candidates, decoy targets for bacterial toxins or modulating the bacterial species within chronic wound biofilms. Caution should, however, be used when interpreting findings to date as the bEV field is still in its infancy and as such lacks consistency in bEV isolation and characterization. It is of primary importance that this is addressed, allowing meaningful conclusions to be drawn and increasing reproducibility within the field.
Collapse
Affiliation(s)
- Helen L Brown
- School of Dentistry, Cardiff University, Cardiff, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff, UK
| | - Phil Stephens
- School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Inhibitory Effect of Cold Atmospheric Plasma on Chronic Wound-Related Multispecies Biofilms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presence of microbial biofilms in the wounds affects negatively the healing process and can contribute to therapeutic failures. This study aimed to establish the effective parameters of cold atmospheric plasma (CAP) against wound-related multispecies and monospecies biofilms, and to evaluate the cytotoxicity and genotoxicity of the protocol. Monospecies and multispecies biofilms were formed by methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Enterococcus faecalis. The monospecies biofilms were grown in 96 wells plates and multispecies biofilm were formed on collagen membranes. The biofilms were exposed to helium CAP for 1, 3, 5 and 7 min. In monospecies biofilms, the inhibitory effect was detected after 1 min of exposure for E. faecalis and after 3 min for MRSA. A reduction in P. aeruginosa biofilm’s viability was detected after 7 min of exposure. For the multispecies biofilms, the reduction in the overall viability was detected after 5 min of exposure to CAP. Additionally, cytotoxicity and genotoxicity were evaluated by MTT assay and static cytometry, respectively. CAP showed low cytotoxicity and no genotoxicity to mouse fibroblastic cell line (3T3). It could be concluded that He-CAP showed inhibitory effect on wound-related multispecies biofilms, with low cytotoxicity and genotoxicity to mammalian cells. These findings point out the potential application of CAP in wound care.
Collapse
|
16
|
The Ambivalent Role of Skin Microbiota and Adrenaline in Wound Healing and the Interplay between Them. Int J Mol Sci 2021; 22:ijms22094996. [PMID: 34066786 PMCID: PMC8125934 DOI: 10.3390/ijms22094996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
After skin injury, wound healing sets into motion a dynamic process to repair and replace devitalized tissues. The healing process can be divided into four overlapping phases: hemostasis, inflammation, proliferation, and maturation. Skin microbiota has been reported to participate in orchestrating the wound healing both in negative and positive ways. Many studies reported that skin microbiota can impose negative and positive effects on the wound. Recent findings have shown that many bacterial species on human skin are able to convert aromatic amino acids into so-called trace amines (TAs) and convert corresponding precursors into dopamine and serotonin, which are all released into the environment. As a stress reaction, wounded epithelial cells release the hormone adrenaline (epinephrine), which activates the β2-adrenergic receptor (β2-AR), impairing the migration ability of keratinocytes and thus re-epithelization. This is where TAs come into play, as they act as antagonists of β2-AR and thus attenuate the effects of adrenaline. The result is that not only TAs but also TA-producing skin bacteria accelerate wound healing. Adrenergic receptors (ARs) play a key role in many physiological and disease-related processes and are expressed in numerous cell types. In this review, we describe the role of ARs in relation to wound healing in keratinocytes, immune cells, fibroblasts, and blood vessels and the possible role of the skin microbiota in wound healing.
Collapse
|
17
|
Rippon MG, Rogers AA, Ousey K. Antimicrobial stewardship strategies in wound care: evidence to support the use of dialkylcarbamoyl chloride (DACC)- coated wound dressings. J Wound Care 2021; 30:284-296. [PMID: 33856907 DOI: 10.12968/jowc.2021.30.4.284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Traditionally, infections are treated with antimicrobials (for example, antibiotics, antiseptics, etc), but antimicrobial resistance (AMR) has become one of the most serious health threats of the 21st century (before the emergence of COVID-19). Wounds can be a source of infection by allowing unconstrained entry of microorganisms into the body, including antimicrobial-resistant bacteria. The development of new antimicrobials (particularly antibiotics) is not keeping pace with the evolution of resistant microorganisms and novel ways of addressing this problem are urgently required. One such initiative has been the development of antimicrobial stewardship (AMS) programmes, which educate healthcare workers, and control the prescribing and targeting of antimicrobials to reduce the likelihood of AMR. Of great importance has been the European Wound Management Association (EWMA) in supporting AMS by providing practical recommendations for optimising antimicrobial therapy for the treatment of wound infection. The use of wound dressings that use a physical sequestration and retention approach rather than antimicrobial agents to reduce bacterial burden offers a novel approach that supports AMS. Bacterial-binding by dressings and their physical removal, rather than active killing, minimises their damage and hence prevents the release of damaging endotoxins. AIM Our objective is to highlight AMS for the promotion of the judicious use of antimicrobials and to investigate how dialkylcarbamoyl chloride (DACC)-coated dressings can support AMS goals. METHOD MEDLINE, Cochrane Database of Systematic Reviews, and Google Scholar were searched to identify published articles describing data relating to AMS, and the use of a variety of wound dressings in the prevention and/or treatment of wound infections. The evidence supporting alternative wound dressings that can reduce bioburden and prevent and/or treat wound infection in a manner that does not kill or damage the microorganisms (for example, by actively binding and removing intact microorganisms from wounds) were then narratively reviewed. RESULTS The evidence reviewed here demonstrates that using bacterial-binding wound dressings that act in a physical manner (for example, DACC-coated dressings) as an alternative approach to preventing and/or treating infection in both acute and hard-to-heal wounds does not exacerbate AMR and supports AMS. CONCLUSION Some wound dressings work via a mechanism that promotes the binding and physical uptake, sequestration and removal of intact microorganisms from the wound bed (for example, a wound dressing that uses DACC technology to successfully prevent/reduce infection). They provide a valuable tool that aligns with the requirements of AMS (for example, reducing the use of antimicrobials in wound treatment regimens) by effectively reducing wound bioburden without inducing/selecting for resistant bacteria.
Collapse
Affiliation(s)
| | | | - Karen Ousey
- WoundCareSol Consultancy, UK.,School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
18
|
Ramadan M, Hetta HF, Saleh MM, Ali ME, Ahmed AA, Salah M. Alterations in skin microbiome mediated by radiotherapy and their potential roles in the prognosis of radiotherapy-induced dermatitis: a pilot study. Sci Rep 2021; 11:5179. [PMID: 33664352 PMCID: PMC7933139 DOI: 10.1038/s41598-021-84529-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Radiotherapy-induced dermatitis (RID) is an inflammatory cutaneous disorder that is acquired as an adverse effect of undergoing radiotherapy. Skin microbiome dysbiosis has been linked to the outcomes of several dermatological diseases. To explore the skin microbiota of RID and deduce their underlying impact on the outcome of RID, cutaneous microbiomes of 78 RID patients and 20 healthy subjects were characterized by sequencing V1-V3 regions of 16S rRNA gene. In total, a significantly apparent reduction in bacterial diversity was detected in microbiomes of RID in comparison to controls. Overall, the raised Proteobacteria/ Firmicutes ratio was significantly linked to delayed recovery or tendency toward the permanence of RID (Kruskal Wallis: P = 2.66 × 10–4). Moreover, applying enterotyping on our samples stratified microbiomes into A, B, and C dermotypes. Dermotype C included overrepresentation of Pseudomonas, Staphylococcus and Stenotrophomonas and was markedly associated with delayed healing of RID. Strikingly, coexistence of diabetes mellitus and RID was remarkably correlated with a significant overrepresentation of Klebsiella or Pseudomonas and Staphylococcus. Metabolic abilities of skin microbiome could support their potential roles in the pathogenesis of RID. Cutaneous microbiome profiling at the early stages of RID could be indicative of prospective clinical outcomes and maybe a helpful guide for personalized therapy.
Collapse
Affiliation(s)
- Mohammed Ramadan
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 71526, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt. .,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0595, USA.
| | - Moustafa M Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy Port, Said University, Port Said, 42526, Egypt
| | - Mohamed E Ali
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 71526, Egypt
| | - Ali Aya Ahmed
- Microbiology and Immunology Department, Faculty of Pharmacy, Sinai University, Ismaillia, 41611, Egypt
| | - Mohammed Salah
- Microbiology and Immunology Department, Faculty of Pharmacy Port, Said University, Port Said, 42526, Egypt
| |
Collapse
|
19
|
Woo K, Dowsett C, Costa B, Ebohon S, Woodmansey EJ, Malone M. Efficacy of topical cadexomer iodine treatment in chronic wounds: Systematic review and meta-analysis of comparative clinical trials. Int Wound J 2021; 18:586-597. [PMID: 33559332 PMCID: PMC8450789 DOI: 10.1111/iwj.13560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to summarise the clinical evidence supporting almost 40 years of topical cadexomer iodine (CIOD) use in wound bed preparation by removing barriers to healing such as exudate, slough, bioburden, and infection and allowing chronic wound progression. A systematic review was conducted (Embase/PubMed, November 2020) to identify relevant comparative studies meeting inclusion criteria. Meta‐analyses were performed using a fixed‐effects (I2 < 50%) or random‐effects model (I2 ≥ 50%) depending on statistical heterogeneity. Dichotomous outcomes were reported as relative risk (RR) and continuous outcomes as mean difference (MD), with 95% confidence intervals. In total, 436 publications were identified of which 13 were comparative trials including outcomes of interest. Significant reductions in exudate, pus/debris, slough, bioburden, and infection were reported in chronic wounds treated with CIOD, compared with standard of care (SOC). Meta‐analyses highlighted the positive impact of CIOD on mean wound area reduction (MD = 2.35 cm2, 95% CI = 0.34–4.36, P = .0219) after eight weeks treatment and overall wound healing events compared to SOC; wounds including venous leg ulcers, diabetic foot ulcers, and pressure ulcers treated with CIOD were more than twice as likely to heal than those receiving SOC (RR = 2.30, 95% CI = 1.54–3.45, P < .0001). This meta‐analysis demonstrates the efficacy of CIOD on chronic wounds through removal of barriers to healing. CIOD should be considered in wound bed preparation and treatment protocols.
Collapse
Affiliation(s)
- Kevin Woo
- School of Nursing, Queen's University, Kingston, Ontario, Canada
| | | | - Ben Costa
- Smith & Nephew Clinical and Medical Affairs, Kingston upon Hull, UK
| | - Stephen Ebohon
- Smith & Nephew Clinical and Medical Affairs, Kingston upon Hull, UK
| | | | - Matthew Malone
- South West Sydney Limb Preservation and Wound Research, Sydney, Australia.,School of Medicine, Infectious Diseases and Microbiology, Western Sydney University, Australia
| |
Collapse
|
20
|
Hammond JA, Gordon EA, Socarras KM, Chang Mell J, Ehrlich GD. Beyond the pan-genome: current perspectives on the functional and practical outcomes of the distributed genome hypothesis. Biochem Soc Trans 2020; 48:2437-2455. [PMID: 33245329 PMCID: PMC7752077 DOI: 10.1042/bst20190713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
The principle of monoclonality with regard to bacterial infections was considered immutable prior to 30 years ago. This view, espoused by Koch for acute infections, has proven inadequate regarding chronic infections as persistence requires multiple forms of heterogeneity among the bacterial population. This understanding of bacterial plurality emerged from a synthesis of what-were-then novel technologies in molecular biology and imaging science. These technologies demonstrated that bacteria have complex life cycles, polymicrobial ecologies, and evolve in situ via the horizontal exchange of genic characters. Thus, there is an ongoing generation of diversity during infection that results in far more highly complex microbial communities than previously envisioned. This perspective is based on the fundamental tenet that the bacteria within an infecting population display genotypic diversity, including gene possession differences, which result from horizontal gene transfer mechanisms including transformation, conjugation, and transduction. This understanding is embodied in the concepts of the supragenome/pan-genome and the distributed genome hypothesis (DGH). These paradigms have fostered multiple researches in diverse areas of bacterial ecology including host-bacterial interactions covering the gamut of symbiotic relationships including mutualism, commensalism, and parasitism. With regard to the human host, within each of these symbiotic relationships all bacterial species possess attributes that contribute to colonization and persistence; those species/strains that are pathogenic also encode traits for invasion and metastases. Herein we provide an update on our understanding of bacterial plurality and discuss potential applications in diagnostics, therapeutics, and vaccinology based on perspectives provided by the DGH with regard to the evolution of pathogenicity.
Collapse
Affiliation(s)
- Jocelyn A. Hammond
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Emma A. Gordon
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Kayla M. Socarras
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Joshua Chang Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Meta-omics Shared Resource Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, U.S.A
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Meta-omics Shared Resource Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, U.S.A
- Department of Otolaryngology – Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
21
|
Qiu D, Zhang L, Zhan J, Yang Q, Xiong H, Hu W, Ji Q, Huang J. Hyperglycemia Decreases Epithelial Cell Proliferation and Attenuates Neutrophil Activity by Reducing ICAM-1 and LFA-1 Expression Levels. Front Genet 2020; 11:616988. [PMID: 33414814 PMCID: PMC7785031 DOI: 10.3389/fgene.2020.616988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Delayed repair is a serious public health concern for diabetic populations. Intercellular adhesion molecule 1 (ICAM-1) and Lymphocyte function-associated antigen 1 (LFA-1) play important roles in orchestrating the repair process. However, little is known about their effects on endothelial cell (EC) proliferation and neutrophil activity in subjects with hyperglycemia (HG). We cultured ECs and performed a scratch-closure assay to determine the relationship between ICAM-1 and EC proliferation. Specific internally labeled bacteria were used to clarify the effects of ICAM-1 and LFA-1 on neutrophil phagocytosis. Transwell assay and fluorescence-activated cell sorting analysis evaluated the roles of ICAM-1 and LFA-1 in neutrophil recruitment. ICAM-1+/+ and ICAM-1-/- mice were used to confirm the findings in vivo. The results demonstrated that HG decreased the expression of ICAM-1, which lead to the low proliferation of ECs. HG also attenuated neutrophil recruitment and phagocytosis by reducing the expression of ICAM-1 and LFA-1, which were strongly associated with the delayed repair.
Collapse
Affiliation(s)
- Dongxu Qiu
- Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Xiangya Hospital, Central South University, Changsha, China
| | - Junkun Zhan
- Department of Geriatrics, The Second Hospital of Xiangya, Hunan, China
| | - Qiong Yang
- Department of Geriatrics, The Second Hospital of Xiangya, Hunan, China
| | - Hongliang Xiong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weitong Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiao Ji
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Murugesan B, Pandiyan N, Kasinathan K, Rajaiah A, Arumuga M, Subramanian P, Sonamuthu J, Samayanan S, Arumugam VR, Marimuthu K, Yurong C, Mahalingam S. Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: Synthesis, characterization, in-vitro and in-vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110791. [PMID: 32279742 DOI: 10.1016/j.msec.2020.110791] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Bacterial biofilm is an obstacle for wound healing because it can affect the epithelialization, development of granular cells, and other regular inflammatory procedures. It plays the role of safeguarding pathogens from antiseptics and antibiotics. In this respect, this research work aims to develop heteroatom (N, F, P/B) incorporated multi-walled carbon nanotubes (MWCNT), such as NFP-MWCNT and NFB-MWCNT, which can maximize the wound healing efficacy via destroying the wound pathogen and biofilms. NFP-MWCNT and NFB-MWCNT were obtained using self-assembling ionic liquids (ILs) such as BMIM-PF6 and BMIM-BF4 in an acid-functionalized MWCNT (A-MWCNT) suspension, followed by pyrolysis in a nitrogen atmosphere. The composite formation was established by FTIR, XRD, RAMAN, EDX mapping, and XPS spectroscopy. TEM and SEM analyses confirmed the bamboo stick-like morphology. During this reaction, IL molecules might be cross-linked with A-MWCNT via hydrogen bonding and ionic interaction, with further pyrolysis producing the defects with doping of N, F, P, or B elements. Finally, they were assessed for their antibiofilm activity against typical bacterial strains such as K. pneumoniae, P. aeruginosa, E. coli (Gram-negative), and B. subtilis (Gram-positive), using a quantitative estimation approach. The results revealed greater effectiveness of NFB-MWCNT and NFP-MWCNT, compared to pristine MWCNT. The antibiofilm activity of NFP-MWCNT and NFB-MWCNT was associated with their specific surface chemistry (due to the presence of N, F, P/B heteroatoms), and their nanosize. Moreover, the synthesized material was examined for its wound-healing ability in Wistar rats. The results proved that cells cultured on NFB-MWCNT and NFP-MWCNT displayed exceptional healing ability. The different electronegativity between the heteroatoms creates the surface charge that inhibits the biofilm formation, leading to healing the wounds together with the heteroatom mineral source for mouse fibroblast regeneration and granulation. This is the first study in which the role of different heteroatoms incorporated into MWCNT is examined in the context of antibiofilm-associated wound-healing ability.
Collapse
Affiliation(s)
- Balaji Murugesan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Nithya Pandiyan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Kasirajan Kasinathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Alexpandi Rajaiah
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India
| | - Mayakrishnan Arumuga
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Palanisamy Subramanian
- Department of Marine Food Science and Technology, Gangneung - Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea
| | - Jegatheeswaran Sonamuthu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Selvam Samayanan
- Department of Chemical and Biochemical Engineering, Dongguk University, Jung-Gu, Pil-Dong, Seoul 100715, Republic of Korea
| | - Veera Ravi Arumugam
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Cai Yurong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sundrarajan Mahalingam
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.
| |
Collapse
|
23
|
Pang M, Zhu M, Lei X, Chen C, Yao Z, Cheng B. Changes in Foot Skin Microbiome of Patients with Diabetes Mellitus Using High-Throughput 16S rRNA Gene Sequencing: A Case Control Study from a Single Center. Med Sci Monit 2020; 26:e921440. [PMID: 32358479 PMCID: PMC7212808 DOI: 10.12659/msm.921440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Worldwide, the treatment of complications associated with type 2 diabetes mellitus, including diabetic foot ulcer (DFU), results in an economic burden for patients and healthcare systems. This study aimed to use high-throughput 16S rRNA gene sequencing to investigate the changes in foot skin microbiome of patients with diabetes mellitus from a single center in China. Material/Methods Fifty-two participants were divided into 4 study groups: healthy controls (n=13); patients with short-term diabetes (<2 years; n=13); patients with intermediate-term diabetes (5–8 years; n=13); and patients with long-term diabetes (>10 years; n=13). Swabs were analyzed from the intact skin of the foot arch using high-throughput 16S ribosomal RNA sequencing. Results Microbiome phylogenic diversity varied significantly between the study groups (whole tree, P<0.01; Chao1, P<0.01), but were similar within the same group. The findings were supported by non-parametric multidimensional scaling (stress=0.12) and principal component analysis (principal component 1, 8.38%; principal component 2, 5.28%). In patients with diabetes mellitus, the dominant skin microbial phyla were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Conclusions High-throughput 16S rRNA gene sequencing showed dynamic changes in the skin microbiome from the foot during the progression of diabetes mellitus. These findings support the importance of understanding the role of the skin microbiota in the pathogenesis of DFU.
Collapse
Affiliation(s)
- Mengru Pang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, Guangdong, China (mainland)
| | - Meishu Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China (mainland).,Department of Burn and Plastic Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong, China (mainland)
| | - Xiaoxuan Lei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, Guangdong, China (mainland)
| | - Caihong Chen
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, Guangdong, China (mainland).,Guangdong Pharmaceutical University, Guangzhou, Guangdong, China (mainland)
| | - Zexin Yao
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, Guangdong, China (mainland).,Guangdong Pharmaceutical University, Guangzhou, Guangdong, China (mainland)
| | - Biao Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, Guangdong, China (mainland).,Center of Wound Treatment, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, Guangdong, China (mainland).,The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
24
|
Abstract
Chronic, nonhealing wounds place an enormous burden on both the health care system and patients, with no definitive treatments available. There has been increasing evidence that the microbial composition of wounds may play an important role in wound healing. Culture-independent methods for bacterial detection and analysis have revealed the wound microbiome to be much more diverse and complex than culture alone. Such methods primarily rely on targeted amplification and sequencing of various hypervariable regions of the bacterial 16S rRNA for phylogenetic analysis. To date, there have been several studies utilizing culture-independent methods to investigate the microbiome of a variety of chronic wounds, including venous insufficiency ulcers, pressure ulcers, and diabetic foot ulcers. Major bacteria found include Staphylococcus, Streptococcus, Corynebacterium, Pseudomonas, and various anaerobes. Current studies suggest that improved healing and outcomes may be correlated with increased bacterial diversity and instability of the microbiome composition of a wound. However, the exact role of the microbiome in wound healing remains poorly understood. While the current research is promising, studies are very heterogeneous, hindering comparisons of findings across different research groups. In addition, more studies are needed to correlate microbiome findings with clinical factors, as well as in the relatively unexplored fields of acute wounds and nonbacterial microbiomes, such as the wound mycobiome and virome. Better understanding of the various aspects of the microorganisms present in wounds may eventually allow for the manipulation of the wound microbiota in such a way as to promote healing, such as through bacteriophage therapies or probiotics.
Collapse
|
25
|
Scully R, Hurlow J, Walker M, Metcalf D, Parsons D, Bowler P. Clinical and in vitro performance of an antibiofilm Hydrofiber wound dressing. J Wound Care 2019; 27:584-592. [PMID: 30204577 DOI: 10.12968/jowc.2018.27.9.584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To compare the clinical and in vitro performance of a next-generation antibiofilm silver dressing (NGAD) with an established antimicrobial dressing technology that was developed before the recognition of wound biofilm as a clinical challenge. METHOD Real-life evaluations of challenging wounds managed previously with cadexomer iodine (CI) dressings followed by switching to NGAD were evaluated alongside electron, confocal and light microscopy images from a challenging, in vitro, exuding chronic wound model. Clinical case studies on the use of CI and NGAD dressings are presented to further explore the real-life evidence and in vitro findings. RESULTS We assessed 13 non-healing wounds that had been managed with protocols including CI dressings. After a median of four weeks, switching to the NGAD as primary dressing resulted in improvements in nine wounds and healing in two wounds, with associated improvements in wound bed appearance, while dressing usage was the same as or lower than before. The NGAD was observed to prevent the development of Staphylococcus aureus- Pseudomonas aeruginosa biofilm over three days, in contrast to the CI dressing, which appeared to support biofilm development once the active antimicrobial was exhausted from its carrier material. Clinical case studies exhibited this exhaustion as 'whiting out' of the dressing, with wound biofilm observed from samples taken following dressing use. Positive wound and patient outcomes were observed in two cases following the switch from a CI primary dressing to the NGAD, in highly exuding and infected wounds. CONCLUSION Antimicrobial dressings may be effective against biofilm in some laboratory models, but their effectiveness as a wound dressings in protocols of care must be verified clinically.
Collapse
Affiliation(s)
- Ruth Scully
- Senior Microscopist, Electron Microscopy Unit, 1st floor LB5-71, Cellular Pathology Department, Cardiff and Vale University Health Board Trust, Heath Park, Cardiff CF14 4XW, UK
| | | | - Mike Walker
- Independent Wound and Skin Biologist, Flintshire, UK
| | - Daniel Metcalf
- Associate Director; Science & Technology, R&D, ConvaTec Ltd., Global Development Centre, First Avenue, Deeside Industrial Park, Flintshire CH5 2NU, UK
| | - David Parsons
- Director; Science & Technology, R&D, ConvaTec Ltd., Global Development Centre, First Avenue, Deeside Industrial Park, Flintshire CH5 2NU, UK
| | - Philip Bowler
- Vice President, Science & Technology, R&D, ConvaTec Ltd., Global Development Centre, First Avenue, Deeside Industrial Park, Flintshire CH5 2NU, UK
| |
Collapse
|
26
|
Sanford NE, Wilkinson JE, Nguyen H, Diaz G, Wolcott R. Efficacy of hyperbaric oxygen therapy in bacterial biofilm eradication. J Wound Care 2019; 27:S20-S28. [PMID: 29334015 DOI: 10.12968/jowc.2018.27.sup1.s20] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Chronic wounds typically require several concurrent therapies, such as debridement, pressure offloading, and systemic and/or topical antibiotics. The aim of this study was to examine the efficacy of hyperbaric oxygen therapy (HBOT) towards reducing or eliminating bacterial biofilms in vitro and in vivo. METHOD Efficacy was determined using in vitro grown biofilms subjected directly to HBOT for 30, 60 and 90 minutes, followed by cell viability determination using propidium monoazide-polymerase chain reaction (PMA-PCR). The efficacy of HBOT in vivo was studied by searching our chronic patient wound database and comparing time-to-healing between patients who did and did not receive HBOT as part of their treatment. RESULTS In vitro data showed small but significant decreases in cell viability at the 30- and 90-minute time points in the HBOT group. The in vivo data showed reductions in bacterial load for patients who underwent HBOT, and ~1 week shorter treatment durations. Additionally, in patients' chronic wounds there was a considerable emergence of anaerobic bacteria and fungi between intermittent HBOT treatments. CONCLUSION The data demonstrate that HBOT does possess a certain degree of biofilm killing capability. Moreover, as an adjuvant to standard treatment, more favourable patient outcomes are achieved through a quicker time-to-healing which reduces the chance of complications. Furthermore, the data provided insights into biofilm adaptations to challenges presented by this treatment strategy which should be kept in mind when treating chronic wounds. Further studies will be necessary to evaluate the benefits and mechanisms of HBOT, not only for patients with chronic wounds but other chronic infections caused by bacterial biofilms.
Collapse
Affiliation(s)
- Nicholas E Sanford
- Laboratory Manager; Southwest Regional Wound Care Center, Lubbock, Texas
| | | | - Hao Nguyen
- Medical Student; Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Gabe Diaz
- Certified Hyperbaric Technician; Southwest Regional Wound Care Center, Lubbock, Texas
| | - Randall Wolcott
- Medical Director; Certified Hyperbaric Technician; Southwest Regional Wound Care Center, Lubbock, Texas
| |
Collapse
|
27
|
Kathawala MH, Ng WL, Liu D, Naing MW, Yeong WY, Spiller KL, Van Dyke M, Ng KW. Healing of Chronic Wounds: An Update of Recent Developments and Future Possibilities. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:429-444. [PMID: 31068101 DOI: 10.1089/ten.teb.2019.0019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic wounds are the result of disruptions in the body's usual process of healing. They are not only a source of significant pain and discomfort but also, more importantly, an unguarded port of entry for pathogens into the body. While our current understanding of this phenomenon is far from complete, findings in physiological patterns and advancements in wound healing technologies have helped develop wound management and healing solutions to this long-standing medical challenge. This review presents an overview of known wound healing mechanics, abnormalities that lead to chronic wounds, and a summary of established and new wound healing technologies. Various approaches to heal wounds are discussed, from dermal replacements to advanced biomaterial-based treatments, from cell-, synthetic-, and composite-based approaches to preclinical approaches, which make developing such products possible. While tested breakthrough products are described, the authors focused more on recently developed innovations, which are at varying stages of maturity. The review concludes with a note on future perspectives and opinions on where the field and industry are headed and where they should be. Impact Statement Wound healing is an important area of research and clinical practice, and has captured the attention of tissue engineers since the nascent beginnings of the discipline. Tissue-engineered skin was the first FDA-approved product, achieved in 1996. Despite this success, and the passage of time, healing wounds, particularly chronic wounds, remains a vexing challenge. This comprehensive review article will provide readers with a synopsis of current issues, research approaches, animal models, technologies, and products that span the continuum from early development to clinical studies, in the hope of fueling new interests and ideas to overcome this long-standing medical challenge.
Collapse
Affiliation(s)
| | - Wei Long Ng
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dan Liu
- Singapore Institute of Manufacturing Technology (SIMTECH), Singapore, Singapore
| | - May Win Naing
- Singapore Institute of Manufacturing Technology (SIMTECH), Singapore, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics (BEAM), Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Skin Research Institute of Singapore (SRIS), Singapore, Singapore.,Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Singapore, Singapore
| |
Collapse
|
28
|
Rippon MG, Rogers AA, Westgate S. Treating drug-resistant wound pathogens with non-medicated dressings: an in vitro study. J Wound Care 2019; 28:629-638. [DOI: 10.12968/jowc.2019.28.9.629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective: To assess the in vitro antimicrobial performance of a non-medicated hydro-responsive wound dressing (HRWD) on the sequestration and killing of wound relevant microorganisms found on the World Health Organization (WHO) priority pathogens list. Methods: Suspensions of Pseudomonas aeruginosa, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA) were placed on petri dishes. Dressings were each placed on top, incubated for 30 minutes and then removed from the inoculated petri dish. The surface of the dressings previously in contact with the bacterial suspensions were placed directly onto a tryptone soy agar (TSA) plate and incubated for 24 hours. Dressings were then removed from the TSA plate and the level of bacterial growth on the plates was assessed. Sequestered microorganism viability was assessed using LIVE/DEAD viability kits and visualisation by epifluorescence. Results: Our results indicated that HRWDs sequester and retain Pseudomonas aeruginosa, Acinetobacter baumannii and MRSA within the dressing. Non-medicated HRWDs containing bound PHMB (polyhexamethylene biguanide, HRWD+PHMB) killed the microorganisms sequestered within the dressing matrix. Conclusion: These data suggest that non-medicated HRWD+PHMB is an effective against WHO priority pathogens and promoting goal of antimicrobial stewardship in wound care.
Collapse
Affiliation(s)
- Mark G. Rippon
- 1 Visiting Clinical Research Fellow; Huddersfield University, Queensgate, Huddersfield, UK
| | - Alan A. Rogers
- 2 Medical Communications Consultant; Flintshire, North Wales, UK
| | - Samantha Westgate
- 3 Chief Executive Officer Perfectus Biomed Limited, Daresbury Laboratories, SciTech Daresbury, Cheshire, UK
| |
Collapse
|
29
|
Tipton CD, Sanford NE, Everett JA, Gabrilska RA, Wolcott RD, Rumbaugh KP, Phillips CD. Chronic wound microbiome colonization on mouse model following cryogenic preservation. PLoS One 2019; 14:e0221565. [PMID: 31442275 PMCID: PMC6707584 DOI: 10.1371/journal.pone.0221565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/10/2019] [Indexed: 01/06/2023] Open
Abstract
Chronic wound infections are increasingly recognized to be dynamic and polymicrobial in nature, necessitating the development of wound models which reflect the complexities of infection in a non-healing wound. Wound slough isolated from human chronic wounds and transferred to mice was recently shown to create polymicrobial infection in mice, and there is potential this tool may be improved by cryogenic preservation. The purpose of this study was to investigate the application of cryogenic preservation to transferring polymicrobial communities, specifically by quantifying the effects of cryopreservation and wound microbiome transplantation. Slough from an established murine polymicrobial surgical excision model and five patients were subjected to three preservation strategies: refrigeration until infection, freezing in liquid nitrogen, or freezing in liquid nitrogen with glycerol solution prior to infection in individual mice. Four days following inoculation onto mice, wound microbiota were quantified using either culture isolation or by 16s rRNA gene community profiling and quantitative PCR. Cryogenic preservation did not significantly reduce bacterial viability. Reestablished microbial communities were significantly associated with patient of origin as well as host context (i.e., originally preserved from a patient versus mouse infection). Whereas preservation treatment did not significantly shape community composition, the transfers of microbiomes from human to mouse were characterized by reduced diversity and compositional changes. These findings indicated that changes should be expected to occur to community structure after colonization, and that compositional change is likely due to the rapid change in infection context as opposed to preservation strategy. Furthermore, species that were present in higher relative abundance in wound inoculate were more likely to colonize subsequent wounds, and wound inoculate with higher bacterial load established wound communities that were more compositionally similar. Results inform expectations for the complementation of chronic wound in vivo modeling with cryogenic preservation archives.
Collapse
Affiliation(s)
- Craig D. Tipton
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- RTL Genomics, Research and Testing Laboratories, Lubbock, Texas, United States of America
- * E-mail:
| | - Nicholas E. Sanford
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Jake A. Everett
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Gabrilska
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Randall D. Wolcott
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Caleb D. Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Natural Science Research Laboratory, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
30
|
Swanson T, Wolcott RD, Wallis H, Woodmansey EJ. Understanding biofilm in practice: a global survey of health professionals. J Wound Care 2019; 26:426-440. [PMID: 28795881 DOI: 10.12968/jowc.2017.26.8.426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The aim of this survey was to examine health professionals' views and practices relating to biofilm in chronic wounds. METHOD A global online survey was conducted to assess the current understanding of biofilm and wound management practices. The survey consisted of 20 questions designed to evaluate health professional knowledge of biofilm, perception and understanding of biofilm behaviour, detection and diagnosis, and treatment. Respondents were classified as 'specialists' if wounds were their primary focus and they developed protocols and determined formularies. Respondents were classified as 'generalists' if wounds were part of multiple indications they treat and they were able to choose wound care products from a restricted list of products. The Pearson's chi-square or Fisher's exact test was used to assess whether the responses were independent of the clinician role, health-care setting and country. RESULTS Overall, 3011 health professionals took part in the survey, of which 397 were excluded or disqualified. Of the remaining 2614 respondents, 1223 (46.8%) completed the entire survey. Although the majority of health professionals were aware of biofilm, knowledge gaps regarding its prevalence in chronic wounds were evident. In general, the majority indicated that they understood that biofilm is detrimental to wound healing. With the exception of wound stalling, there was a lack of consensus on other clinical signs in the detection and diagnosis of biofilm. Knowledge gaps were also evident over the treatment of biofilm and the efficacy of antimicrobial treatments, debridement and wound dressing. CONCLUSION Our results show that though there is a broad recognition of biofilm and its possible role in chronic wounds, there is still a need to educate and increase knowledge on recognition and treatment of biofilm.
Collapse
Affiliation(s)
- T Swanson
- Nurse Practitioner Wound Management, South West Healthcare, Ryot St. Warrnambool. Victoria 3280, Australia
| | - R D Wolcott
- Medical Director, Southwest Regional Wound Care Center, Lubbock, Texas, US
| | - H Wallis
- Senior Global Brand Development Manager, Smith & Nephew Ltd, Hull, UK
| | - E J Woodmansey
- Scientific Communications Manager, Smith & Nephew Ltd, Hull, UK
| |
Collapse
|
31
|
Rennie MY, Lindvere-Teene L, Tapang K, Linden R. Point-of-care fluorescence imaging predicts the presence of pathogenic bacteria in wounds: a clinical study. J Wound Care 2019; 26:452-460. [PMID: 28795890 DOI: 10.12968/jowc.2017.26.8.452] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Bacteria in chronic wounds are invisible to the naked eye and can lead to delayed wound healing. Point-of-care bacterial fluorescence imaging illuminates a wound with 405nm light, triggering bacteria to produce red fluorescence and enabling real-time bacterial localisation. Prospective, single-blind clinical trials (clinicaltrials.gov #NCT02682069, #NCT03091361) were conducted to determine the positive predictive value (PPV) of this red fluorescence for detecting bacteria in chronic wounds. METHOD Lower limb chronic wounds were imaged for bacterial fluorescence using the MolecuLight i:X imaging device. Regions positive for red fluorescence were discretely sampled using either biopsy or curettage to correlate red fluorescence signals to bacterial presence and analysed via gold standard quantitative polymerase chain reaction (qPCR) or via semi-quantitative culture analysis respectively. RESULTS A total of 60 lower limb chronic wounds were imaged. Quantitative PCR analysis of wound tissue biopsies obtained from regions of red fluorescence yielded a PPV of 100%. Total bacterial load in these areas was ≥104 CFU/g. Semi-quantitative culture analysis of curettage scrapings from regions of red fluorescence yielded a PPV of 100%, with predominately moderate or heavy bacterial growth. There were nine distinct bacterial species detected, all common pathogens in chronic wounds. Staphylococcus aureus was the most prevalent species. CONCLUSION Bacterial fluorescence image-guided curettage or biopsy sampling positively predicts bacterial presence in wounds at potentially harmful levels, entirely eliminating the risk of false negative sampling. Fluorescence imaging of wounds offers clinicians real-time information on a wound's bacterial burden, insight which can influence treatment decisions at the point-of care.
Collapse
Affiliation(s)
| | | | - K Tapang
- Judy Dan Research and Treatment Centre, Ontario Wound Care Inc., North York, ON, Canada
| | - R Linden
- Judy Dan Research and Treatment Centre, Ontario Wound Care Inc., North York, ON, Canada
| |
Collapse
|
32
|
Rennie MY, Dunham D, Lindvere-Teene L, Raizman R, Hill R, Linden R. Understanding Real-Time Fluorescence Signals from Bacteria and Wound Tissues Observed with the MolecuLight i:X TM. Diagnostics (Basel) 2019; 9:E22. [PMID: 30813551 PMCID: PMC6468690 DOI: 10.3390/diagnostics9010022] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022] Open
Abstract
The persistent presence of pathogenic bacteria is one of the main obstacles to wound healing. Detection of wound bacteria relies on sampling methods, which delay confirmation by several days. However, a novel handheld fluorescence imaging device has recently enabled real-time detection of bacteria in wounds based on their intrinsic fluorescence characteristics, which differ from those of background tissues. This device illuminates the wound with violet (405 nm) light, causing tissues and bacteria to produce endogenous, characteristic fluorescence signals that are filtered and displayed on the device screen in real-time. The resulting images allow for rapid assessment and documentation of the presence, location, and extent of fluorescent bacteria at moderate-to-heavy loads. This information has been shown to assist in wound assessment and guide patient-specific treatment plans. However, proper image interpretation is essential to assessing this information. To properly identify regions of bacterial fluorescence, users must understand: (1) Fluorescence signals from tissues (e.g., wound tissues, tendon, bone) and fluids (e.g., blood, pus); (2) fluorescence signals from bacteria (red or cyan); (3) the rationale for varying hues of both tissue and bacterial fluorescence; (4) image artifacts that can occur; and (5) some potentially confounding signals from non-biological materials (e.g., fluorescent cleansing solutions). Therefore, this tutorial provides clinicians with a rationale for identifying common wound fluorescence characteristics. Clinical examples are intended to help clinicians with image interpretation-with a focus on image artifacts and potential confounders of image interpretation-and suggestions of how to overcome such challenges when imaging wounds in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Rose Raizman
- Department of Professional Practice, Scarborough and Rouge Hospital, Toronto, ON M1E 4B9, Canada.
| | - Rosemary Hill
- Department of Ambulatory Care, Lions Gate Hospital, Vancouver Coastal Health, North Vancouver, BC V7L 2L7, Canada.
| | - Ron Linden
- Judy Dan Research and Treatment Centre, North York, ON M2R 1N5, Canada.
| |
Collapse
|
33
|
Sloan TJ, Turton JC, Tyson J, Musgrove A, Fleming VM, Lister MM, Loose MW, Sockett RE, Diggle M, Game FL, Jeffcoate W. Examining diabetic heel ulcers through an ecological lens: microbial community dynamics associated with healing and infection. J Med Microbiol 2019; 68:230-240. [DOI: 10.1099/jmm.0.000907] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Tim J. Sloan
- 2Department of Clinical Microbiology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
- 1School of Life Sciences, University of Nottingham, Nottingham, UK
- 3Path Links Pathology, Northern Lincolnshire and Goole NHS Foundation Trust, Lincolnshire, UK
| | - James C. Turton
- 1School of Life Sciences, University of Nottingham, Nottingham, UK
- 2Department of Clinical Microbiology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jess Tyson
- 1School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Alison Musgrove
- 4Foot Ulcer Trials Unit, Department of Diabetes and Endocrinology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Vicki M. Fleming
- 2Department of Clinical Microbiology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Michelle M. Lister
- 2Department of Clinical Microbiology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Matthew W. Loose
- 1School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Mathew Diggle
- 2Department of Clinical Microbiology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Frances L. Game
- 4Foot Ulcer Trials Unit, Department of Diabetes and Endocrinology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- 5Department of Diabetes and Endocrinology, Derby Teaching Hospitals NHS Foundation Trust, Derby, UK
| | - William Jeffcoate
- 4Foot Ulcer Trials Unit, Department of Diabetes and Endocrinology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
34
|
Zeng R, Lin C, Lin Z, Chen H, Lu W, Lin C, Li H. Approaches to cutaneous wound healing: basics and future directions. Cell Tissue Res 2018; 374:217-232. [PMID: 29637308 DOI: 10.1007/s00441-018-2830-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/09/2018] [Indexed: 02/05/2023]
Abstract
The skin provides essential functions, such as thermoregulation, hydration, excretion and synthesis of vitamin D. Major disruptions of the skin cause impairment of critical functions, resulting in high morbidity and death, or leave one with life-changing cosmetic damage. Due to the complexity of the skin, diverse approaches are needed, including both traditional and advanced, to improve cutaneous wound healing. Cutaneous wounds undergo four phases of healing. Traditional management, including skin grafts and wound dressings, is still commonly used in current practice but in combination with newer technology, such as using engineered skin substitutes in skin grafts or combining traditional cotton gauze with anti-bacterial nanoparticles. Various upcoming methods, such as vacuum-assisted wound closure, engineered skin substitutes, stem cell therapy, growth factors and cytokine therapy, have emerged in recent years and are being used to assist wound healing, or even to replace traditional methods. However, many of these methods still lack assessment by large-scale studies and/or extensive application. Conceptual changes, for example, precision medicine and the rapid advancement of science and technology, such as RNA interference and 3D printing, offer tremendous potential. In this review, we focus on the basics of wound treatment and summarize recent developments involving both traditional and hi-tech therapeutic methods that lead to both rapid healing and better cosmetic results. Future studies should explore a more cost-effective, convenient and efficient approach to cutaneous wound healing. Graphical abstract Combination of various materials to create advanced wound dressings.
Collapse
Affiliation(s)
- Ruijie Zeng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Chuangqiang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Zehuo Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Hong Chen
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Weiye Lu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China.
| | - Haihong Li
- Burn and Plastic Surgery Department, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
35
|
Waite RD, Stewart JE, Stephen AS, Allaker RP. Activity of a nitric oxide-generating wound treatment system against wound pathogen biofilms. Int J Antimicrob Agents 2018; 52:338-343. [DOI: 10.1016/j.ijantimicag.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 11/25/2022]
|
36
|
Davis SC, Li J, Gil J, Valdes J, Solis M, Higa A, Bowler P. The wound-healing effects of a next-generation anti-biofilm silver Hydrofiber wound dressing on deep partial-thickness wounds using a porcine model. Int Wound J 2018; 15:834-839. [PMID: 29893025 DOI: 10.1111/iwj.12935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 04/15/2018] [Indexed: 01/23/2023] Open
Abstract
Topical antimicrobials are widely used to control wound bioburden and facilitate wound healing; however, the fine balance between antimicrobial efficacy and non-toxicity must be achieved. This study evaluated whether an anti-biofilm silver-containing wound dressing interfered with the normal healing process in non-contaminated deep partial thickness wounds. In an in-vivo porcine wound model using 2 pigs, 96 wounds were randomly assigned to 1 of 3 dressing groups: anti-biofilm silver Hydrofiber dressing (test), silver Hydrofiber dressing (control), or polyurethane film dressing (control). Wounds were investigated for 8 days, and wound biopsies (n = 4) were taken from each dressing group, per animal, on days 2, 4, 6, and 8 after wounding and evaluated using light microscopy. No statistically significant differences were observed in the rate of reepithelialisation, white blood cell infiltration, angiogenesis, or granulation tissue formation following application of the anti-biofilm silver Hydrofiber dressing versus the 2 control dressings. Overall, epithelial thickness was similar between groups. Some differences in infiltration of specific cell types were observed between groups. There were no signs of tissue necrosis, fibrosis, or fatty infiltration in any group. An anti-biofilm silver Hydrofiber wound dressing did not cause any notable interference with normal healing processes.
Collapse
Affiliation(s)
- Stephen C Davis
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jie Li
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joel Gil
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jose Valdes
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael Solis
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Alex Higa
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | | |
Collapse
|
37
|
Rippon MG, Rogers AA, Sellars L, Styles KM, Westgate S. Effectiveness of a non-medicated wound dressing on attached and biofilm encased bacteria: laboratory and clinical evidence. J Wound Care 2018; 27:146-155. [DOI: 10.12968/jowc.2018.27.3.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark G. Rippon
- Visiting Clinical Research Fellow, Huddersfield University, Queensgate, Huddersfield
| | - Alan A. Rogers
- Medical Communications Consultant, Flintshire, North Wales
| | - Laura Sellars
- Senior Microbiologist, Perfectus Biomed Limited, Daresbury Laboratories, SciTech Daresbury, Cheshire
| | - Kathryn M. Styles
- Senior Microbiologist, Perfectus Biomed Limited, Daresbury Laboratories, SciTech Daresbury, Cheshire
| | - Samantha Westgate
- CEO, Perfectus Biomed Limited, Daresbury Laboratories, SciTech Daresbury, Cheshire
| |
Collapse
|
38
|
Schultz G, Bjarnsholt T, James GA, Leaper DJ, McBain AJ, Malone M, Stoodley P, Swanson T, Tachi M, Wolcott RD. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen 2017; 25:744-757. [PMID: 28960634 DOI: 10.1111/wrr.12590] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite a growing consensus that biofilms contribute to a delay in the healing of chronic wounds, conflicting evidence pertaining to their identification and management can lead to uncertainty regarding treatment. This, in part, has been driven by reliance on in vitro data or animal models, which may not directly correlate to clinical evidence on the importance of biofilms. Limited data presented in human studies have further contributed to the uncertainty. Guidelines for care of chronic wounds with a focus on biofilms are needed to help aid the identification and management of biofilms, providing a clinical focus to support clinicians in improving patient care through evidence-based medicine. METHODS A Global Wound Biofilm Expert Panel, comprising 10 clinicians and researchers with expertise in laboratory and clinical aspects of biofilms, was identified and convened. A modified Delphi process, based on published scientific data and expert opinion, was used to develop consensus statements that could help identify and treat biofilms as part of the management of chronic nonhealing wounds. Using an electronic survey, panel members rated their agreement with statements about biofilm identification and treatment, and the management of chronic nonhealing wounds. Final consensus statements were agreed on in a face-to-face meeting. RESULTS Participants reached consensus on 61 statements in the following topic areas: understanding biofilms and the problems they cause clinicians; current diagnostic options; clinical indicators of biofilms; future options for diagnostic tests; treatment strategies; mechanical debridement; topical antiseptics; screening antibiofilm agents; and levels of evidence when choosing antibiofilm treatments. CONCLUSION This consensus document attempts to clarify misunderstandings about the role of biofilms in clinical practice, and provides a basis for clinicians to recognize biofilms in chronic nonhealing wounds and manage patients optimally. A new paradigm for wound care, based on a stepped-down treatment approach, was derived from the consensus statements.
Collapse
Affiliation(s)
- Gregory Schultz
- Department of Obstetrics & Gynecology, Institute for Wound Research, University of Florida, Gainesville, Florida
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Garth A James
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | - David J Leaper
- Clinical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew Malone
- Liverpool Hospital, South West Sydney LHD, Sydney, New South Wales, Australia.,LIVEDIAB, Ingham Institute of Applied Medical Research, Sydney, New South Wales, Australia
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, and Orthopaedics, Ohio State University, Columbus, Ohio
| | | | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
39
|
|
40
|
Zautner AE, Groß U, Emele MF, Hagen RM, Frickmann H. More Pathogenicity or Just More Pathogens?-On the Interpretation Problem of Multiple Pathogen Detections with Diagnostic Multiplex Assays. Front Microbiol 2017; 8:1210. [PMID: 28706515 PMCID: PMC5489565 DOI: 10.3389/fmicb.2017.01210] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
Modern molecular diagnostic approaches in the diagnostic microbiological laboratory like real-time quantitative polymerase chain reaction (qPCR) have led to a considerable increase of diagnostic sensitivity. They usually outperform the diagnostic sensitivity of culture-based approaches. Culture-based diagnostics were found to be insufficiently sensitive for the assessment of the composition of biofilms in chronic wounds and poorly standardized for screenings for enteric colonization with multi-drug resistant bacteria. However, the increased sensitivity of qPCR causes interpretative challenges regarding the attribution of etiological relevance to individual pathogen species in case of multiple detections of facultative pathogenic microorganisms in primarily non-sterile sample materials. This is particularly the case in high-endemicity settings, where continuous exposition to respective microorganisms leads to immunological adaptation and semi-resistance while considerable disease would result in case of exposition of a non-adapted population. While biofilms in chronic wounds show higher pathogenic potential in case of multi-species composition, detection of multiple pathogens in respiratory samples is much more difficult to interpret and asymptomatic enteric colonization with facultative pathogenic microorganisms is frequently observed in high endemicity settings. For respiratory samples and stool samples, cycle-threshold-value-based semi-quantitative interpretation of qPCR results has been suggested. Etiological relevance is assumed if cycle-threshold values are low, suggesting high pathogen loads. Although the procedure is challenged by lacking standardization and methodical issues, first evaluations have led to promising results. Future studies should aim at generally acceptable quantitative cut-off values to allow discrimination of asymptomatic colonization from clinically relevant infection.
Collapse
Affiliation(s)
- Andreas E. Zautner
- Institut für Medizinische Mikrobiologie, Universitätsmedizin GöttingenGöttingen, Germany
| | - Uwe Groß
- Institut für Medizinische Mikrobiologie, Universitätsmedizin GöttingenGöttingen, Germany
| | - Matthias F. Emele
- Institut für Medizinische Mikrobiologie, Universitätsmedizin GöttingenGöttingen, Germany
| | - Ralf M. Hagen
- Abteilung A Lehre Gesundheitsversorgung, Sanitätsakademie der BundeswehrMünchen, Germany
| | - Hagen Frickmann
- Fachbereich Tropenmedizin am Bernhard-Nocht Institut, Bundeswehrkrankenhaus HamburgHamburg, Germany
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsmedizin RostockRostock, Germany
| |
Collapse
|
41
|
Kirker KR, James GA. In vitro studies evaluating the effects of biofilms on wound-healing cells: a review. APMIS 2017; 125:344-352. [PMID: 28407431 DOI: 10.1111/apm.12678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/15/2017] [Indexed: 01/09/2023]
Abstract
Chronic wounds are characterized as wounds that have failed to proceed through the well-orchestrated healing process and have remained open for months to years. Open wounds are at risk for colonization by opportunistic pathogens. Bacteria that colonize the open wound bed form surface-attached, multicellular communities called biofilms, and chronic wound biofilms can contain a diverse microbiota. Investigators are just beginning to elucidate the role of biofilms in chronic wound pathogenesis, and have simplified the complex wound environment using in vitro models to obtain a fundamental understanding of the impact of biofilms on wound-healing cell types. The intent of this review is to describe current in vitro methodologies and their results. Investigations started with one host cell-type and single species biofilms and demonstrated that biofilms, or their secretions, had deleterious effects on wound-healing cells. More complex systems involved the use of multiple host cell/tissue types and single species biofilms. Using human skin-equivalent tissues, investigators demonstrated that a number of different species can grow on the tissue and elicit an inflammatory response from the tissue. A full understanding of how biofilms impact wound-healing cells and host tissues will have a profound effect on how chronic wounds are treated.
Collapse
Affiliation(s)
- Kelly R Kirker
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Garth A James
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
42
|
Malone M, Bjarnsholt T, McBain A, James G, Stoodley P, Leaper D, Tachi M, Schultz G, Swanson T, Wolcott R. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care 2017; 26:20-25. [DOI: 10.12968/jowc.2017.26.1.20] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M. Malone
- Head of Department, Podiatric Medicine, Global Wound Biofilm Expert Panel; Liverpool Hospital, South West Sydney LHD, Australia; and Ingham Institute of Applied Medical Research, Sydney, Australia
| | - T. Bjarnsholt
- University of Copenhagen, Costerton Biofilm Center, Denmark; and Department of Clinical Microbiology, Rigshospitalet, Denmark
| | - A.J. McBain
- Faculty of Biology, Medicine and Health, University of Manchester
| | - G.A. James
- Center for Biofilm Engineering, Montana State University, US
| | - P. Stoodley
- Center for Microbial Interface Biology and Department of Microbial infection, Immunity and Orthopaedics, Ohio State University, US
| | - D. Leaper
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, UK; and Imperial College, London, UK
| | - M. Tachi
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - G. Schultz
- Institute of Wound Research, Department of Obstetrics and Gynecology, College of Medicine, University of Florida
| | - T. Swanson
- South West Healthcare, Warrnambool, Victoria, Australia
| | - R.D. Wolcott
- Southwest Regional Wound Care Centre, Lubbock Texas, US
| |
Collapse
|