1
|
Zeng JQ, Zhou HF, Du HX, Wu YJ, Mao QP, Yin JJ, Wan HT, Yang JH. Tongmai Hypoglycemic Capsule Attenuates Myocardial Oxidative Stress and Fibrosis in the Development of Diabetic Cardiomyopathy in Rats. Chin J Integr Med 2025; 31:251-260. [PMID: 39644459 DOI: 10.1007/s11655-024-4002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To investigate the effect of Tongmai Hypoglycemic Capsule (THC) on myocardium injury in diabetic cardiomyopathy (DCM) rats. METHODS A total of 24 Sprague Dawley rats were fed for 4 weeks with high-fat and high-sugar food and then injected with streptozotocin intraperitoneally for the establishment of the DCM model. In addition, 6 rats with normal diets were used as the control group. After modeling, 24 DCM rats were randomly divided into the model, L-THC, M-THC, and H-THC groups by computer generated random numbers, and 0, 0.16, 0.32, 0.64 g/kg of THC were adopted respectively by gavage, with 6 rats in each group. After 12 weeks of THC administration, echocardiography, histopathological staining, biochemical analysis, and Western blot were used to detect the changes in myocardial structure, oxidative stress (OS), biochemical indexes, protein expressions of myocardial fibrosis, and nuclear factor erythroid 2-related faactor 2 (Nrf2) element, respectively. RESULTS Treatment with THC significantly decreased cardiac markers such as creatine kinase, lactate dehydrogenase, and creatine kinase-MB, etc., (P<0.01); enhanced cardiac function indicators including heart rate, ejection fraction, cardiac output, interventricular septal thickness at diastole, and others (P<0.05 or P<0.01); decreased levels of biochemical indicators such as fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate transaminase, (P<0.05 or P<0.01); and decreased the levels of myocardial fibrosis markers α-smooth muscle actin (α-SMA), and collagen I (Col-1) protein (P<0.01), improved myocardial morphology and the status of myocardial interstitial fibrosis. THC significantly reduced malondialdehyde levels in model rats (P<0.01), increased levels of catalase, superoxide dismutase, and glutathione (P<0.01), and significantly increased the expression of Nrf2, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and superoxide dismutase 2 proteins in the left ventricle of rats (P<0.01). CONCLUSION THC activates the Nrf2 signaling pathway and plays a protective role in reducing OS injury and cardiac fibrosis in DCM rats.
Collapse
Affiliation(s)
- Jie-Qiong Zeng
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hui-Fen Zhou
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hai-Xia Du
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Yu-Jia Wu
- College of Life Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Qian-Ping Mao
- College of Life Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Jun-Jun Yin
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hai-Tong Wan
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Jie-Hong Yang
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China.
| |
Collapse
|
2
|
Kuo CY, Tsou SH, Kornelius E, Chan KC, Chang KW, Li JC, Huang CN, Lin CL. The protective effects of liraglutide in reducing lipid droplets accumulation and myocardial fibrosis in diabetic cardiomyopathy. Cell Mol Life Sci 2025; 82:39. [PMID: 39779525 PMCID: PMC11711727 DOI: 10.1007/s00018-024-05558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/08/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood. METHODS In this study, we aimed to replicate diabetic glucolipotoxic conditions by treating differentiated H9c2 cells with high glucose and free fatty acids. Additionally, a diabetic cardiomyopathy model was induced in mice through high-fat diets. Both in vitro and in vivo models were used to investigate the protective effects of liraglutide on cardiomyocytes and elucidate its underlying molecular mechanisms. RESULTS Our findings indicate that liraglutide significantly reduces lipid droplet (LD) formation and myocardial fibrosis, as evidenced by decreased expression of fibrosis markers, including TGF-β1 and collagen types I and III. Liraglutide also enhanced AMP-activated protein kinase (AMPK) activation, which improved mitochondrial function, increased antioxidant gene expression, enhanced insulin signaling, and reduced oxidative stress. CONCLUSIONS These results demonstrate the potential therapeutic role of liraglutide in managing diabetes-related cardiac complications, offering a comprehensive approach to improving cardiac outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Chien-Yin Kuo
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Edy Kornelius
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Kuei-Chuan Chan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Kai-Wei Chang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Jung-Chi Li
- Department of Cardiology, Wuri Lin Shin Hospital, Taichung, 414, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Kakkar C, Sharma V, Mannan A, Gupta G, Singh S, Kumar P, Dua K, Kaur A, Singh S, Dhiman S, Singh TG. Diabetic Cardiomyopathy: An Update on Emerging Pathological Mechanisms. Curr Cardiol Rev 2025; 21:88-107. [PMID: 39501954 PMCID: PMC12060924 DOI: 10.2174/011573403x331870241025094307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 04/25/2025] Open
Abstract
Diabetic Cardiomyopathy (DCM) is a notable consequence of diabetes mellitus, distinguished by cardiac dysfunction that occurs separately from coronary artery disease or hypertension. A recent study has revealed an intricate interaction of pathogenic processes that contribute to DCM. Important aspects involve the dysregulation of glucose metabolism, resulting in heightened oxidative stress and impaired mitochondrial function. In addition, persistent high blood sugar levels stimulate inflammatory pathways, which contribute to the development of heart fibrosis and remodelling. Additionally, changes in the way calcium is managed and the presence of insulin resistance are crucial factors in the formation and advancement of DCM. This may be due to the involvement of many molecular mechanistic pathways such as NLRP3, NF-κB, PKC, and MAPK with their downstream associated signaling pathways. Gaining a comprehensive understanding of these newly identified pathogenic pathways is crucial in order to design precise therapy approaches that can enhance the results for individuals suffering from diabetes. In addition, this review offers an in-depth review of not just pathogenic pathways and molecular mechanistic pathways but also diagnostic methods, treatment options, and clinical trials.
Collapse
Affiliation(s)
- Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaurav Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
| | - Sachin Singh
- Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
| | - Puneet Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
4
|
Giardinelli S, Meliota G, Mentino D, D’Amato G, Faienza MF. Molecular Basis of Cardiomyopathies in Type 2 Diabetes. Int J Mol Sci 2024; 25:8280. [PMID: 39125850 PMCID: PMC11313011 DOI: 10.3390/ijms25158280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic cardiomyopathy (DbCM) is a common complication in individuals with type 2 diabetes mellitus (T2DM), and its exact pathogenesis is still debated. It was hypothesized that chronic hyperglycemia and insulin resistance activate critical cellular pathways that are responsible for numerous functional and anatomical perturbations in the heart. Interstitial inflammation, oxidative stress, myocardial apoptosis, mitochondria dysfunction, defective cardiac metabolism, cardiac remodeling, hypertrophy and fibrosis with consequent impaired contractility are the most common mechanisms implicated. Epigenetic changes also have an emerging role in the regulation of these crucial pathways. The aim of this review was to highlight the increasing knowledge on the molecular mechanisms of DbCM and the new therapies targeting specific pathways.
Collapse
Affiliation(s)
- Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy;
| | - Giovanni Meliota
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy;
| | - Donatella Mentino
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriele D’Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
5
|
Su Q, Huang W, Huang Y, Dai R, Chang C, Li QY, Liu H, Li Z, Zhao Y, Wu Q, Pan DG. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:139. [PMID: 38664790 PMCID: PMC11046823 DOI: 10.1186/s12933-024-02233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.
Collapse
Affiliation(s)
- Qiang Su
- Department of Cardiology, People's Hospital of Guilin, Guilin, China
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wanzhong Huang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuan Huang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rixin Dai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chen Chang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiu-Yan Li
- Department of Cardiology, People's Hospital of Guilin, Guilin, China
| | - Hao Liu
- Institute of Bioengineering, Biotrans Technology Co., LTD, Shanghai, China
- United New Drug Research and Development Center, Biotrans Technology Co., LTD, Changsha, China
| | - Zhenhao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, China
| | - Yuxiang Zhao
- Institute of Bioengineering, Biotrans Technology Co., LTD, Shanghai, China.
- United New Drug Research and Development Center, Biotrans Technology Co., LTD, Changsha, China.
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Di-Guang Pan
- Department of Cardiology, People's Hospital of Guilin, Guilin, China.
| |
Collapse
|
6
|
Scisciola L, Chianese U, Caponigro V, Basilicata MG, Salviati E, Altucci L, Campiglia P, Paolisso G, Barbieri M, Benedetti R, Sommella E. Multi-omics analysis reveals attenuation of cellular stress by empagliflozin in high glucose-treated human cardiomyocytes. J Transl Med 2023; 21:662. [PMID: 37742032 PMCID: PMC10518098 DOI: 10.1186/s12967-023-04537-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute the gold standard treatment for type 2 diabetes mellitus (T2DM). Among them, empagliflozin (EMPA) has shown beneficial effects against heart failure. Because cardiovascular diseases (mainly diabetic cardiomyopathy) are the leading cause of death in diabetic patients, the use of EMPA could be, simultaneously, cardioprotective and antidiabetic, reducing the risk of death from cardiovascular causes and decreasing the risk of hospitalization for heart failure in T2DM patients. Interestingly, recent studies have shown that EMPA has positive benefits for people with and without diabetes. This finding broadens the scope of EMPA function beyond glucose regulation alone to include a more intricate metabolic process that is, in part, still unknown. Similarly, this significantly increases the number of people with heart diseases who may be eligible for EMPA treatment. METHODS This study aimed to clarify the metabolic effect of EMPA on the human myocardial cell model by using orthogonal metabolomics, lipidomics, and proteomics approaches. The untargeted and multivariate analysis mimicked the fasting blood sugar level of T2DM patients (hyperglycemia: HG) and in the average blood sugar range (normal glucose: NG), with and without the addition of EMPA. RESULTS Results highlighted that EMPA was able to modulate and partially restore the levels of multiple metabolites associated with cellular stress, which were dysregulated in the HG conditions, such as nicotinamide mononucleotide, glucose-6-phosphate, lactic acid, FA 22:6 as well as nucleotide sugars and purine/pyrimidines. Additionally, EMPA regulated the levels of several lipid sub-classes, in particular dihydroceramide and triacylglycerols, which tend to accumulate in HG conditions resulting in lipotoxicity. Finally, EMPA counteracted the dysregulation of endoplasmic reticulum-derived proteins involved in cellular stress management. CONCLUSIONS These results could suggest an effect of EMPA on different metabolic routes, tending to rescue cardiomyocyte metabolic status towards a healthy phenotype.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
- IEOS CNR, Naples, Italy
- Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program, Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program, Naples, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
7
|
Panico C, Bonora B, Camera A, Chilelli NC, Prato GD, Favacchio G, Grancini V, Resi V, Rondinelli M, Zarra E, Pintaudi B. Pathophysiological basis of the cardiological benefits of SGLT-2 inhibitors: a narrative review. Cardiovasc Diabetol 2023; 22:164. [PMID: 37391739 PMCID: PMC10314539 DOI: 10.1186/s12933-023-01855-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 07/02/2023] Open
Abstract
In recent years, GLP-1 receptor agonists (GLP-1RA), and SGLT-2 inhibitors (SGLT-2i) have become available, which have become valuable additions to therapy for type 2 diabetes as they are associated with low risk for hypoglycemia and cardiovascular benefits. Indeed, SGLT-2i have emerged as a promising class of agents to treat heart failure (HF). By inhibiting SGLT-2, these agents lead to excretion of glucose in urine with subsequent lowering of plasma glucose, although it is becoming clear that the observed benefits in HF cannot be explained by glucose-lowering alone. In fact, multiple mechanisms have been proposed to explain the cardiovascular and renal benefits of SGLT-2i, including hemodynamic, anti-inflammatory, anti-fibrotic, antioxidant, and metabolic effects. Herein, we review the available evidence on the pathophysiology of the cardiological benefits of SGLT-2i. In diabetic heart disease, in both clinical and animal models, the effect of SGLT-2i have been shown to improve diastolic function, which is even more evident in HF with preserved ejection fraction. The probable pathogenic mechanisms likely involve damage from free radicals, apoptosis, and inflammation, and therefore fibrosis, many of which have been shown to be improved by SGLT-2i. While the effects on systolic function in models of diabetic heart disease and HF with preserved ejection fraction is limited and contrasting, it is a key element in patients with HF and reduced ejection fraction both with and without diabetes. The significant improvement in systolic function appears to lead to subsequent structural remodeling of the heart with a reduction in left ventricle volume and a consequent reduction in pulmonary pressure. While the effects on cardiac metabolism and inflammation appear to be consolidated, greater efforts are still warranted to further define the entity to which these mechanisms contribute to the cardiovascular benefits of SGLT-2i.
Collapse
Affiliation(s)
- Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy.
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy.
| | - Benedetta Bonora
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, Padua, 35128, Italy
| | | | - Nino Cristiano Chilelli
- Diabetology and Internal Medicine, Hospital of Cittadella, AULSS 6 Euganea (Padua), Padua, Italy
| | - Giuliana Da Prato
- Divisione di Endocrinologia, Diabetologia e Malattie del Metabolismo, Dipartimento di Medicina, Azienda Ospedaliera Universitaria Integrata di Verona, Ospedale Maggiore, Verona, Italy
| | - Giuseppe Favacchio
- U.O di Endocrinologia e Diabetologia, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Valeria Grancini
- Endocrinology Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Veronica Resi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Rondinelli
- Diabetes Endocrine and Metabolic Diseases Unit, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Emanuela Zarra
- S.C. Medicina Diabetologia, Dipartimento di Continuità di Cura e Fragilità, ASST Spedali Civili, Brescia, Italy
| | | |
Collapse
|
8
|
Arkat S, Poovitha S, Vijayakumar A, Dhat R, Sitasawad SL, Mahapatra NR. Regulation of peroxiredoxin-3 gene expression under basal and hyperglycemic conditions: Key roles for transcription factors Sp1, CREB and NF-κB. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166691. [PMID: 36933848 DOI: 10.1016/j.bbadis.2023.166691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Peroxiredoxin-3 (Prx-3), a thioredoxin-dependent peroxidase located exclusively in the mitochondrial matrix, catalyses peroxides/peroxinitrites. Altered levels of Prx-3 is associated with diabetic cardiomyopathy (DCM). However, molecular mechanisms of Prx-3 gene regulation remain partially understood. We undertook a systemic analysis of the Prx-3 gene to identify the key motifs and transcriptional regulatory molecules. Transfection of promoter-reporter constructs in the cultured cells identified -191/+20 bp domain as the core promoter region. Stringent in silico analysis of this core promoter revealed putative binding sites for specificity protein 1 (Sp1), cAMP response element-binding protein (CREB) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Interestingly, while co-transfection of the -191/+20 bp construct with Sp1/CREB plasmid diminished Prx3 promoter-reporter activity, mRNA and protein levels, co-transfection with NF-κB expression plasmid augmented the same. Consistently, inhibition of Sp1/CREB/NF-κB expression reversed the promoter-reporter activity, mRNA and protein levels of Prx-3, thereby confirming their regulatory effects. ChIP assays provided evidence for interactions of Sp1/CREB/NF-κB with the Prx-3 promoter. H9c2 cells treated with high glucose as well as streptozotocin (STZ)-treated diabetic rats showed time-dependent reduction in promoter activity, endogenous transcript and protein levels of Prx-3. Augmentation of Sp1/CREB protein levels and their strong binding with Prx-3 promoter are responsible for diminished Prx-3 levels under hyperglycemia. The activation/increase in the NF-κB expression under hyperglycemia was not sufficient to restore the reduction of endogenous Prx-3 levels owing to its weak binding affinity. Taken together, this study elucidates the previously unknown roles of Sp1/CREB/NF-κB in regulating Prx-3 gene expression under hyperglycemic condition.
Collapse
Affiliation(s)
- Silpa Arkat
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sundar Poovitha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Rohini Dhat
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Sandhya L Sitasawad
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
9
|
Ushakov A, Ivanchenko V, Gagarina A. Heart Failure And Type 2 Diabetes Mellitus: Neurohumoral, Histological And Molecular Interconnections. Curr Cardiol Rev 2023; 19:e170622206132. [PMID: 35718961 PMCID: PMC10201898 DOI: 10.2174/1573403x18666220617121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) is a global healthcare burden and a leading cause of morbidity and mortality worldwide. Type 2 diabetes mellitus (T2DM) appears to be one of the major risk factors that significantly worsen HF prognosis and increase the risk of fatal cardiovascular outcomes. Despite a great knowledge of pathophysiological mechanisms involved in HF development and progression, hospitalization rates in patients with HF and concomitant T2DM remain elevated. In this review, we discuss the complex interplay between systemic neurohumoral regulation and local cardiac mechanisms participating in myocardial remodeling and HF development in T2DM with special attention to cardiomyocyte energy metabolism, mitochondrial function and calcium metabolism, cardiomyocyte hypertrophy and death, extracellular matrix remodeling.
Collapse
Affiliation(s)
- A. Ushakov
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - V. Ivanchenko
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - A. Gagarina
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
10
|
Sharma U, Chakraborty M, Chutia D, Bhuyan NR. Cellular and molecular mechanisms, genetic predisposition and treatment of diabetes-induced cardiomyopathy. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100126. [PMID: 36568261 PMCID: PMC9780063 DOI: 10.1016/j.crphar.2022.100126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a common disease affecting millions of people worldwide. This disease is not limited to metabolic disorders but also affects several vital organs in the body and can lead to major complications. People with diabetes mellitus are subjected to cardiovascular complications, such as cardiac myopathy, which can further result in major complications such as diabetes-induced cardiac failure. The mechanism underlying diabetes-induced cardiac failure requires further research; however, several contributing factors have been identified to function in tandem, such as reactive oxygen species production, inflammation, formation of advanced glycation end-products, altered substrate utilisation by mitochondria, activation of the renin-angiotensin-aldosterone system and lipotoxicity. Genetic factors such as microRNAs, long noncoding RNAs and circular RNAs, as well as epigenetic processes such as DNA methylation and histone modifications, also contribute to complications. These factors are potential targets for developing effective new therapies. This review article aims to facilitate in depth understanding of these contributing factors and provide insights into the correlation between diabetes mellitus and cardiovascular complications. Some alternative targets with therapeutic potential are discussed to indicate favourable targets for the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Urvashi Sharma
- Himalayan Pharmacy Institute Majhitar, Rangpo, Sikkim, 737132, India
| | | | - Devid Chutia
- Himalayan Pharmacy Institute Majhitar, Rangpo, Sikkim, 737132, India
| | | |
Collapse
|
11
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Giordo R, Ahmed YMA, Allam H, Abusnana S, Pappalardo L, Nasrallah GK, Mangoni AA, Pintus G. EndMT Regulation by Small RNAs in Diabetes-Associated Fibrotic Conditions: Potential Link With Oxidative Stress. Front Cell Dev Biol 2021; 9:683594. [PMID: 34095153 PMCID: PMC8170089 DOI: 10.3389/fcell.2021.683594] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes-associated complications, such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis, the main consequences of long-term hyperglycemia, often lead to organ dysfunction, disability, and increased mortality. A common denominator of these complications is the myofibroblast-driven excessive deposition of extracellular matrix proteins. Although fibroblast appears to be the primary source of myofibroblasts, other cells, including endothelial cells, can generate myofibroblasts through a process known as endothelial to mesenchymal transition (EndMT). During EndMT, endothelial cells lose their typical phenotype to acquire mesenchymal features, characterized by the development of invasive and migratory abilities as well as the expression of typical mesenchymal products such as α-smooth muscle actin and type I collagen. EndMT is involved in many chronic and fibrotic diseases and appears to be regulated by complex molecular mechanisms and different signaling pathways. Recent evidence suggests that small RNAs, in particular microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are crucial mediators of EndMT. Furthermore, EndMT and miRNAs are both affected by oxidative stress, another key player in the pathophysiology of diabetic fibrotic complications. In this review, we provide an overview of the primary redox signals underpinning the diabetic-associated fibrotic process. Then, we discuss the current knowledge on the role of small RNAs in the regulation of EndMT in diabetic retinopathy, nephropathy, cardiomyopathy, and atherosclerosis and highlight potential links between oxidative stress and the dyad small RNAs-EndMT in driving these pathological states.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Yusra M. A. Ahmed
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hilda Allam
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Department of Diabetes and Endocrinology, University Hospital Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Lucia Pappalardo
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah, Sharjah, United Arab Emirates
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Arduino Aleksander Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Medical Centre, Adelaide, SA, Australia
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
13
|
Ahmed U, Ashfaq UA, Qasim M, Ahmad I, Ahmad HU, Tariq M, Masoud MS, Khaliq S. Dysregulation of circulating miRNAs promotes the pathogenesis of diabetes-induced cardiomyopathy. PLoS One 2021; 16:e0250773. [PMID: 33909697 PMCID: PMC8081166 DOI: 10.1371/journal.pone.0250773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic Cardiomyopathy (DCM) is characterized by myocardial dysfunction caused by diabetes mellitus. After-effects of diabetic cardiomyopathy are far more lethal than non-diabetic cardiomyopathy. More than 300 million people suffer from diabetes and cardiovascular disorder which is expected to be elevated to an alarming figure of 450 million by 2030. Recent studies suggested that miRNA plays important role in the onset of diabetic cardiomyopathy. This study was designed to identify the miRNA that is responsible for the onset of diabetic cardiomyopathy using in silico and in vitro approaches. In this study, to identify the miRNA responsible for the onset of diabetic cardiomyopathy, in silico analysis was done to predict the role of these circulating miRNAs in type 2 diabetic cardiomyopathy. Shared miRNAs that are present in both diseases were selected for further analysis. Total RNA and miRNA were extracted from blood samples taken from type 2 diabetic patients as well as healthy controls to analyze the expression of important genes like AKT, VEGF, IGF, FGF1, ANGPT2 using Real-time PCR. The expression of ANGPT2 was up-regulated and AKT, VEGF, IGF, FGF1 were down-regulated in DCM patients as compared to healthy controls. The miRNA expression of miR-17 was up-regulated and miR-24, miR-150, miR-199a, miR-214, and miR-320a were down-regulated in the DCM patients as compared to healthy controls. This shows that dysregulation of target genes and miRNA may contribute towards the pathogenesis of DCM and more studies should be conducted to elucidate the role of circulating miRNAs to use them as therapeutic and diagnostic options.
Collapse
Affiliation(s)
- Uzair Ahmed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Imtiaz Ahmad
- Department of Cardiology, Punjab Institute of Cardiology, Lahore, Pakistan
| | - Hafiz Usman Ahmad
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Sciences and Technology, Mirpur, AJK, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
14
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
15
|
Mostafa F, Abdel-Moneim A, Abdul-Hamid M, Galaly SR, Mohamed HM. Polydatin and polydatin-loaded chitosan nanoparticles attenuate diabetic cardiomyopathy in rats. J Mol Histol 2021; 52:135-152. [PMID: 33389430 DOI: 10.1007/s10735-020-09930-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Hyperglycemia is associated with impairment of heart function. The current study aimed to investigate the ameliorative effect of polydatin-loaded chitosan nanoparticles (PD-CSNPs), polydatin (PD) and metformin (MET) on diabetic cardiomyopathy in rats. Rats divided into six groups; normal-control, diabetic-control, diabetic + CSNPs (diabetic rats treated with 50 mg/kg blank chitosan nanoparticles), diabetic + PD-CSNPs (diabetic rats treated with PD-CSNPs equivalent to 50 mg/kg of polydatin), diabetic + PD (diabetic rats given 50 mg/kg polydatin), diabetic + MET (diabetic rats given 100 mg/kg metformin), orally and daily for 4 weeks. Treatment of diabetic rats with PD-CSNPs, PD and MET showed a significant reduction in the values of glucose and glycosylated hemoglobin with improvement in heart function biomarkers through decreasing serum creatine kinase and creatine kinase myocardial band activities compared to diabetic control. The treatment agents also suppressed the elevated lipid peroxidation product, increased values of glutathione content, superoxide dismutase, superoxide peroxidase, and catalase activities in the heart of diabetic treated rats. Furthermore, PD-CSNPs, PD and MET decreased heart tissue levels of a pro-inflammatory cytokine; tumor necrosis factor-alpha and nuclear factor-kappa β, upregulation of heart gene expressions; nuclear factor erythroid 2-related factor 2 and heme oxygenase-1. Histological and ultrastructural examinations revealed the ameliorative effect of PD-CSNPs, PD and MET against the harmful of diabetic cardiomyopathy by reducing the cardiac fibers, necrotic cardiac myocytes, inflammatory cell infiltration, and the arrangement of the myofibrils and intercalated discs. In conclusion, the new formula of PD-CSNPs was more effective than PD and MET in amelioration the diabetic cardiomyopathy through its antioxidant, anti-inflammatory and prolonged-release properties.
Collapse
Affiliation(s)
- Fatma Mostafa
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Zoology Department, Beni-Suef University, Salah Salem St, Beni-Suef, 62511, Egypt.
| | - Manal Abdul-Hamid
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Sanaa R Galaly
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa M Mohamed
- Genetic and Molecular Genetic Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Gollmer J, Zirlik A, Bugger H. Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes Metab J 2020; 44:33-53. [PMID: 32097997 PMCID: PMC7043970 DOI: 10.4093/dmj.2019.0185] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial medicine is increasingly discussed as a promising therapeutic approach, given that mitochondrial defects are thought to contribute to many prevalent diseases and their complications. In individuals with diabetes mellitus (DM), defects in mitochondrial structure and function occur in many organs throughout the body, contributing both to the pathogenesis of DM and complications of DM. Diabetic cardiomyopathy (DbCM) is increasingly recognized as an underlying cause of increased heart failure in DM, and several mitochondrial mechanisms have been proposed to contribute to the development of DbCM. Well established mechanisms include myocardial energy depletion due to impaired adenosine triphosphate (ATP) synthesis and mitochondrial uncoupling, and increased mitochondrial oxidative stress. A variety of upstream mechanisms of impaired ATP regeneration and increased mitochondrial reactive oxygen species have been proposed, and recent studies now also suggest alterations in mitochondrial dynamics and autophagy, impaired mitochondrial Ca²⁺ uptake, decreased cardiac adiponectin action, increased O-GlcNAcylation, and impaired activity of sirtuins to contribute to mitochondrial defects in DbCM, among others. In the current review, we present and discuss the evidence that underlies both established and recently proposed mechanisms that are thought to contribute to mitochondrial dysfunction in DbCM.
Collapse
Affiliation(s)
- Johannes Gollmer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Andreas Zirlik
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
17
|
Zych M, Wojnar W, Borymski S, Szałabska K, Bramora P, Kaczmarczyk-Sedlak I. Effect of Rosmarinic Acid and Sinapic Acid on Oxidative Stress Parameters in the Cardiac Tissue and Serum of Type 2 Diabetic Female Rats. Antioxidants (Basel) 2019; 8:E579. [PMID: 31771099 PMCID: PMC6943504 DOI: 10.3390/antiox8120579] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are one of the most common complications of type 2 diabetes. They are considered the leading cause of death among diabetics. One of the mechanisms underlying diabetic cardiovascular complications is oxidative stress. Many phenolic acids are regarded as antioxidants. The aim of the study was to investigate the effect of rosmarinic acid (RA) and sinapic acid (SA) on oxidative stress parameters in the cardiac tissue and serum of type 2 diabetic female rats. Additionally, the effect of these compounds on glucose homeostasis and lipid profile in the serum was evaluated. Type 2 diabetes was induced with high-fat diet and streptozotocin. RA at the doses of 10 and 50 mg/kg and SA at the doses of 5 and 25 mg/kg were administrated orally for 28 days. Untreated diabetic rats exhibited unfavorable changes in glucose metabolism and lipid profile. Changes in the enzymatic and non-enzymatic markers indicated the onset of oxidative stress in these animals. The results showed that the higher doses of the tested phenolic acids-50 mg/kg of RA and 25 mg/kg of SA-revealed beneficial effects on oxidative stress in the cardiac tissue of diabetic rats.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| | - Sławomir Borymski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Katarzyna Szałabska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| | - Piotr Bramora
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.W.); (K.S.); (P.B.); (I.K.-S.)
| |
Collapse
|