1
|
Reddy MB, Cabalu TD, de Zwart L, Ramsden D, Dowty ME, Taskar KS, Badée J, Bolleddula J, Boulu L, Fu Q, Kotsuma M, Leblanc AF, Lewis G, Liang G, Parrott N, Pilla Reddy V, Prakash C, Shah K, Umehara K, Mukherjee D, Rehmel J, Hariparsad N. Building Confidence in Physiologically Based Pharmacokinetic Modeling of CYP3A Induction Mediated by Rifampin: An Industry Perspective. Clin Pharmacol Ther 2025; 117:403-420. [PMID: 39422118 PMCID: PMC11739743 DOI: 10.1002/cpt.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, fm,CYP3A4, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of fm,CYP3A4 (0.086-1.0), Fg (0.11-1.0) and hepatic availability (0.09-0.96) were included. Predictions were most often accurate for compounds that are not P-gp substrates or that are P-gp substrates but that have high permeability. Case studies for three challenging DDI predictions (i.e., for eliglustat, tofacitinib, and ribociclib) are presented. Along with parameter sensitivity analysis to understand key parameters impacting DDI simulations, alternative model structures should be considered, for example, a mechanistic absorption model instead of a first-order absorption model might be more appropriate for a P-gp substrate with low permeability. Any mechanisms pertinent to the CYP3A substrate that rifampin might impact (e.g., induction of other enzymes or P-gp) should be considered for inclusion in the model. PBPK modeling was shown to be an effective tool to predict induction DDIs with rifampin for CYP3A substrates with limited mechanistic complications, increasing confidence in the rifampin model. While this analysis focused on rifampin, the learnings may apply to other inducers.
Collapse
Affiliation(s)
| | - Tamara D. Cabalu
- DMPK, Pharmacokinetics, Dynamics, Metabolism, and BioanalyticsMerck & Co., Inc.RahwayNew JerseyUSA
| | - Loeckie de Zwart
- DMPK, Janssen Pharmaceutica NVA Johnson & Johnson CompanyBeerseBelgium
| | - Diane Ramsden
- DMPK, Research and Early Development, Oncology R&DAstraZenecaBostonMassachusettsUSA
| | - Martin E. Dowty
- Pharmacokinetics Dynamics and MetabolismPfizer IncCambridgeMassachusettsUSA
| | - Kunal S. Taskar
- DMPK, Pre‐Clinical Sciences, Research TechnologiesGSKStevenageUK
| | - Justine Badée
- PK Sciences, Biomedical ResearchNovartisBaselSwitzerland
| | - Jayaprakasam Bolleddula
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Laurent Boulu
- Modeling and Simulation, Translational Medicine and Early DevelopmentSanofiMontpellierFrance
| | - Qiang Fu
- Modeling and SimulationVertex PharmaceuticalsBostonMassachusettsUSA
| | - Masakatsu Kotsuma
- Quantitative Clinical PharmacologyDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Alix F. Leblanc
- Quantitative, Translational & ADME Sciences, Development ScienceAbbVieNorth ChicagoIllinoisUSA
| | - Gareth Lewis
- DMPK, Pre‐Clinical Sciences, Research TechnologiesGSKStevenageUK
| | | | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research & Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Venkatesh Pilla Reddy
- Global PKPD/PharmacometricsEli Lilly and CompanyBracknell, UK and Indianapolis, IndianaUSA
| | - Chandra Prakash
- DMPK and Clinical PharmacologyAgiosCambridgeMassachusettsUSA
| | - Kushal Shah
- Quantitative Clinical PharmacologyTakeda Pharmaceuticals International Inc.CambridgeMassachusettsUSA
| | - Kenichi Umehara
- Roche Pharmaceutical Research and Early Development, Roche Innovation CenterF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Dwaipayan Mukherjee
- Quantitative Clinical PharmacologyDaiichi‐Sankyo Inc.Basking RidgeNew JerseyUSA
| | - Jessica Rehmel
- Global PKPD/PharmacometricsEli Lilly and CompanyBracknell, UK and Indianapolis, IndianaUSA
| | - Niresh Hariparsad
- DMPK, Research and Early Development, Oncology R&DAstraZenecaBostonMassachusettsUSA
| |
Collapse
|
2
|
Chiang CY, Chen CH, Feng JY, Chiang YJ, Huang WC, Lin YJ, Huang YW, Wu HH, Lee PH, Lee MC, Shu CC, Wang HH, Wang JY, Wu MY, Lee CY, Wu MS. Prevention and management of tuberculosis in solid organ transplantation: A consensus statement of the transplantation society of Taiwan. J Formos Med Assoc 2023; 122:976-985. [PMID: 37183074 DOI: 10.1016/j.jfma.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
Solid organ transplant recipients have an increased risk of tuberculosis (TB). Due to the use of immunosuppressants, the incidence of TB among solid organ transplant recipients has been consistently reported to be higher than that among the general population. TB frequently develops within the first year after transplantation when a high level of immunosuppression is maintained. Extrapulmonary TB and disseminated TB account for a substantial proportion of TB among solid organ transplant recipients. Treatment of TB among recipients is complicated by the drug-drug interactions between anti-TB drugs and immunosuppressants. TB is associated with an increased risk of graft rejection, graft failure and mortality. Detection and management of latent TB infection among solid organ transplant candidates and recipients have been recommended. However, strategy to mitigate the risk of TB among solid organ transplant recipients has not yet been established in Taiwan. To address the challenges of TB among solid organ transplant recipients, a working group of the Transplantation Society of Taiwan was established. The working group searched literatures on TB among solid organ transplant recipients as well as guidelines and recommendations, and proposed interventions to strengthen TB prevention and care among solid organ transplant recipients.
Collapse
Affiliation(s)
- Chen-Yuan Chiang
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yang-Jen Chiang
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Organ Transplantation Institute, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chang Huang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Mycobacteria Center of Excellence, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Yih-Jyh Lin
- Division of General and Transplant Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Wen Huang
- Pulmonary and Critical Care Unit, Changhua Hospital, Ministry of Health and Welfare, Changhua, Taiwan
| | - Hsin-Hsu Wu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pin-Hui Lee
- Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Organ Transplantation, Taipei Medical University, Taipei, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu-Han Wang
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Organ Transplantation Institute, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Mathew JS, Philips CA. Drug Interactions and Safe Prescription Writing for Liver Transplant Recipients. J Clin Exp Hepatol 2023; 13:869-877. [PMID: 37693257 PMCID: PMC10483006 DOI: 10.1016/j.jceh.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 09/12/2023] Open
Abstract
Immunosuppression optimization is central to graft function in liver transplant recipients. Post-transplantation patients develop new onset or worsening metabolic syndrome, are prone to atypical infections, and are at higher risk of developing cardiac and brain-related clinical events. In this context, liver transplant recipients are at risk of using multiple comedications alongside immunosuppressants. It is imperative for the transplant physician to understand the various drug-drug interactions that potentially reduce or promote toxicity of immunosuppression, as well as associated synergistic or antagonistic effects on extrahepatic organ systems. This comprehensive review discusses drug-drug interactions in liver transplant recipients and the impact and role of complementary and alternative medicines among individuals on immunosuppression.
Collapse
Affiliation(s)
- Johns S. Mathew
- Gastrointestinal, Hepatobiliary and Multi-organ Transplant Surgery, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala 683112, India
| | - Cyriac A. Philips
- Clinical and Translational Hepatology & Monarch Liver Laboratory, The Liver Institute, Center for Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala 683112, India
| |
Collapse
|
4
|
Previtali R, Prontera G, Alfei E, Nespoli L, Masnada S, Veggiotti P, Mannarino S. Paradigm shift in the treatment of tuberous sclerosis: Effectiveness of everolimus. Pharmacol Res 2023; 195:106884. [PMID: 37549757 DOI: 10.1016/j.phrs.2023.106884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterised by abnormal cell proliferation and differentiation that affects multiple organs and can lead to the growth of hamartomas. Tuberous sclerosis complex is caused by the disinhibition of the protein mTOR (mammalian target of rapamycin). In the past, various therapeutic approaches, even if only symptomatic, have been attempted to improve the clinical effects of this disease. While all of these therapeutic strategies are useful and are still used and indicated, they are symptomatic therapies based on the individual symptoms of the disease and therefore not fully effective in modifying long-term outcomes. A new therapeutic approach is the introduction of allosteric inhibitors of mTORC1, which allow restoration of metabolic homeostasis in mutant cells, potentially eliminating most of the clinical manifestations associated with Tuberous sclerosis complex. Everolimus, a mammalian target of the rapamycin inhibitor, is able to reduce hamartomas, correcting the specific molecular defect that causes Tuberous sclerosis complex. In this review, we report the findings from the literature on the use of everolimus as an effective and safe drug in the treatment of TSC manifestations affecting various organs, from the central nervous system to the heart.
Collapse
Affiliation(s)
- Roberto Previtali
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giorgia Prontera
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enrico Alfei
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Luisa Nespoli
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
| | - Silvia Masnada
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Savina Mannarino
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
5
|
Hartinger JM, Ryšánek P, Slanař O, Šíma M. Pharmacokinetic principles of dose adjustment of mTOR inhibitors in solid organ transplanted patients. J Clin Pharm Ther 2022; 47:1362-1367. [PMID: 35934622 DOI: 10.1111/jcpt.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES mTOR inhibitors possess narrow therapeutic range and substantial pharmacokinetic variability and the consequences from suboptimal dosing are serious. The aim of this review is to summarize the current knowledge about the factors influencing mTOR inhibitors pharmacokinetics and the possibility of using these relationships in order to improve its therapy individualization in solid organ transplanted patients. METHODS Literature search from Pubmed and Web of Science databases were performed using Boolean search operators in order to identify relevant studies. RESULTS AND DISCUSSION A total of 701 reports were identified from the initial literature search. Out of which 40 studies dealt with relationships between various factors and pharmacokinetics of mTOR inhibitors and with relevance of these associations for dosage optimization. WHAT IS NEW AND CONCLUSION The overview of the current covariates for pharmacokinetic variability of mTOR inhibitors has been provided on the level of absorption, distribution and elimination, and consequences of these relationships for dosing optimization has been summarized.
Collapse
Affiliation(s)
- Jan Miroslav Hartinger
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| | - Pavel Ryšánek
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| | - Ondřej Slanař
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| |
Collapse
|
6
|
Mason M, Gregory E, Foster K, Klatt M, Zoubek S, Eid A. Pharmacologic management of Mycobacterium chimaera Infections: A Primer for Clinicians. Open Forum Infect Dis 2022; 9:ofac287. [PMID: 35866101 PMCID: PMC9297092 DOI: 10.1093/ofid/ofac287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium chimaera, a member of the Mycobacterium avium complex, can cause infections in individuals after open heart surgery due to contaminated heater-cooler units. The diagnosis can be challenging, as the incubation period can be quite variable, and symptoms are nonspecific. In addition to aggressive surgical management, combination pharmacologic therapy is the cornerstone of therapy, which should consist of a macrolide, a rifamycin, ethambutol, and amikacin. Multiple second-line agents may be utilized in the setting of intolerances or toxicities. In vitro susceptibility of these agents is similar to activity against other species in the Mycobacterium avium complex. Drug–drug interactions are frequently encountered, as many individuals have chronic medical comorbidities and are prescribed medications that interact with the first-line agents used to treat M. chimaera. Recognition of these drug–drug interactions and appropriate management are essential for optimizing treatment outcomes.
Collapse
Affiliation(s)
- Matt Mason
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Eric Gregory
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Keith Foster
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Megan Klatt
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Sara Zoubek
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Albert Eid
- Kansas University Medical Center, Department of Infectious Diseases , Kansas City, KS , USA
| |
Collapse
|
7
|
Molenaar-Kuijsten L, Van Balen DEM, Beijnen JH, Steeghs N, Huitema ADR. A Review of CYP3A Drug-Drug Interaction Studies: Practical Guidelines for Patients Using Targeted Oral Anticancer Drugs. Front Pharmacol 2021; 12:670862. [PMID: 34526892 PMCID: PMC8435708 DOI: 10.3389/fphar.2021.670862] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Many oral anticancer drugs are metabolized by CYP3A. Clinical drug-drug interaction (DDI) studies often only examine the effect of strong CYP3A inhibitors and inducers. The effect of moderate or weak inhibitors or inducers can be examined using physiologically based pharmacokinetic simulations, but data from these simulations are not always available early after approval of a drug. In this review we provide recommendations for clinical practice on how to deal with DDIs of oral anticancer drugs if only data from strong CYP3A inhibitors or inducers is available. These recommendations were based on reviewed data of oral anticancer drugs primarily metabolized by CYP3A and approved for the treatment of solid tumors from January 1st, 2013 to December 31st, 2015. In addition, three drugs that were registered before the new EMA guideline was issued (i.e., everolimus, imatinib, and sunitinib), were reviewed. DDIs are often complex, but if no data is available from moderate CYP3A inhibitors/inducers, a change in exposure of 50% compared with strong inhibitors/inducers can be assumed. No a priori dose adaptations are indicated for weak inhibitors/inducers, because their interacting effect is small. In case pharmacologically active metabolites are involved, the metabolic pathway, the ratio of the parent to the metabolites, and the potency of the metabolites should be taken into account.
Collapse
Affiliation(s)
- Laura Molenaar-Kuijsten
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Dorieke E M Van Balen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
8
|
Dual mTORC1/mTORC2 Inhibition as a Host-Directed Therapeutic Target in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0025321. [PMID: 33903099 PMCID: PMC8373221 DOI: 10.1128/aac.00253-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Efforts to develop more effective and shorter-course therapies for tuberculosis have included a focus on host-directed therapy (HDT). The goal of HDT is to modulate the host response to infection, thereby improving immune defenses to reduce the duration of antibacterial therapy and/or the amount of lung damage. As a mediator of innate and adaptive immune responses involved in eliminating intracellular pathogens, autophagy is a potential target for HDT in tuberculosis. Because Mycobacterium tuberculosis modulates mammalian target of rapamycin (mTOR) signaling to impede autophagy, pharmacologic mTOR inhibition could provide effective HDT. mTOR exists within two distinct multiprotein complexes, mTOR complex-1 (mTORC1) and mTOR complex-2 (mTORC2). Rapamycin and its analogs only partially inhibit mTORC1. We hypothesized that novel mTOR kinase inhibitors blocking both complexes would have expanded therapeutic potential. We compared the effects of two mTOR inhibitors, rapamycin and the orally available mTOR kinase domain inhibitor CC214-2, which blocks both mTORC1 and mTORC2, as adjunctive therapies against murine TB when added to the first-line regimen (isoniazid, rifampin, pyrazinamide, and ethambutol [RHZE]) or the novel bedaquiline-pretomanid-linezolid (BPaL) regimen. Neither mTOR inhibitor affected lung CFU counts after 4 to 8 weeks of treatment when combined with BPaL or RHZE. However, addition of CC214-2 to BPaL and RHZE was associated with significantly fewer relapses in C3HeB/FeJ mice compared to addition of rapamycin and, in RHZE-treated mice, resulted in fewer relapses than RHZE alone. Therefore, CC214-2 and related mTOR kinase inhibitors may be more effective candidates for HDT than rapamycin analogs and may have the potential to shorten the duration of TB treatment.
Collapse
|
9
|
Bhagat V, Pandit RA, Ambapurkar S, Sengar M, Kulkarni AP. Drug Interactions between Antimicrobial and Immunosuppressive Agents in Solid Organ Transplant Recipients. Indian J Crit Care Med 2021; 25:67-76. [PMID: 33603305 PMCID: PMC7874296 DOI: 10.5005/jp-journals-10071-23439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The number of allogeneic solid organ and bone marrow transplants is increasing all over the world. To prevent transplant rejection and treat acute rejection of transplant, immunosuppressant drugs are used. The outcomes of solid organ transplants have dramatically improved over last 30 years, due to availability of multiple immunosuppressive agents, with varied mechanisms of action. The use of intense immunosuppression makes the individual having undergone solid organ transplant at the risk of several serious infections, which may prove fatal. To prevent and treat these infections (when they occur), patients are often given antimicrobial prophylaxis and therapy. The use of antimicrobials can interfere with the metabolism of the immunosuppressants, and may put the patient at risk of developing severe adverse effects due to unwanted increase or decrease in the serum levels of immunosuppressive agents. Knowledge of these interactions is essential for successful management of solid organ transplant patients. We therefore decided to review the literature and present the interactions that commonly occur between these two life-saving groups of drugs. How to cite this article: Bhagat V, Pandit RA, Ambapurkar S, Sengar M, Kulkarni AP. Drug Interactions between Antimicrobial and Immunosuppressive Agents in Solid Organ Transplant Recipients. Indian J Crit Care Med 2021;25(1):67–76.
Collapse
Affiliation(s)
- Vikas Bhagat
- Department of Critical Care Medicine, Aster Hospital, Dubai, UAE
| | | | | | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atul P Kulkarni
- Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Hörbelt T, Kahl AL, Kolbe F, Hetze S, Wilde B, Witzke O, Schedlowski M. Dose-Dependent Acute Effects of Everolimus Administration on Immunological, Neuroendocrine and Psychological Parameters in Healthy Men. Clin Transl Sci 2020; 13:1251-1259. [PMID: 32475067 PMCID: PMC7719391 DOI: 10.1111/cts.12812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
The rapamycin analogue everolimus (EVR) is a potent inhibitor of the mammalian target of rapamycin (mTOR) and clinically used to prevent allograft rejections as well as tumor growth. The pharmacokinetic and immunosuppressive efficacy of EVR have been extensively reported in patient populations and in vitro studies. However, dose-dependent ex vivo effects upon acute EVR administration in healthy volunteers are rare. Moreover, immunosuppressive drugs are associated with neuroendocrine changes and psychological disturbances. It is largely unknown so far whether and to what extend EVR affects neuroendocrine functions, mood, and anxiety in healthy individuals. Thus, in the present study, we analyzed the effects of three different clinically applied EVR doses (1.5, 2.25, and 3 mg) orally administered 4 times in a 12-hour cycle to healthy male volunteers on immunological, neuroendocrine, and psychological parameters. We observed that oral intake of medium (2.25 mg) and high doses (3 mg) of EVR efficiently suppressed T cell proliferation as well as IL-10 cytokine production in ex vivo mitogen-stimulated peripheral blood mononuclear cell. Further, acute low (1.5 mg) and medium (2.25 mg) EVR administration increased state anxiety levels accompanied by significantly elevated noradrenaline (NA) concentrations. In contrast, high-dose EVR significantly reduced plasma and saliva cortisol as well as NA levels and perceived state anxiety. Hence, these data confirm the acute immunosuppressive effects of the mTOR inhibitor EVR and provide evidence for EVR-induced alterations in neuroendocrine parameters and behavior under physiological conditions in healthy volunteers.
Collapse
Affiliation(s)
- Tina Hörbelt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Lena Kahl
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frederike Kolbe
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Susann Hetze
- Clinic of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect 2020; 80:e19-e26. [PMID: 32171871 DOI: 10.1016/j.jinf.2020.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022]
Abstract
Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. The host-directed therapy is a promising strategy for TB treatment that synergize with anti-TB treatment drugs. In this study, we found that the anti-chronic lymphocytic leukemia drug, ibrutinib, inhibited the growth of intracellular Mtb in human macrophages. Mechanisms studies showed that ibrutinib treatment significantly decreased p62 and increased LC3b proteins in Mtb infected macrophages. In addition, ibrutinib increased LC3b colocalization with intracellular Mtb and auto-lysosome fusion. Furthermore, inhibition of autophagy by using siRNA targeting ATG7 abolished the effect of ibrutinib-mediated suppression of intracellular Mtb. Next, we found that ibrutinib induced autophagy was through inhibition of BTK/Akt/mTOR pathway. Finally, we confirmed that ibrutinib treatment significantly reduced Mtb load in mediastinal node and spleen of Mtb infected mice. In conclusion, our data suggest that ibrutinib is a potential host-directed therapy candidate against TB.
Collapse
|
12
|
Therapeutic Drug Monitoring of Everolimus in Oncology: Evidences and Perspectives. Ther Drug Monit 2019; 41:568-574. [DOI: 10.1097/ftd.0000000000000628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Sparkes T, Lemonovich TL. Interactions between anti-infective agents and immunosuppressants-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13510. [PMID: 30817021 DOI: 10.1111/ctr.13510] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 01/14/2023]
Abstract
These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation provide an update on potential drug-drug interactions between anti-infectives and immunosuppressants, which are most notable with calcineurin and mTOR inhibitors. Drug-drug interactions may occur through pharmacokinetic mechanisms leading to altered drug concentrations of either the anti-infective or immunosuppressive drug, or by pharmacodynamic interactions increasing or decreasing the efficacy or toxicity of the medications. Many of the significant pharmacokinetic interactions occur through inhibition or induction of the cytochrome 3A4 system by anti-infective agents leading to increased or decreased immunosuppressive agent levels, respectively. The membrane transporter P-glycoprotein is also often involved in drug interactions. Since the last iteration of these guidelines, multiple new hepatitis C virus direct-acting antivirals have become available for use in SOT recipients. Of these agents, some are substrates of cytochrome and drug transporter systems, while others inhibit these systems and may affect immunosuppressive agents. Due to the high risk for drug-drug interactions in the solid organ transplant population, practitioners must be aware of potential interactions and be vigilant in monitoring and adjusting drug dosing when appropriate.
Collapse
Affiliation(s)
- Tracy Sparkes
- Department of Pharmacy, University of Maryland Medical Center, Baltimore, Maryland
| | - Tracy L Lemonovich
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
14
|
Tod M, Goutelle S, Bleyzac N, Bourguignon L. A Generic Model for Quantitative Prediction of Interactions Mediated by Efflux Transporters and Cytochromes: Application to P-Glycoprotein and Cytochrome 3A4. Clin Pharmacokinet 2018; 58:503-523. [DOI: 10.1007/s40262-018-0711-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Population pharmacokinetics-pharmacodynamics of oral everolimus in patients with seizures associated with tuberous sclerosis complex. J Pharmacokinet Pharmacodyn 2018; 45:707-719. [PMID: 29992479 DOI: 10.1007/s10928-018-9600-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Everolimus is approved in Europe and in the USA for the adjunctive treatment of patients aged 2 years and older whose refractory partial-onset seizures, with or without secondary generalization, are associated with tuberous sclerosis complex. The objective of this analysis was to establish a population pharmacokinetic (PK)/pharmacodynamic model describing the relationship between seizure frequency and everolimus exposure to confirm the recommended target concentration range of 5-15 ng/mL. The PK model was a two-compartment model with first order absorption and clearance. CYP3A and P-gp inducers and body-surface area were shown to impact everolimus exposure, justifying dose adjustments. A Poisson distribution was found to adequately describe the random nature of daily seizure counts during the screening phase. A placebo effect on the Poisson seizure mean was implemented as an asymptotic exponential function of time leading to a new steady-state seizure mean. The everolimus effect was implemented as an inhibitory Emax function of Cmin on the seizure mean, where Emax exhibited an asymptotic exponential increase over time to a higher steady-state value. Increasing age was found to decrease the baseline seizure mean and to prolong the half-life of the increase in Emax. The dependence of seizure frequencies on Cmin was explored by simulation. The responder rate increased with increasing Cmin. As Cmin decreased below 5 ng/mL, variability in response became larger and responder rates decreased more rapidly. The results supported the recommended target concentration range for everolimus of 5-15 ng/mL to ensure treatment efficacy.
Collapse
|
16
|
Abstract
Melanoma is a major public health problem. In recent years, it has been shown that melanoma can be characterized by specific oncogenes mutations such as the BRAF mutation, leading to the development of new therapeutic drugs. Dabrafenib is an inhibitor of BRAF, approved as a first-line treatment of metastatic or unresectable stage 3 or 4 melanoma with the BRAF mutation. Few studies have evaluated the drug interaction potential of dabrafenib. This molecule is an enzyme inducer that increases the synthesis of drug-metabolizing enzymes, including CYP3A4, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and UGT enzymes. Accordingly, the plasma concentrations of drugs metabolized by these enzymes are decreased. The decrease in plasma concentrations may cause a reduction or even loss of the clinical effect of these drugs. Many drugs metabolized by these enzymes may be affected, especially midazolam, warfarin, or rifampicin. However, interactions with immunosuppressants have not been described. Everolimus and tacrolimus are two immunosuppressive drugs metabolized by CYP3A4. We report a case of drug interaction between dabrafenib and immunosuppressive drugs (everolimus, tacrolimus), observed in a transplanted heart patient, requiring dosage adjustment of its immunosuppressive treatment to avoid graft rejection.
Collapse
|
17
|
Singh P, Subbian S. Harnessing the mTOR Pathway for Tuberculosis Treatment. Front Microbiol 2018; 9:70. [PMID: 29441052 PMCID: PMC5797605 DOI: 10.3389/fmicb.2018.00070] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/11/2018] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis (TB) remains as one of the leading killer infectious diseases of humans. At present, the standard therapeutic regimen to treat TB comprised of multiple antibiotics administered for a minimum of six months. Although these drugs are useful in controlling TB burden globally, they have not eliminated the disease. In addition, the lengthy duration of treatment with multiple drugs contributes to patient non-compliance that can result in the development of drug resistant strains (MDR and XDR) of Mycobacterium tuberculosis (Mtb), the causative agent of TB. Therefore, new and improved therapeutic strategies are urgently needed for effective control of TB worldwide. The intracellular survival of Mtb is regarded as a cumulative effect of the host immune response and the bacterial ability to resist or subvert this response. When the host innate defensive system is manipulated by Mtb for its survival and dissemination, the host develops disease conditions that are hard to overcome. The host intrinsic factors also contributes to the poor efficacy of anti-mycobacterial drugs and to the emergence of drug resistance. Hence, strengthening the immune repertoire involved in combating Mtb through host-directed therapeutics (HDT) can be one of the approaches for effective bacterial killing and clearance of infection/disease. Recently, more scientific research has been focused toward HDT strategies that empowers host cells for effective killing of Mtb, reduce the duration of treatment and/or alleviates the development of MDR/XDR, since Mtb cannot develop resistance against a drug that targets the host cell function. Autophagy is a conserved cellular process critical for maintaining cellular integrity and function. Autophagy is regulated by multiple pathways that are either dependent or independent of mTOR (mechanistic target of rapamycin; a.k.a. mammalian target of rapamycin), a master regulatory molecules that impacts several cellular functions. In this review, we summarize the role of autophagy in Mtb pathogenesis, the mTOR pathway and, modulating the mTOR pathway with inhibitors as potential adjunctive HDT, in combination with standard anti-TB antibiotics, to improve the outcome of current TB treatment.
Collapse
Affiliation(s)
- Pooja Singh
- Public Health Research Institute at New Jersey Medical School, Rutgers Biomedical and Health Sciences Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Selvakumar Subbian
- Public Health Research Institute at New Jersey Medical School, Rutgers Biomedical and Health Sciences Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
18
|
van Gelder T, Fischer L, Shihab F, Shipkova M. Optimizing everolimus exposure when combined with calcineurin inhibitors in solid organ transplantation. Transplant Rev (Orlando) 2017; 31:151-157. [DOI: 10.1016/j.trre.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 01/05/2023]
|
19
|
Martins D, Lambrescu I, Barucca V, Fazio N. Everolimus-related adverse events in neuroendocrine tumors and comparative considerations with breast and renal cancer: a critical overview. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1334550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Diana Martins
- Endocrinology, Diabetes and Metabolism Department of Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Ioana Lambrescu
- Endocrinology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Viola Barucca
- Division of Medical Oncology, Department of Oncology, Misericordia General Hospital, Grosseto, Italy
| | - Nicola Fazio
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of oncology, IEO, Milan, Italy
| |
Collapse
|
20
|
Tyrosine Kinase and Mammalian Target of Rapamycin Inhibitors in the Treatment of Advanced Renal Cell Carcinoma: Practical Clinical Implications of Pharmacologic Features. Clin Genitourin Cancer 2017; 15:7-22. [DOI: 10.1016/j.clgc.2016.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
|
21
|
Abstract
Objective To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium, everolimus, and FTY720. Study Selection and Data Extraction Clinical trials and abstracts evaluating mycophenolate sodium, everolimus, and FTY720 in solid-organ transplantation were considered for evaluation. English-language studies and published abstracts were selected for inclusion. Data Synthesis Mycophenolate sodium has recently been approved by the Food and Drug Adminstration for marketing in the United States; everolimus and FTY720 are immunosuppressive agents that may soon be available in the United States. These agents have proven efficacy in reducing the incidence of acute rejection in solid-organ transplantation. Clinical trials have shown that these newer agents are relatively well tolerated. The most common adverse events associated with these agents were gastrointestinal and hematologic effects (mycophenolate sodium); hyperlipidemia, increased serum creatinine, and hematologic effects (everolimus); and gastrointestinal effects, headache, and bradycardia (FTY720). Conclusion Mycophenolate sodium has been approved in some European countries and the United States. Everolimus has been approved in some European countries and a new drug application has been submitted to the Food and Drug Administration. FTY720 is currently in phase III clinical trials and submission to the Food and Drug Administration for approval is a few years away. The approval of these agents will furnish the transplant practitioner with even more options for immunosuppression.
Collapse
|
22
|
|
23
|
Long-Term Everolimus Treatment in Individuals With Tuberous Sclerosis Complex: A Review of the Current Literature. Pediatr Neurol 2015; 53:23-30. [PMID: 26092412 DOI: 10.1016/j.pediatrneurol.2014.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/26/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tuberous sclerosis complex is a genetic disease usually caused by mutations to either TSC1 or TSC2, where its gene products are involved in the inhibition of the mammalian target of rapamycin pathway. Under normal cellular conditions, mammalian target of rapamycin (mTOR) regulates cell growth and proliferation in response to signals from nutrients or growth factors, but loss of TSC1 or TSC2 leads to overactivation of mTOR and uncontrolled cellular proliferation. Everolimus is an mTOR inhibitor approved for use in a number of indications where mTOR overactivation is implicated, including tuberous sclerosis complex. METHODS AND PATIENTS We conducted a literature search of PubMed to identify published articles about the long-term efficacy and safety of everolimus in patients with tuberous sclerosis complex. RESULTS The short-term efficacy and safety of everolimus in patients with tuberous sclerosis complex has been demonstrated in placebo-controlled trials, and open-label extension studies are ongoing to monitor long-term effects, including safety. Examples of regrowth following discontinuation of mTOR inhibitors suggest that everolimus needs to be given indefinitely to maintain suppression of subependymal giant cell astrocytoma and other tuberous sclerosis complex-associated disease manifestations. No additional safety concerns have been reported to date with long-term administration of everolimus, but published long-term data (>1 year treatment) are currently limited to a small open-label trial and case reports for this relatively rare condition. CONCLUSIONS From the limited data available, long-term administration of everolimus appears feasible with few safety concerns beyond those associated with short-term use. Further investigation is needed to determine the long-term efficacy and safety of everolimus in patients with tuberous sclerosis complex.
Collapse
|
24
|
Dorff T, Mack PC. The Role of mTOR Inhibitors and PI3K Pathway Blockade in Renal Cell Cancer. KIDNEY CANCER 2015. [DOI: 10.1007/978-3-319-17903-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Nozawa M, Ohzeki T, Tamada S, Hongo F, Anai S, Fujimoto K, Miki T, Nakatani T, Fukasawa S, Uemura H. Differences in adverse event profiles between everolimus and temsirolimus and the risk factors for non-infectious pneumonitis in advanced renal cell carcinoma. Int J Clin Oncol 2014; 20:790-5. [DOI: 10.1007/s10147-014-0764-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/12/2014] [Indexed: 01/03/2023]
|
26
|
Schoeppler KE, Aquilante CL, Kiser TH, Fish DN, Zamora MR. The impact of genetic polymorphisms, diltiazem, and demographic variables on everolimus trough concentrations in lung transplant recipients. Clin Transplant 2014; 28:590-7. [PMID: 24628014 DOI: 10.1111/ctr.12350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 01/07/2023]
Abstract
Everolimus (EVR) has inter-individual pharmacokinetic (PK) variability and a narrow therapeutic index. The study objective was to determine whether genetic polymorphisms, co-medications, and/or demographic variables accounted for inter-individual variability in EVR PK in lung transplant recipients (LTxR). LTxR were genotyped for ABCB1 c.1236C>T, ABCB1 c.2677G>T/A, ABCB1 c.3435C>T, CYP3A4*1B, CYP3A5*3, CYP2C8*2/*3/*4, and pregnane X receptor (NR1I2) c.44477T>C, c.63396C>T, c.69789A>G polymorphisms. The primary outcome was the difference in dose-adjusted EVR levels (EVR L/D) between ABCB1 diplotype groups (2 vs. 1 vs. 0 copies of the 1236C/2677G/3435C haplotype). Sixty-five LTxR were included. There was no significant difference in EVR L/D between ABCB1 CGC diplotype groups (CGC/CGC = 2.4 ± 1.1 [n = 9] vs. CGC/XXX = 2.5 ± 1.7 [n = 36] vs. XXX/XXX = 2.7 ± 1.7 ng/mL per mg/d [n = 20]; p = 0.9). CYP3A5*3, CYP3A4*1B, CYP2C8*3/*4, and NR1I2 polymorphisms were not associated with EVR L/D. EVR L/D was 3.4 ± 1.7 in LTxR receiving diltiazem (DILT) vs. 1.8 ± 1.1 ng/mL per mg/d in LTxR not receiving DILT (p <0.001). Demographic variables, including cystic fibrosis, were not associated with EVR PK. DILT use increased EVR L/D, but selected polymorphisms in ABCB1, CYP3A5, CYP3A4, CYP2C8, and NR1I2 did not affect EVR L/D in LTxR. Genotyping LTxR for these polymorphisms is unlikely to aid clinicians in optimizing EVR therapy.
Collapse
Affiliation(s)
- Kelly E Schoeppler
- Department of Pharmacy, University of Colorado Hospital, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
27
|
Danesi R, Boni JP, Ravaud A. Oral and intravenously administered mTOR inhibitors for metastatic renal cell carcinoma: Pharmacokinetic considerations and clinical implications. Cancer Treat Rev 2013; 39:784-92. [DOI: 10.1016/j.ctrv.2012.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
|
28
|
Franz DN. Everolimus in the treatment of subependymal giant cell astrocytomas, angiomyolipomas, and pulmonary and skin lesions associated with tuberous sclerosis complex. Biologics 2013; 7:211-21. [PMID: 24143074 PMCID: PMC3797614 DOI: 10.2147/btt.s25095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by inactivating mutations in either the TSC1 or TSC2 genes. It is characterized by the development of multiple, benign tumors in several organs throughout the body. Lesions occur in the brain, kidneys, heart, liver, lungs, and skin and result in seizures and epilepsy, mental retardation, autism, and renal and pulmonary organ system dysfunction, as well as other complications. Elucidation of the molecular pathways and etiological factors responsible for causing TSC has led to a paradigm shift in the management and treatment of the disease. TSC1 or TSC2 mutations lead to constitutive upregulation of the mammalian target of rapamycin pathway, which affects many cellular processes involved in tumor growth. By targeting mammalian target of rapamycin with everolimus, an orally active rapamycin derivative, clinically meaningful and statistically significant reductions in tumor burden have been achieved for the main brain (subependymal giant cell astrocytoma) and renal manifestations (angiomyolipoma) associated with TSC. This review provides an overview of TSC, everolimus, and the clinical trials that led to its approval for the treatment of TSC-associated subependymal giant cell astrocytoma and renal angiomyolipoma.
Collapse
Affiliation(s)
- David Neal Franz
- Department of Pediatrics, Tuberous Sclerosis Clinic, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
29
|
Thomas-Schoemann A, Blanchet B, Bardin C, Noé G, Boudou-Rouquette P, Vidal M, Goldwasser F. Drug interactions with solid tumour-targeted therapies. Crit Rev Oncol Hematol 2013; 89:179-96. [PMID: 24041628 DOI: 10.1016/j.critrevonc.2013.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/11/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022] Open
Abstract
Drug interactions are an on-going concern in the treatment of cancer, especially when targeted therapies, such as tyrosine kinase inhibitors (TKI) or mammalian target of rapamycin (mTOR) inhibitors, are being used. The emergence of elderly patients and/or patients with both cancer and other chronic co-morbidities leads to polypharmacy. Therefore, the risk of drug-drug interactions (DDI) becomes a clinically relevant issue, all the more so as TKIs and mTOR inhibitors are essentially metabolised by cytochrome P450 enzymes. These DDIs can result in variability in anticancer drug exposure, thus favouring the selection of resistant cellular clones or the occurrence of toxicity. This review provides a comprehensive overview of DDIs that involve targeted therapies approved by the FDA for the treatment of solid tumours for more than 3 years (sorafenib, sunitinib, erlotinib, gefitinib, imatinib, lapatinib, everolimus, temsirolimus) and medicinal herb or drugs. This review also provides some guidelines to help oncologists and pharmacists in their clinical practice.
Collapse
Affiliation(s)
- Audrey Thomas-Schoemann
- Centre d'Étude et de Recours aux Inhibiteurs de l'Angiogénèse, Paris, France; UF de Pharmacocinétique et Pharmacochimie, Groupement des Hôpitaux Paris Centre, 75014 Paris, France.
| | - Benoit Blanchet
- Centre d'Étude et de Recours aux Inhibiteurs de l'Angiogénèse, Paris, France; UF de Pharmacocinétique et Pharmacochimie, Groupement des Hôpitaux Paris Centre, 75014 Paris, France
| | - Christophe Bardin
- UF de Pharmacocinétique et Pharmacochimie, Groupement des Hôpitaux Paris Centre, 75014 Paris, France
| | - Gaëlle Noé
- UF de Pharmacocinétique et Pharmacochimie, Groupement des Hôpitaux Paris Centre, 75014 Paris, France
| | - Pascaline Boudou-Rouquette
- Centre d'Étude et de Recours aux Inhibiteurs de l'Angiogénèse, Paris, France; Service d'Oncologie Médicale, Groupement des Hôpitaux Paris Centre, AP-HP, Paris, France
| | - Michel Vidal
- Centre d'Étude et de Recours aux Inhibiteurs de l'Angiogénèse, Paris, France; UF de Pharmacocinétique et Pharmacochimie, Groupement des Hôpitaux Paris Centre, 75014 Paris, France; UMR 8638 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 75270 Paris, France
| | - François Goldwasser
- Centre d'Étude et de Recours aux Inhibiteurs de l'Angiogénèse, Paris, France; Service d'Oncologie Médicale, Groupement des Hôpitaux Paris Centre, AP-HP, Paris, France
| |
Collapse
|
30
|
Grabowsky JA. Drug interactions and the pharmacist: focus on everolimus. Ann Pharmacother 2013; 47:1055-63. [PMID: 23757385 DOI: 10.1345/aph.1r769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To evaluate everolimus drug-drug and drug-food interactions, with an emphasis on patients with cancer. DATA SOURCES Literature was accessed through PubMed (1990-March 2013) using Boolean combinations of the terms drug interactions, herb-drug interactions, food-drug interactions, everolimus, antineoplastic agents, hormonal, and breast neoplasms. In addition, reference citations from publications and the prescribing information for everolimus were reviewed. STUDY SELECTION AND DATA EXTRACTION All articles published in English, including human, animal, and in vitro studies, identified from the data sources were included. DATA SYNTHESIS Patients with cancer are at increased risk for drug interactions because of the multiple medications they are prescribed to treat their disease and comorbid conditions. Everolimus, an oral mammalian target of rapamycin (mTOR) inhibitor, is indicated for the treatment in adults with progressive neuroendocrine tumors of pancreatic origin that are unresectable, locally advanced, or metastatic; adults with advanced renal cell carcinoma after failure of treatment with sunitinib or sorafenib; and, recently, postmenopausal women with advanced hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer in combination with exemestane after failure of treatment with letrozole or anastrozole. As its use increases among patients with cancer, clinicians must be knowledgeable about potential drug and/or food/nutrient interactions and the mechanisms by which these interactions occur, to mitigate and prevent unwanted reactions and ensure patient safety. CONCLUSIONS Everolimus is a widely used oral mTOR inhibitor that has the potential for drug interactions that may affect therapeutic outcomes, produce toxicities, or both. This article provides a review of evidence-based literature, along with the prescribing information, to educate clinicians on the significance of these drug interactions and their impact on management with everolimus.
Collapse
Affiliation(s)
- Jennifer A Grabowsky
- Early Phase Investigational Therapeutics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA.
| |
Collapse
|
31
|
Józwiak S, Stein K, Kotulska K. Everolimus (RAD001): first systemic treatment for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Future Oncol 2013; 8:1515-23. [PMID: 23231513 DOI: 10.2217/fon.12.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Everolimus (RAD001), a mTOR inhibitor, was initially used as an immunosuppressant in organ transplant patients; however, it also has significant antineoplastic properties. In patients with subependymal giant cell astrocytomas (SEGAs) associated with tuberous sclerosis complex who are not candidates for surgery, single-agent everolimus has demonstrated the ability to significantly reduce SEGA volume with good tolerability. In the Phase III, randomized, placebo-controlled trial, everolimus was associated with a SEGA response rate of 35% compared with 0% in the placebo group. The most common adverse events in clinical trials were stomatitis/mouth ulceration and upper respiratory tract infections, and most adverse events were grade 1 or 2; grade 4 events were rare.
Collapse
Affiliation(s)
- Sergiusz Józwiak
- Department of Neurology & Epileptology, The Children's Memorial Health Institute, 04-730, Warsaw, Poland.
| | | | | |
Collapse
|
32
|
Population pharmacokinetics of everolimus in cardiac recipients: comedications, ABCB1, and CYP3A5 polymorphisms. Ther Drug Monit 2013; 34:686-94. [PMID: 23131698 DOI: 10.1097/ftd.0b013e318273c899] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The aim of this study was, using routine drug monitoring data, to identify patient characteristics that may influence everolimus (EVE) pharmacokinetic parameters and to develop a population pharmacokinetic model to predict EVE whole blood concentrations in cardiac recipients. METHODS Fifty-nine patients were enrolled in the prospective study. Patient's characteristics were recorded including biological covariates and treatments. CYP3A5 and ABCB1 polymorphisms were determined. Seven hundred seventy-five EVE blood samples were collected for routine drug monitoring. Population pharmacokinetic modeling was carried out using the nonlinear mixed-effects modeling program. Results were analyzed according to a 1-compartment pharmacokinetic model with linear absorption and elimination. The model was evaluated using a bootstrap method and a visual predictive check procedure. RESULTS The pharmacokinetic of EVE in cardiac recipients was best described by a 1-compartment model. Interindividual variability was best described by an exponential error model and residual error by a proportional plus additive error model. Estimation of EVE apparent clearance (3.33 ± 0.20 L/h) and apparent volume of distribution (146 ± 33 L) were in accordance with previously published data. Bilirubinemia and cyclosporine significantly influenced EVE clearance. Some covariates that were expected to influence EVE clearance, for example, ABCB1 and CYP3A5 polymorphisms, were not evidenced. No covariates influenced the volume of distribution of EVE. CONCLUSIONS This study is the first population pharmacokinetic model of EVE in heart transplantation patients. It allows a better description of the pharmacokinetics of EVE. The present population pharmacokinetic model allows estimating a priori and a posteriori EVE concentrations in cardiac recipients and could limit the over and under drug exposure in this population.
Collapse
|
33
|
Carcelero E, Anglada H, Tuset M, Creus N. Interactions between oral antineoplastic agents and concomitant medication: a systematic review. Expert Opin Drug Saf 2013; 12:403-20. [PMID: 23586848 DOI: 10.1517/14740338.2013.784268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION In recent years, the number of oral antitumoral agents has considerably increased. Oral administration increases the risk of interactions, because most oral anticancer drugs are taken on a daily basis. Interactions can increase exposure to antitumoral agents or cause treatment failure. Many antitumoral drugs undergo enzymatic metabolism by cytochrome P450. As some act as inducers or inhibitors of one or more isoenzymes, they can lead to decreases or increases in plasma concentrations of concomitant drugs. Hence, cytostatic drugs can act not only as victims but also as perpetrators. P-glycoprotein, an efflux transporter, can also be involved in pharmacokinetic interactions. AREAS COVERED A Medline search was performed to summarize the available evidence of the most clinically relevant interactions between oral chemotherapy agents and other drugs. The search covered the period from 1966 until August 2012 for each antitumoral drug using the medical subject headings 'Drug Interactions' OR 'Pharmacokinetics'. While the present review is not exhaustive, it aims to increase clinicians' awareness of potential drug-drug interactions. EXPERT OPINION As cancer patients are often polymedicated and treated by different physicians, the risk of drug interactions between antitumoral agents and other medications is high. More clinical interaction studies are encouraged to ensure appropriate antineoplastic pharmacokinetics in clinical practice.
Collapse
Affiliation(s)
- Esther Carcelero
- Hospital Clínic Barcelona, Department of Pharmacy, Pharmacy Service, Villarroel, 170, 08036 Barcelona, Spain.
| | | | | | | |
Collapse
|
34
|
Steudel W, Dingmann C, Zhang YL, Bendrick-Peart J, Clavijo C, Shulze J, Betts R, Christians U. Randomized, Double-Blind, Placebo-Controlled, Single Intravenous Dose-Escalation Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of the Novel Coronary Smooth Muscle Cell Proliferation Inhibitor Biolimus A9 in Healthy Individuals. J Clin Pharmacol 2013; 51:29-39. [DOI: 10.1177/0091270010361255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Trofe-Clark J, Lemonovich TL. Interactions between anti-infective agents and immunosuppressants in solid organ transplantation. Am J Transplant 2013; 13 Suppl 4:318-26. [PMID: 23465024 DOI: 10.1111/ajt.12123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J Trofe-Clark
- Department of Pharmacy Services, Hospital of University of Pennsylvania, Renal Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | |
Collapse
|
36
|
de Pablo A, Santos F, Solé A, Borro JM, Cifrian JM, Laporta R, Monforte V, Román A, de la Torre M, Ussetti P, Zurbano F. Recommendations on the use of everolimus in lung transplantation. Transplant Rev (Orlando) 2012; 27:9-16. [PMID: 23276646 DOI: 10.1016/j.trre.2012.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/09/2012] [Indexed: 01/05/2023]
Abstract
The antiproliferative effect of everolimus provides a therapeutic option in the immunosuppression therapy of lung transplantation, by reducing both the risk of acute rejection and the process of progressive fibrosis that determines chronic graft rejection. However, few data on the use of everolimus in lung transplantation have been published to date, and the specific indications of the drug, along with the most adequate time for its introduction or dosing, have not been defined yet. The aim of this article is to propose recommendations for the use of everolimus in lung transplant recipients, including indications, dosing schedules and the use of concomitant immunosuppression. This consensus document has been developed by experts of all the Spanish lung transplant groups from the review of the existing literature and the clinical experience.
Collapse
Affiliation(s)
- A de Pablo
- University Hospital, Doce de Octubre, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Berdaguer S, Bautista J, Brunet M, Cisneros JM. Antimicrobial and immunosuppressive drug interactions in solid organ transplant recipients. Enferm Infecc Microbiol Clin 2012; 30 Suppl 2:86-92. [PMID: 22542040 DOI: 10.1016/s0213-005x(12)70087-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Infections are frequent and can be severe in recipients of solid organ transplantation. Prevention and treatment are priority objectives of multidisciplinary transplant teams. Interactions between antimicrobials (indicated for prevention and therapy) and immunosuppressants (for preventing rejection) make treatment more complex than in the general population. Co-administration of immunosuppressants and antibiotics can cause harmful interactions, modifying the pharmacokinetic and pharmacodynamic characteristics of both groups of drugs. The loss of the transplanted organ due to reduced levels of immunosuppressants is a unique consequence of the often lethal interactions in this group of patients. By contrast, elevated levels of these drugs cause toxicity, and reduced concentrations of antimicrobial treatment fail to contain the infection. Azoles, rifabutin, protease inhibitors, non-nucleoside reverse transcriptase inhibitors and antimicrobial macrolides all interact with immunosuppressants. In this article, we review interactions between antibiotics and immunosuppressants in order to adopt the most appropriate clinical approach (dosage adjustments, close monitoring of plasma levels and organ function) and determine whether they can be used together with any measure of safety.
Collapse
Affiliation(s)
- Soledad Berdaguer
- Department of Pharmacology, Hospital Universitario Virgen del Rocío-IBIS, Seville, Spain
| | | | | | | |
Collapse
|
38
|
Lefeuvre S, Rebaudet S, Billaud EM, Wyplosz B. Management of rifamycins-everolimus drug-drug interactions in a liver-transplant patient with pulmonary tuberculosis. Transpl Int 2012; 25:e120-3. [PMID: 22994607 DOI: 10.1111/j.1432-2277.2012.01561.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Feldmann G, Bisht S, Schütte U, Haarmann J, Brossart P. Everolimus for the treatment of pancreatic neuroendocrine tumors. Expert Opin Pharmacother 2012; 13:2073-84. [DOI: 10.1517/14656566.2012.713348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Curran MP. Everolimus: in patients with subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Paediatr Drugs 2012; 14:51-60. [PMID: 22136276 DOI: 10.2165/11207730-000000000-00000] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Everolimus is an orally administered inhibitor of the mammalian target of rapamycin (mTOR). Everolimus (starting dosage 3.0 mg/m(2)) was associated with a significant reduction in the volume of the largest subependymal giant cell astrocytoma (SEGA) in 28 patients aged ≥3 years with tuberous sclerosis complex (TSC) in a phase II trial (C2485). At 6 months, 32% of patients treated with everolimus had a ≥50% reduction in the volume of their largest SEGA lesion (assessed via an independent central radiology review); 75% had a ≥30% reduction. No patients developed new lesions. During the extension phase of this trial (median duration 34 months), the reduction in SEGA volume was maintained, with no everolimus recipient requiring surgery or other therapy for SEGA or hydrocephalus. In a phase III trial (EXIST-1) in 117 patients with SEGA associated with TSC, 35% of everolimus recipients (starting dosage 4.5 mg/m(2)) versus none of the placebo recipients (p < 0.0001) had an overall response (a reduction in the sum of all target SEGA volumes of ≥50% relative to baseline, nonworsening of non-target SEGA lesions, no new SEGA lesions, and no new/worsening hydrocephalus). Everolimus was generally well tolerated in patients with SEGA associated with TSC; most drug-related adverse reactions were mild to moderate in severity.
Collapse
|
41
|
Stroh M, Palcza J, McCrea J, Marsilio S, Breidinger S, Panebianco D, Johnson-Levonas A, Kraft WK, Orford K, Murphy G, Agrawal N, Trucksis M, Wagner JA, Iwamoto M. The effect of multiple doses of rifampin and ketoconazole on the single-dose pharmacokinetics of ridaforolimus. Cancer Chemother Pharmacol 2012; 69:1247-53. [DOI: 10.1007/s00280-011-1819-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 12/28/2011] [Indexed: 12/14/2022]
|
42
|
Bolhuis MS, Panday PN, Pranger AD, Kosterink JGW, Alffenaar JWC. Pharmacokinetic drug interactions of antimicrobial drugs: a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams. Pharmaceutics 2011; 3:865-913. [PMID: 24309312 PMCID: PMC3857062 DOI: 10.3390/pharmaceutics3040865] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 10/26/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022] Open
Abstract
Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactions of the commonly prescribed antimicrobial drugs oxazolidinones, rifamycines, macrolides, fluoroquinolones, and beta-lactams, focusing on systematic research. We describe drug-food and drug-drug interaction studies in humans, affecting antimicrobial drugs as well as concomitantly administered drugs. Since knowledge about mechanisms is of paramount importance for adequate management of drug interactions, the most plausible underlying mechanism of the drug interaction is provided when available. This overview can be used in daily practice to support the management of pharmacokinetic drug interactions of antimicrobial drugs.
Collapse
Affiliation(s)
- Mathieu S Bolhuis
- Department of Hospital and Clinical Pharmacy, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Sarkaria JN, Galanis E, Wu W, Peller PJ, Giannini C, Brown PD, Uhm JH, McGraw S, Jaeckle KA, Buckner JC. North Central Cancer Treatment Group Phase I trial N057K of everolimus (RAD001) and temozolomide in combination with radiation therapy in patients with newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2011; 81:468-75. [PMID: 20864273 PMCID: PMC3010479 DOI: 10.1016/j.ijrobp.2010.05.064] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) functions within the PI3K/Akt signaling pathway as a critical modulator of cell survival. On the basis of promising preclinical data, the safety and tolerability of therapy with the mTOR inhibitor RAD001 in combination with radiation (RT) and temozolomide (TMZ) was evaluated in this Phase I study. METHODS AND MATERIALS All patients received weekly oral RAD001 in combination with standard chemoradiotherapy, followed by RAD001 in combination with standard adjuvant temozolomide. RAD001 was dose escalated in cohorts of 6 patients. Dose-limiting toxicities were defined during RAD001 combination therapy with TMZ/RT. RESULTS Eighteen patients were enrolled, with a median follow-up of 8.4 months. Combined therapy was well tolerated at all dose levels, with 1 patient on each dose level experiencing a dose-limiting toxicity: Grade 3 fatigue, Grade 4 hematologic toxicity, and Grade 4 liver dysfunction. Throughout therapy, there were no Grade 5 events, 3 patients experienced Grade 4 toxicities, and 6 patients had Grade 3 toxicities attributable to treatment. On the basis of these results, the recommended Phase II dosage currently being tested is RAD001 70 mg/week in combination with standard chemoradiotherapy. Fluorodeoxyglucose (FDG) positron emission tomography scans also were obtained at baseline and after the second RAD001 dose before the initiation of TMZ/RT; the change in FDG uptake between scans was calculated for each patient. Fourteen patients had stable metabolic disease, and 4 patients had a partial metabolic response. CONCLUSIONS RAD001 in combination with RT/TMZ and adjuvant TMZ was reasonably well tolerated. Changes in tumor metabolism can be detected by FDG positron emission tomography in a subset of patients within days of initiating RAD001 therapy.
Collapse
|
44
|
Cheng L, Chen J, Mao X. Everolimus vs. rapamycin for treating diabetic nephropathy in diabetic mouse model. ACTA ACUST UNITED AC 2011; 31:457. [DOI: 10.1007/s11596-011-0473-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Indexed: 10/17/2022]
|
45
|
Porta C, Osanto S, Ravaud A, Climent MA, Vaishampayan U, White DA, Creel P, Dickow B, Fischer P, Gornell SS, Meloni F, Motzer RJ. Management of adverse events associated with the use of everolimus in patients with advanced renal cell carcinoma. Eur J Cancer 2011; 47:1287-98. [PMID: 21481584 DOI: 10.1016/j.ejca.2011.02.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 01/29/2023]
Abstract
PURPOSE In April 2009, an expert group of 11 physicians and clinical nurses met to discuss the management of selected adverse events associated with the use of everolimus for the treatment of metastatic renal cell carcinoma (mRCC). Everolimus is an orally administered inhibitor of the mammalian target of rapamycin that recently received approval from the European Medicines Agency for the treatment of advanced RCC that has progressed on or after treatment with vascular endothelial growth factor (VEGF)-targeted therapy, and from the United States Food and Drug Administration for treatment of advanced RCC after failure of sorafenib or sunitinib. Before the approval of everolimus, no standard therapy existed for the treatment of mRCC after failure of VEGF-targeted therapy. RECORD-1 (Renal Cell cancer treatment with Oral RAD001 given Daily) was the pivotal multicenter, phase III, randomised, double-blind, placebo-controlled trial of everolimus that led to approval for patients with disease progression on or after treatment with VEGF-targeted agents. Safety data from RECORD-1 were reviewed by these clinicians, all of whom had experience using everolimus in patients with mRCC. Adverse events discussed were non-infectious pneumonitis, infections, stomatitis and metabolic abnormalities. RESULTS The outcome of this discussion is summarised here. Guidance for management of these adverse events is provided. Both clinicians and patients should be aware of the potential side-effects of everolimus and understand that these side-effects are manageable with standard care to optimise patient benefit.
Collapse
Affiliation(s)
- Camillo Porta
- IRCCS San Matteo University Hospital Foundation, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gabardi S, Baroletti SA. Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy 2011; 30:1044-56. [PMID: 20874042 DOI: 10.1592/phco.30.10.1044] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Everolimus, a proliferation signal inhibitor in the mammalian target of rapamycin (mTOR) drug class, has many clinical applications, including in organ transplantation, oncology, and cardiology. It currently has United States Food and Drug Administration (FDA) approval for prophylaxis against rejection in de novo renal transplant recipients, treatment of renal cell carcinoma, and use as a drug-eluting stent. To review the pharmacology, pharmacokinetics, efficacy, and safety of everolimus, we performed a search of the MEDLINE database (January 1997-April 2010) for all English-language articles of in vitro and in vivo studies that evaluated everolimus, as well as abstracts from recent scientific meetings and the manufacturer. In transplantation, everolimus demonstrates immunosuppressive properties and has been used to prevent acute rejection in cardiac, liver, lung, and renal transplant recipients. It appears that this agent may be potent enough to allow for the minimization or removal of calcineurin inhibitors in the long-term management of renal transplant recipients. In oncology, everolimus has been proven effective for the management of treatment-resistant renal cell carcinoma. In cardiology, everolimus is available as a drug-coated stent and is used in percutaneous coronary interventions for prevention of restenosis. In transplant recipients and patients with renal cell carcinoma, everolimus appears to have an extensive adverse-event profile. The pharmacologic properties of everolimus differentiate this agent from other drugs used in these clinical areas, and its pharmacokinetic properties differentiate it from sirolimus.
Collapse
Affiliation(s)
- Steven Gabardi
- Department of Pharmacy Service, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Ng T, Chan A. Dosing modifications of targeted cancer therapies in patients with special needs: evidence and controversies. Crit Rev Oncol Hematol 2011; 81:58-74. [PMID: 21429761 DOI: 10.1016/j.critrevonc.2011.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/07/2011] [Accepted: 02/18/2011] [Indexed: 12/18/2022] Open
Abstract
Targeted therapies have revolutionized the treatment of malignancies over the past decade. These agents are generally regarded to posses fewer systemic side effects than traditional cytotoxic chemotherapies. However, patients manifesting organ dysfunction or drug interactions with concurrent medications may require dosing modifications of their targeted therapies in order to reduce the risk of systemic toxicities or reduction of drug efficacies. Studies have shown that wide variations and controversies exist with regard to dosing modifications of drugs, due to the lack of well conducted studies and consensus. Hence, this review was conducted to review the literature on the dosing modification strategies, for 30 commercially available targeted cancer drugs, and to evaluate the current mainstay recommendations and controversies.
Collapse
Affiliation(s)
- T Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | |
Collapse
|
48
|
Grgic T, Mis L, Hammond JM. Everolimus: a new mammalian target of rapamycin inhibitor for the treatment of advanced renal cell carcinoma. Ann Pharmacother 2010; 45:78-83. [PMID: 21177421 DOI: 10.1345/aph.1m288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To review clinical trials and main characteristics of everolimus, with focus on treatment of advanced renal cell carcinoma. DATA SOURCES Pertinent data were identified primarily through a search of MEDLINE and PubMed (1966-November 2010) using the primary search terms everolimus, RAD001, renal cell carcinoma, and mTOR inhibitors. STUDY SELECTION AND DATA EXTRACTION Studies evaluating the safety and efficacy of everolimus in patients with cancer were evaluated, including Phase 1, 2, and 3 trials. Preference was given to Phase 2 and 3 studies evaluating use of everolimus in patients with renal cell carcinoma. DATA SYNTHESIS Everolimus is an oral mammalian target of rapamycin (mTOR) inhibitor approved for the management of patients with advanced renal cell carcinoma who progressed on tyrosine kinase inhibitor therapy. Actions of everolimus within the mTOR pathway result in decreased protein synthesis and cell cycle arrest, as well as decreased angiogenesis. A usual starting dose for patients with renal cell carcinoma is 10 mg daily. Everolimus undergoes extensive hepatic metabolism, primarily through the CYP3A4 isoenzyme, which predisposes it to drug interactions with inducers and inhibitors of this enzyme. Most commonly reported adverse events associated with everolimus include anemia, hyperglycemia, hypercholesterolemia, mucositis, fatigue, and rash. Approval of everolimus was based on the results of a Phase 3 trial that demonstrated an increase in median progression-free survival by 2.1 months in patients receiving everolimus therapy as compared to placebo. The drug was recently added to the National Comprehensive Cancer Network guidelines as a treatment option for patients with advanced renal cell carcinoma who have progressed on tyrosine kinase therapy. CONCLUSIONS Based on a review of the currently available literature, everolimus provides a safe and efficacious treatment option for patients with renal cell carcinoma who have progressed on treatment with sunitinib and/or sorafenib.
Collapse
Affiliation(s)
- Tatjana Grgic
- Department of Pharmacy, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
49
|
Abstract
Inhibitors of mammalian target of rapamycin (mTOR) have been approved for the treatment of renal cell carcinoma and appear to have a role in the treatment of other malignancies. The primary objective of this drug review is to provide pharmacokinetic and dynamic properties of the commonly used drugs everolimus and temsirolimus. Additionally, information on clinical use, mechanism of action, bioanalysis, drug-drug interactions, alterations with disease or age, pharmacogenetics, and drug resistance is given. This overview should assist the treating medical oncologist in adjusting treatment with mTOR inhibitors to individual patient circumstances.
Collapse
Affiliation(s)
- Heinz-Josef Klümpen
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Monchaud C, Marquet P. Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: part II. Clin Pharmacokinet 2010; 48:489-516. [PMID: 19705921 DOI: 10.2165/11317240-000000000-00000] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Part I of this article, which appeared in the previous issue of the Journal, reviewed calcineurin inhibitors--ciclosporin and tacrolimus. In part II, we review the pharmacokinetics and therapeutic drug monitoring of mycophenolate and mammalian target of rapamycin inhibitors--sirolimus and everolimus--in thoracic transplantation, and we provide an overall discussion and suggest various areas for future study.
Collapse
Affiliation(s)
- Caroline Monchaud
- INSERM Unit 850, CHU Limoges, University of Limoges, Limoges, France
| | | |
Collapse
|