1
|
Khan ST, Huffman N, Li X, Sharma A, Winalski CS, Ricchetti ET, Derwin K, Apte SS, Rotroff D, Saab C, Piuzzi NS. Pain Assessment in Osteoarthritis: Present Practices and Future Prospects Including the Use of Biomarkers and Wearable Technologies, and AI-Driven Personalized Medicine. J Orthop Res 2025. [PMID: 40205648 DOI: 10.1002/jor.26082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/09/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
Osteoarthritis (OA) is a highly prevalent chronic joint disorder affecting ~600 million individuals worldwide and is characterized by complex pain mechanisms that significantly impair patient quality of life. Challenges exist in accurately assessing and measuring pain in OA due to variations in pain perception among individuals and the heterogeneous nature of the disease. Conventional pain assessment methods, such as patient-reported outcome measures and clinical evaluations, often fail to fully capture the heterogeneity of pain experiences among individuals with OA. This review will summarize and evaluate current methods of pain assessment in OA and highlight future directions for standardized pain assessment. We discuss the role of animal models in enhancing our understanding of OA pain pathophysiology and highlight the necessity of translational research to advance pain assessment strategies. Key challenges explored include identifying phenotypes of pain susceptibility, integrating biomarkers into clinical practice, and adopting personalized pain management approaches through the incorporation of multi-modal data and multilevel analysis. We underscore the imperative for continued innovation in pain assessment and management to improve outcomes for patients with OA.
Collapse
Affiliation(s)
- Shujaa T Khan
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nick Huffman
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaojuan Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Carl S Winalski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
- Department of Radiology, Diagnostics Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric T Ricchetti
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kathleen Derwin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Carl Saab
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Joshi N, Yan J, Dang M, Slaughter K, Wang Y, Wu D, Ung T, Bhingaradiya N, Pandya V, Chen MX, Kaur S, Bhagchandani S, Alfassam HA, Joseph J, Gao J, Dewani M, Chu RWC, Yip RCS, Weldon E, Shah P, Pisal ND, Shukla C, Sherman NE, Luo JN, Conway T, Eickhoff JP, Botelho L, Alhasan AH, Karp JM, Ermann J. A mechanically resilient soft hydrogel improves drug delivery for treating post-traumatic osteoarthritis in physically active joints. Proc Natl Acad Sci U S A 2025; 122:e2409729122. [PMID: 40163719 PMCID: PMC12002200 DOI: 10.1073/pnas.2409729122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Intra-articular delivery of disease-modifying osteoarthritis drugs (DMOADs) is likely to be most effective in the early stages of post-traumatic osteoarthritis (PTOA), when symptoms are minimal, and patients remain physically active. To ensure effective therapy, DMOAD delivery systems therefore must withstand repeated mechanical loading without altering the kinetics of drug release. While soft materials are typically preferred for DMOAD delivery, mechanical loading can compromise their structural integrity and disrupt controlled drug release. In this study, we present a mechanically resilient soft hydrogel that rapidly self-heals under conditions simulating human running while maintaining sustained release of the cathepsin-K inhibitor L-006235, used as a proof-of-concept DMOAD. This hydrogel demonstrated superior performance compared to a previously reported hydrogel designed for intra-articular drug delivery, which, in our study, neither recovered its structure nor maintained drug release under mechanical loading. When injected into mouse knee joints, the hydrogel provided consistent release kinetics of the encapsulated drug in both treadmill-running and nonrunning mice. In a mouse model of severe PTOA exacerbated by treadmill-running, the L-006235 hydrogel significantly reduced cartilage degeneration, whereas the free drug did not. Overall, our data underscore the hydrogel's potential for treating PTOA in physically active patients.
Collapse
Affiliation(s)
- Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Jing Yan
- Harvard Medical School, Boston, MA02115
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Mickael Dang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Kai Slaughter
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Yufeng Wang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Dana Wu
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Trevor Ung
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Nutan Bhingaradiya
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Virja Pandya
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Mu Xian Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Shahdeep Kaur
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Sachin Bhagchandani
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Haya A. Alfassam
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh11442, Saudi Arabia
- King Abdulaziz City for Science and Technology Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh11442, Saudi Arabia
| | - John Joseph
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Jingjing Gao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Mahima Dewani
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Rachel Wai Chun Chu
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Eli Weldon
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Purna Shah
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Nishkal Dhiraj Pisal
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Chetan Shukla
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Nicholas E. Sherman
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - James N. Luo
- Harvard Medical School, Boston, MA02115
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA02115
| | - Thomas Conway
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | | | | | - Ali H. Alhasan
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh11442, Saudi Arabia
- King Abdulaziz City for Science and Technology Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh11442, Saudi Arabia
| | - Jeffrey M. Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute, Cambridge, MA02142
- Harvard Stem Cell Institute, Cambridge, MA02138
| | - Joerg Ermann
- Harvard Medical School, Boston, MA02115
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| |
Collapse
|
3
|
Rajalekshmi R, Agrawal DK. Advancing Osteoarthritis Research: Insights from Rodent Models and Emerging Trends. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2025; 7:110-128. [PMID: 40264810 PMCID: PMC12014194 DOI: 10.26502/josm.511500187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions of individuals worldwide, causing pain, disability, and a significant burden on public health. Preclinical research using animal models is essential to our understanding of the underlying pathogenesis of OA and developing therapeutic strategies. Rodent models, in particular, have become indispensable in studying OA due to their ability to mimic various features of human disease. This review provides an overview of commonly used rodent models of OA, including surgical induction (e.g., destabilization of the medial meniscus and anterior cruciate ligament transection), chemical induction (e.g., monoiodoacetate-induced cartilage degeneration), and genetically modified models. Additionally, age-related OA models that naturally develop OA-like symptoms in aged rodents are also discussed. Despite their utility, rodent models face limitations in fully recapitulating the complexity of human OA. Emerging trends in OA research, including the use of 3D imaging for joint analysis, molecular profiling for deeper insights into disease mechanisms, and advancements in biomarkers for early detection and treatment, are highlighted. These innovations provide new opportunities to refine existing models and enhance the translation of findings to clinical therapies. This critical review provides comprehensive information for researchers working in OA and related fields, promoting a better understanding of the available rodent models and their applications in OA research.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
4
|
Weaver SR, Arnold KM, Peralta-Herrera E, Oviedo M, Zars EL, Bradley EW, Westendorf JJ. Postnatal deletion of Phlpp1 in chondrocytes delays post-traumatic osteoarthritis in male mice. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100525. [PMID: 39811690 PMCID: PMC11732534 DOI: 10.1016/j.ocarto.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/24/2024] [Indexed: 01/16/2025] Open
Abstract
Objective Osteoarthritis is a chronic, debilitating disease that causes long-term pain and immobility. Germline deletion of Phlpp1 or administration of small molecules that inhibit Phlpp1 prevents post-traumatic osteoarthritis (PTOA) in mice. However, the chondrocyte-intrinsic role of Phlpp1 in PTOA progression is unknown. The objective of this study was to determine how postnatal, chondrocyte-directed deletion of Phlpp1 affects PTOA progression in the presence or absence of Phlpp inhibitors. Design Phlpp1fl/fl; Agc-CreERT2 and Agc-CreERT2 mice were injected with tamoxifen at 12 weeks of age to generate Phlpp1-CKOAgcERT and control (AgcERT) groups. Male mice underwent surgery to destabilize the medial meniscus (DMM) at 17 weeks of age. A separate cohort of male Phlpp1-CKOAgcERT mice were administered an intra-articular injection of NSC117079, a Phlpp1/2 inhibitor, or saline seven weeks after DMM surgery. Activity and mechanical allodynia were monitored throughout the experiment and cartilage damage was evaluated 12 weeks post-surgery. Results Phlpp1-CKOAgcERT mice had less cartilage damage than AgcERT littermates 12 weeks after DMM surgery but exhibited no differences in activity. Prg4 expression was also higher in articular chondrocytes of Phlpp1-CKOAgcERT mice. Intra-articular administration of NSC117079 to Phlpp1-CKOAgcERT mice improved cartilage structure, subchondral bone sclerosis, and mechanical allodynia at 12 weeks post-DMM. Conclusions Postnatal deletion of Phlpp1 in chondrocytes attenuates DMM-induced cartilage damage and subchondral bone sclerosis but does not prevent pain-related behaviors. Intra-articular injection of Phlpp inhibitors delays mechanical allodynia in Phlpp1-CKOAgcERT mice. These data indicate that Phlpp1 in chondrocytes affects articular cartilage structure after injury, but pain-related behaviors are controlled by Phlpp1 or Phlpp2 in other cell types.
Collapse
Affiliation(s)
| | | | | | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Elizabeth W. Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Chen W, Xiao J, Zhou Y, Liu W, Jian J, Yang J, Chen B, Ye Z, Liu J, Xu X, Jiang T, Wang H, Liu W. Curcumenol regulates Histone H3K27me3 demethylases KDM6B affecting Succinic acid metabolism to alleviate cartilage degeneration in knee osteoarthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155922. [PMID: 39126921 DOI: 10.1016/j.phymed.2024.155922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cartilage metabolism dysregulation is a crucial driver in knee osteoarthritis (KOA). Modulating the homeostasis can mitigate the cartilage degeneration in KOA. Curcumenol, derived from traditional Chinese medicine Curcuma Longa L., has demonstrated potential in enhancing chondrocyte proliferation and reducing apoptosis. However, the specific mechanism of Curcumenol in treating KOA remains unclear. This study aimed to demonstrate the molecular mechanism of Curcumenol in treating KOA based on the transcriptomics and metabolomics, and both in vivo and in vitro experimental validations. MATERIALS AND METHODS In this study, a destabilization medial meniscus (DMM)-induced KOA mouse model was established. And the mice were intraperitoneally injected with Curcumenol at 4 and 8 mg/kg concentrations. The effects of Curcumenol on KOA cartilage and subchondral was evaluated using micro-CT, histopathology, and immunohistochemistry (IHC). In vitro, OA chondrocytes were induced with 10 μg/mL lipopolysaccharide (LPS) and treated with Curcumenol to evaluate the proliferation, apoptosis, and extracellular matrix (ECM) metabolism through CCK8 assay, flow cytometry, and chondrocyte staining. Furthermore, transcriptomics and metabolomics were utilized to identify differentially expressed genes (DEGs) and metabolites. Finally, integrating multi-omics analysis, virtual molecular docking (VMD), and molecular dynamics simulation (MDS), IHC, immunofluorescence (IF), PCR, and Western blot (WB) validation were conducted to elucidate the mechanism by which Curcumenol ameliorates KOA cartilage degeneration. RESULTS Curcumenol ameliorated cartilage destruction and subchondral bone loss in KOA mice, promoted cartilage repair, upregulated the expression of COL2 while downregulated MMP3, and improved ECM synthesis metabolism. Additionally, Curcumenol also alleviated the damage of LPS on the proliferation activity and suppressed apoptosis, promoted ECM synthesis. Transcriptomic analysis combined with weighted gene co-expression network analysis (WGCNA) identified a significant downregulation of 19 key genes in KOA. Metabolomic profiling showed that Curcumenol downregulates the expression of d-Alanyl-d-alanine, 17a-Estradiol, Glutathione, and Succinic acid, while upregulating Sterculic acid and Azelaic acid. The integrated multi-omics analysis suggested that Curcumenol targeted KDM6B to regulate downstream protein H3K27me3 expression, which inhibited methylation at the histone H3K27, consequently reducing Succinic acid levels and improving KOA cartilage metabolism homeostasis. Finally, both in vivo and in vitro findings indicated that Curcumenol upregulated KDM6B, suppressed H3K27me3 expression, and stimulated collagen II expression and ECM synthesis, thus maintaining cartilage metabolism homeostasis and alleviating KOA cartilage degeneration. CONCLUSION Curcumenol promotes cartilage repair and ameliorates cartilage degeneration in KOA by upregulating KDM6B expression, thereby reducing H3K27 methylation and downregulating Succinic Acid, restoring metabolic stability and ECM synthesis.
Collapse
Affiliation(s)
- Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Jiacong Xiao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yi Zhou
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Weinian Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Junde Jian
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510045, Guangdong, China
| | - Jiyong Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Bohao Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhilong Ye
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Jun Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Xuemeng Xu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Tao Jiang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China.
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China; Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Wengang Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China.
| |
Collapse
|
6
|
Schippers P, Rösch G, Sohn R, Holzapfel M, Junker M, Rapp AE, Jenei-Lanzl Z, Drees P, Zaucke F, Meurer A. A Lightweight Browser-Based Tool for Collaborative and Blinded Image Analysis. J Imaging 2024; 10:33. [PMID: 38392082 PMCID: PMC10889326 DOI: 10.3390/jimaging10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Collaborative manual image analysis by multiple experts in different locations is an essential workflow in biomedical science. However, sharing the images and writing down results by hand or merging results from separate spreadsheets can be error-prone. Moreover, blinding and anonymization are essential to address subjectivity and bias. Here, we propose a new workflow for collaborative image analysis using a lightweight online tool named Tyche. The new workflow allows experts to access images via temporarily valid URLs and analyze them blind in a random order inside a web browser with the means to store the results in the same window. The results are then immediately computed and visible to the project master. The new workflow could be used for multi-center studies, inter- and intraobserver studies, and score validations.
Collapse
Affiliation(s)
- Philipp Schippers
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Gundula Rösch
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Rebecca Sohn
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Matthias Holzapfel
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Marius Junker
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
- Department of Orthopedics, Tabea Hospital Hamburg, 22587 Hamburg, Germany
| | - Anna E Rapp
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Zsuzsa Jenei-Lanzl
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Frank Zaucke
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
- Medical Park St. Hubertus Klinik, 83707 Bad Wiessee, Germany
| |
Collapse
|
7
|
Wang L, Xu H, Li X, Chen H, Zhang H, Zhu X, Lin Z, Guo S, Bao Z, Rui H, He W, Zhang H. Cucurbitacin E reduces IL-1β-induced inflammation and cartilage degeneration by inhibiting the PI3K/Akt pathway in osteoarthritic chondrocytes. J Transl Med 2023; 21:880. [PMID: 38049841 PMCID: PMC10696753 DOI: 10.1186/s12967-023-04771-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Osteoarthritis is a degenerative joint disease. Cartilage degeneration is the earliest and most important pathological change in osteoarthritis, and persistent inflammation is one of the driving factors of cartilage degeneration. Cucurbitacin E, an isolated compound in the Cucurbitacin family, has been shown to have anti-inflammatory effects, but its role and mechanism in osteoarthritic chondrocytes are unclear. METHODS For in vitro experiments, human chondrocytes were stimulated with IL-1β, and the expression of inflammatory genes was measured by Western blotting and qPCR. The expression of extracellular matrix proteins was evaluated by immunofluorescence staining, Western blotting and saffron staining. Differences in gene expression between cartilage from osteoarthritis patients and normal cartilage were analysed by bioinformatics methods, and the relationship between Cucurbitacin E and its target was analysed by a cellular thermal shift assay, molecular docking analysis and molecular dynamics simulation. For in vivo experiments, knee osteoarthritis was induced by DMM in C57BL/6 mouse knee joints, and the effect of Cucurbitacin E on knee joint degeneration was evaluated. RESULTS The in vitro experiments confirmed that Cucurbitacin E effectively inhibited the production of the inflammatory cytokine interleukin-1β(IL-1β) and cyclooxygenase-2 (COX-2) by IL-1β-stimulated chondrocytes and alleviates extracellular matrix degradation. The in vivo experiments demonstrated that Cucurbitacin E had a protective effect on the knee cartilage of C57BL/6 mice with medial meniscal instability in the osteoarthritis model. Mechanistically, bioinformatic analysis of the GSE114007 and GSE117999 datasets showed that the PI3K/AKT pathway was highly activated in osteoarthritis. Immunohistochemical analysis of PI3K/Akt signalling pathway proteins in pathological slices of human cartilage showed that the level of p-PI3K in patients with osteoarthritis was higher than that in the normal group. PI3K/Akt were upregulated in IL-1β-stimulated chondrocytes, and Cucurbitacin E intervention reversed this phenomenon. The cellular thermal shift assay, molecular docking analysis and molecular dynamics experiment showed that Cucurbitacin E had a strong binding affinity for the inhibitory target PI3K. SC79 activated Akt phosphorylation and reversed the effect of Cucurbitacin E on IL-1β-induced chondrocyte degeneration, demonstrating that Cucurbitacin E inhibits IL-1β-induced chondrocyte inflammation and degeneration by inhibiting the PI3K/AKT pathway. CONCLUSION Cucurbitacin E inhibits the activation of the PI3K/AKT pathway, thereby alleviating the progression of OA. In summary, we believe that Cucurbitacin E is a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- Lin Wang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hui Xu
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xin Li
- School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Hongwei Chen
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Haigang Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xunpeng Zhu
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhijie Lin
- Anhui Medical University, Hefei, Anhui Province, China
| | - Shilei Guo
- Anhui Medical University, Hefei, Anhui Province, China
| | - Zhibo Bao
- Anhui Medical University, Hefei, Anhui Province, China
| | - Haicheng Rui
- Anhui Medical University, Hefei, Anhui Province, China
| | - Wei He
- School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui Province, China.
| | - Hui Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
8
|
Li G, Liu S, Chen Y, Zhao J, Xu H, Weng J, Yu F, Xiong A, Udduttula A, Wang D, Liu P, Chen Y, Zeng H. An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment. Nat Commun 2023; 14:3159. [PMID: 37258510 DOI: 10.1038/s41467-023-38597-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Intra-articular injection of therapeutics is an effective strategy for treating osteoarthritis (OA), but it is hindered by rapid drug diffusion, thereby necessitating high-frequency injections. Hence, the development of a biofunctional hydrogel for improved delivery is required. In this study, we introduce a liposome-anchored teriparatide (PTH (1-34)) incorporated into a gallic acid-grafted gelatin injectable hydrogel (GLP hydrogel). We show that the GLP hydrogel can form in situ and without affecting knee motion after intra-articular injection in mice. We demonstrate controlled, sustained release of PTH (1-34) from the GLP hydrogel. We find that the GLP hydrogel promotes ATDC5 cell proliferation and protects the IL-1β-induced ATDC5 cells from further OA progression by regulating the PI3K/AKT signaling pathway. Further, we show that intra-articular injection of hydrogels into an OA-induced mouse model promotes glycosaminoglycans synthesis and protects the cartilage from degradation, supporting the potential of this biomaterial for OA treatment.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Jin Zhao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Huihui Xu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Anjaneyulu Udduttula
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
9
|
Chen MF, Hu CC, Hsu YH, Chiu YT, Chen KL, Ueng SWN, Chang Y. Characterization and Advancement of an Evaluation Method for the Treatment of Spontaneous Osteoarthritis in STR/ort Mice: GRGDS Peptides as a Potential Treatment for Osteoarthritis. Biomedicines 2023; 11:biomedicines11041111. [PMID: 37189729 DOI: 10.3390/biomedicines11041111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice at different weeks of age. We then developed an evaluation model for OA treatment. We graded the knee cartilage damage using the Osteoarthritis Research Society International (OARSI) score in STR/ort male mice with or without GRGDS treatment. We measured the levels of typical OA markers, including aggrecan fragments, matrix metallopeptidase-13 (MMP-13), collagen type X alpha 1 chain (COL10A1), and SRY-box transcription factor 9 (Sox9), and quantified epiphyseal trabecular parameters. Compared to the young age group, elderly mice showed an increased OARSI score, decreased chondrocyte columns of the growth plate, elevated expression of OA markers (aggrecan fragments, MMP13, and COL10A1), and decreased expression of Sox9 at the articular cartilage region in elderly STR/ort mice. Aging also significantly enhanced the subchondral bone remodeling and microstructure change in the tibial plateau. Moreover, GRGDS treatment mitigated these subchondral abnormalities. Our study presents suitable evaluation methods to characterize and measure the efficacy of cartilage damage treatments in STR/ort mice with spontaneous OA.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Tien Chiu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kai-Lin Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Steve W N Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
10
|
Little CB, Zaki S, Blaker CL, Clarke EC. Animal models of osteoarthritis. Bone Joint Res 2022; 11:514-517. [PMID: 35909339 PMCID: PMC9396918 DOI: 10.1302/2046-3758.118.bjr-2022-0217.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cite this article: Bone Joint Res 2022;11(8):514–517.
Collapse
Affiliation(s)
- Christopher B. Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Sydney, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Sydney, Australia
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, Australia
| | - Carina L. Blaker
- Murray Maxwell Biomechanics Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Sydney, Australia
| | - Elizabeth C. Clarke
- Murray Maxwell Biomechanics Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, Sydney, Australia
| |
Collapse
|