1
|
Affiliation(s)
- Gabriel N. Hortobagyi
- The University of Texas MD Anderson Cancer Center, Houston, TX,Gabriel N. Hortobagyi, MD, FACP, FASCO, The University of Texas MD Anderson Cancer Center, Breast Medical Oncology, 1515 Holcombe Blvd, Houston, Texas 77030; e-mail:
| |
Collapse
|
2
|
de Castro-Suárez N, Rodríguez-Vera L, Villegas C, Dávalos-Iglesias JM, Bacallao-Mendez R, Llerena-Ferrer B, Leyva-de la Torre C, Lorenzo-Luaces P, Troche-Concepción M, Ramos-Suzarte M. Pharmacokinetic Evaluation of Nimotuzumab in Patients With Autosomal Dominant Polycystic Kidney Disease. J Clin Pharmacol 2019; 59:863-871. [PMID: 30633365 DOI: 10.1002/jcph.1376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by an overexpression and mislocalization of epidermal growth factor receptor (EGFR) to the apical membranes of cystic epithelial cells. Nimotuzumab is a humanized antibody that recognizes an extracellular domain III of human EGFR. The aim of this study was to assess the pharmacokinetic behavior of nimotuzumab in patients with ADPKD given as a single dose. A phase I, single-center, and noncontrolled open clinical study was conducted. Five patients were enrolled at each of the following fixed-dose levels: 50, 100, 200, and 400 mg. Intravenous continuous infusions of nimotuzumab were administered every 14 days during a year, except the first administration, when blood samples were drawn during 28 days for pharmacokinetic assessments. Subjects were closely monitored during the trial and at completion of the administration of nimotuzumab, including the anti-idiotypic response. For the first time, nimotuzumab was used for treating a nononcological disease. The administration of nimotuzumab showed dose-dependent kinetics. Nimotuzumab does not develop anti-idiotypic response against the murine portion present in the hypervariable region of the antibody present in the serum of the patients treated. No significant differences were found in the systemic clearance between the 100- and 400-mg dose, which indicates that the optimal biological dose is in this range of dose.
Collapse
Affiliation(s)
- Niurys de Castro-Suárez
- Laboratory of Biopharmaceutics, Department of Pharmacology & Toxicology, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | - Leyanis Rodríguez-Vera
- Laboratory of Biopharmaceutics, Department of Pharmacology & Toxicology, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | - Carlos Villegas
- National Institute of Oncology and Radiobiology, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
3
|
The Gβ5 protein regulates sensitivity to TRAIL-induced cell death in colon carcinoma. Oncogene 2014; 34:2753-63. [PMID: 25043307 DOI: 10.1038/onc.2014.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Aberrant signaling via G protein-coupled receptors (GPCRs) is implicated in numerous diseases including colon cancer. The heterotrimeric G proteins transduce signals from GPCRs to various effectors. So far, the G protein subunit Gβ5 has not been studied in the context of cancer. Here we demonstrate that Gβ5 protects colon carcinoma cells from apoptosis induced by the death ligand TRAIL via different routes. The Gβ5 protein (i) causes a decrease in the cell surface expression of the TRAIL-R2 death receptor, (ii) induces the expression of the anti-apoptotic protein XIAP and (iii) activates the NF-κB signaling pathway. The intrinsic resistance to TRAIL-triggered apoptosis of colon cancer cells is overcome by antagonization of Gβ5. Based on these results, targeting of G proteins emerges as a novel therapeutic approach in the experimental treatment of colon cancer.
Collapse
|
4
|
Ensinger C, Sterlacci W. Implications of EGFR PharmDx™ Kit for cetuximab eligibility. Expert Rev Mol Diagn 2014; 8:141-8. [DOI: 10.1586/14737159.8.2.141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Bellizzi AM. Contributions of molecular analysis to the diagnosis and treatment of gastrointestinal neoplasms. Semin Diagn Pathol 2013; 30:329-61. [DOI: 10.1053/j.semdp.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Staquicini FI, Pasqualini R, Arap W. Ligand-directed profiling: applications to target drug discovery in cancer. Expert Opin Drug Discov 2013; 4:51-9. [PMID: 23480336 DOI: 10.1517/17460440802628152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Generation of targeted therapy remains a major challenge in medicine. The development of drugs that can discriminate between tumor cells and non-malignant cells would improve efficacy and reduce general side effects. Phage display allows identification of specific supramolecular complexes that can target therapeutic compounds or imaging agents, both in vitro and in vivo. The use of phage display to identify molecules expressed on the surface of human cancer cells without bias, as well as to provide initial steps toward identification of a ligand/receptor-based map of the human microvasculature, has broad implications for drug discovery in general, especially for cancer therapy. OBJECTIVE/METHOD In this review, we discuss the use of phage display technology as a ligand-directed targeting strategy and its applications to drug discovery. CONCLUSION Compared to other existing drug discovery platforms, phage display technology has the advantage to provide valuable clues pointing to target proteins in an unbiased biological context. The result from various display library screenings indicates that in many cases the selected peptide motifs mimic biological ligands. Analysis of peptide motifs targeting a receptor provides a basis for rational drug design of targeted peptidomimetics.
Collapse
Affiliation(s)
- Fernanda I Staquicini
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA +1 713 792 3872 ; +1 713 745 0201 ;
| | | | | |
Collapse
|
7
|
Krishnaiah YSR, Khan MA. Strategies of targeting oral drug delivery systems to the colon and their potential use for the treatment of colorectal cancer. Pharm Dev Technol 2012; 17:521-40. [PMID: 22681390 DOI: 10.3109/10837450.2012.696268] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related death in both men and women. Often, surgical intervention remains the choice in treating CRC. Traditional dosage forms used for treating CRC deliver drug to wanted as well as unwanted sites of drug action resulting in several adverse side effects. Targeted oral drug delivery systems are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific delivery of a drug to colon increases its concentration at the target site, and thus requires a lower dose with reduced incidence of side effects. The major obstacle to be overcome for successful targeting of drug to colon through oral route is that drug absorption/degradation must be avoided in stomach and small intestine before the dosage form reaches colon. The review includes discussion of physiological factors that must be considered when targeting drugs directly to colorectal region, an outline on drugs used for treatment and prevention of CRC, and a brief description of various types of colon-targeted oral drug delivery systems. The focus is on the assessment of various formulation approaches being investigated for oral colon-specific delivery of drugs used in the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Yellela S R Krishnaiah
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Springs, MD 20993, USA.
| | | |
Collapse
|
8
|
Abstract
In the US, colorectal cancer is the third leading cause of cancer-related death. Approximately 20% of patients present with metastatic disease, and an additional 30% to 40% develop metastasis during the course of their disease. Patients with metastatic colon cancer have a 5-year survival rate of only 11%. Although surgery is the mainstay of treatment for early stage colon cancer, adjuvant treatment is usually used in patients advanced stage disease. In particular, epidermal growth factor receptor (EGFR) inhibitor therapies have emerged as effective treatments in a subset of patients with metastatic colorectal carcinoma. Two anti-EGFR biologics, cetuximab and panitumumab, have been approved by the Food and Drug Administrations for the treatment of refractory metastatic colorectal carcinoma. Mounting evidence has shown that these therapies are ineffective in tumors with mutations of codons 12 and 13 of exon 2 of the KRAS gene. Because of this compelling data, the National Comprehensive Cancer Network and the American Society of Clinical Oncology have recommended determination of KRAS mutation status in all patients with metastatic colorectal cancer who are candidates for anti-EGFR therapy. Anatomic pathologists play an integral role in coordinating the testing for KRAS mutations, as this assay is performed on tissue samples selected by the pathologist. Herein, the authors present an up-to-date review of the biologic, clinical, and laboratory aspects of KRAS mutation testing in colorectal cancer.
Collapse
|
9
|
Romito F, Giuliani F, Cormio C, Tulipani C, Mattioli V, Colucci G. Psychological effects of cetuximab-induced cutaneous rash in advanced colorectal cancer patients. Support Care Cancer 2009; 18:329-34. [DOI: 10.1007/s00520-009-0656-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 05/13/2009] [Indexed: 11/30/2022]
|
10
|
Rivera F, Salcedo M, Vega N, Blanco Y, López C. Current situation of zalutumumab. Expert Opin Biol Ther 2009; 9:667-74. [DOI: 10.1517/14712590902932871] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fernando Rivera
- Hospital Universitario Marqués de Valdecilla, Department of Medical Oncology, 39008 Santander, Spain ;
| | - Matilde Salcedo
- Hospital Universitario Marqués de Valdecilla, Department of Medical Oncology, 39008 Santander, Spain ;
| | - Noelia Vega
- Hospital Universitario Marqués de Valdecilla, Department of Medical Oncology, 39008 Santander, Spain ;
| | - Yolanda Blanco
- Hospital Universitario Marqués de Valdecilla, Department of Medical Oncology, 39008 Santander, Spain ;
| | - Carlos López
- Hospital Universitario Marqués de Valdecilla, Department of Medical Oncology, 39008 Santander, Spain ;
| |
Collapse
|
11
|
Mutsaers AJ, Francia G, Man S, Lee CR, Ebos JML, Wu Y, Witte L, Berry S, Moore M, Kerbel RS. Dose-dependent increases in circulating TGF-alpha and other EGFR ligands act as pharmacodynamic markers for optimal biological dosing of cetuximab and are tumor independent. Clin Cancer Res 2009; 15:2397-405. [PMID: 19276250 DOI: 10.1158/1078-0432.ccr-08-1627] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The objective of this study was to characterize treatment-induced circulating ligand changes during therapy with epidermal growth factor receptor (EGFR) inhibitors and evaluate their potential as surrogate indicators of the optimal biological dose. EXPERIMENTAL DESIGN Conditioned medium from human tumor cell lines, ascites fluid from tumor xenografts, and plasma samples from normal mice, as well as colorectal cancer patients, were assessed for ligand elevations using ELISA, following treatment with cetuximab (Erbitux), an anti-mouse EGFR neutralizing antibody, or a small-molecule EGFR tyrosine kinase inhibitor. RESULTS A rapid elevation in human transforming growth factor alpha (TGF-alpha) was observed in all cell lines after treatment with cetuximab, but not with small-molecule inhibitors. The elevation showed a dose-response effect and plateau that corresponded to the maximal decrease in A431 proliferation in vitro and HT29 tumor growth in vivo. The TGF-alpha increase was exacerbated by ongoing ligand production and cleavage from the plasma membrane but did not involve transcriptional up-regulation of TGF-alpha or the matrix metalloproteinase tumor necrosis factor-alpha-converting enzyme/ADAM17. Elevations in plasma TGF-alpha, amphiregulin, and epiregulin were also detected in normal mice treated with an anti-mouse EGFR monoclonal antibody, illustrating a host tissue-dependent component of this effect in vivo. Finally, circulating TGF-alpha increased in the plasma of six patients with EGFR-negative colorectal tumors during cetuximab treatment. CONCLUSIONS Treatment-induced increases in circulating ligands, particularly TGF-alpha, should be serially assessed in clinical trials of anti-EGFR therapeutic antibodies as potential biomarkers to aid in determination of the optimal biological dose.
Collapse
Affiliation(s)
- Anthony J Mutsaers
- Division of Medical Oncology, Molecular and Cell Biology Research, Sunnybrook Health Sciences Centre, 3Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Generalised erythematous skin eruptions induced by sorafenib: cutaneous toxicity and treatment outcome. Clin Transl Oncol 2008; 10:844-6. [DOI: 10.1007/s12094-008-0299-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Rivera F, Eugenia Vega-Villegas M, Lopez-Brea MF, Marquez R. Current situation of Panitumumab, Matuzumab, Nimotuzumab and Zalutumumab. Acta Oncol 2008; 47:9-19. [PMID: 18097777 DOI: 10.1080/02841860701704724] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
EGFR overexpression usually correlates with a more advanced disease stage, a poorer prognosis and a worse chemotherapy response. EGFR expression increase has been observed in many tumours. For all the aforementioned reasons, EGFR inhibition can be considered an attractive approach in cancer treatment. One strategy has been receptor inhibition of extracellular domain using monoclonal antibodies. Cetuximab is the most developed one and there is plenty information on the literature about its current status. In this review we focus on other EGFR monoclonal antibodies under clinical development. The more developed one is Panitumumab. Its clinical development is taking place very quickly and it has mainly been studied in colorectal cancer showing promising results. There are also other interesting drugs such as Matuzumab, Nimotuzumab and Zalutumumab.
Collapse
|
14
|
Cai W, Niu G, Chen X. Multimodality imaging of the HER-kinase axis in cancer. Eur J Nucl Med Mol Imaging 2007; 35:186-208. [PMID: 17846765 DOI: 10.1007/s00259-007-0560-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases controls critical pathways involved in epithelial cell differentiation, growth, division, and motility. Alterations and disruptions in the function of the HER-kinase axis can lead to malignancy. Many therapeutic agents targeting the HER-kinase axis are approved for clinical use or are in preclinical/clinical development. The ability to quantitatively image the HER-kinase axis in a noninvasive manner can aid in lesion detection, patient stratification, new drug development/validation, dose optimization, and treatment monitoring. This review summarizes the current status in multimodality imaging of the HER-kinase axis using PET, SPECT, optical, and MR imaging. The targeting ligands used include small-molecule tyrosine kinase inhibitors, peptides, proteins, antibodies, and engineered antibody fragments. EGFR and HER2 imaging have been well documented in the past, and imaging of HER3, HER4, HER heterodimers, and HER-kinase mutants deserves significant research effort in the future. Successful development of new HER-kinase-targeted imaging agents with optimal in vivo stability, targeting efficacy, and desirable pharmacokinetics for clinical translation will enable maximum benefit in cancer patient management.
Collapse
Affiliation(s)
- Weibo Cai
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, 1201 Welch Rd, P095, Stanford, CA 94305-5484, USA.
| | | | | |
Collapse
|
15
|
Buckley AF, Kakar S. Comparison of the Dako EGFR pharmDx Kit and Zymed EGFR Antibody for Assessment of EGFR Status in Colorectal Adenocarcinoma. Appl Immunohistochem Mol Morphol 2007; 15:305-9. [PMID: 17721276 DOI: 10.1097/01.pai.0000213141.47277.bf] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunohistochemistry is widely used to assess epidermal growth factor receptor (EGFR) expression on colorectal carcinomas to select patients for treatment with cetuximab, an anti-EGFR antibody. The data comparing different commercial EGFR antibodies is limited, and no cost comparisons have been made. We analyzed 65 advanced colorectal cancers from 36 patients using the EGFR pharmDx kit (DakoCytomation) and Clone 31G7 (Zymed Laboratories, Inc). EGFR expression was seen in 35 (53%) tumors (21 primary, 14 metastatic) with the Dako pharmDx kit. The Zymed antibody showed positive results in 41 (63%) tumors (25 primary, 16 metastatic). The cost per test was $40.00 with the pharmDx kit and $3.52 with the Zymed antibody. The Zymed antibody detects 10% more cases of colorectal cancer as EGFR positive, and is 10 times cheaper than the Dako pharmDx kit. There is little justification for the use of expensive kits for testing EGFR expression, when other available antibodies without the kit can give comparable or superior results.
Collapse
|
16
|
Madhusudan S, Ganesan TS. Tyrosine kinase inhibitors and cancer therapy. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2007; 172:25-44. [PMID: 17607934 DOI: 10.1007/978-3-540-31209-3_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Aerts HJWL, Dubois L, Hackeng TM, Straathof R, Chiu RK, Lieuwes NG, Jutten B, Weppler SA, Lammering G, Wouters BG, Lambin P. Development and evaluation of a cetuximab-based imaging probe to target EGFR and EGFRvIII. Radiother Oncol 2007; 83:326-32. [PMID: 17531336 DOI: 10.1016/j.radonc.2007.04.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/23/2007] [Accepted: 04/23/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The epidermal growth factor receptor (EGFR) is overexpressed in a significant percentage of human malignancies and its expression is associated with tumour aggressiveness and treatment resistance. The monoclonal antibody cetuximab (IMC-C225) blocks the ligand-binding domain of EGFR with high affinity, preventing downstream signalling resulting in tumour growth inhibition. We developed and characterized a novel imaging probe using Oregon Green 488 labelled cetuximab to evaluate its usage as an imaging agent to target EGFR. MATERIALS AND METHODS Cells with varying expression levels of EGFR or a mutant form of EGFR, called EGFRvIII, were used for in vitro validation. The in vivo binding of labelled cetuximab to EGFR was also assessed ex vivo on tumour material. RESULTS The development of Oregon Green 488 labelled cetuximab was successful, demonstrating binding to both EGFR and EGFRvIII in vitro. Accumulation was also found in vivo, which was confirmed by histopathology using anti-EGFR antibodies. However, significant mismatch highlights differences between drug delivery in vivo, and cell expression levels of EGFR. CONCLUSIONS The monoclonal antibody cetuximab represents a promising probe to evaluate the biologic and pharmacokinetic effects of in vivo cetuximab binding to EGFR. It not only visualizes the presence of the wild type EGFR, but also the presence of the mutant EGFRvIII.
Collapse
Affiliation(s)
- Hugo J W L Aerts
- Department of Radiation Oncology (MAASTRO), GROW Research Institute, University of Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lofgren JA, Dhandapani S, Pennucci JJ, Abbott CM, Mytych DT, Kaliyaperumal A, Swanson SJ, Mullenix MC. Comparing ELISA and Surface Plasmon Resonance for Assessing Clinical Immunogenicity of Panitumumab. THE JOURNAL OF IMMUNOLOGY 2007; 178:7467-72. [PMID: 17513798 DOI: 10.4049/jimmunol.178.11.7467] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evaluation of the immunogenicity of panitumumab, a fully human anti-epidermal growth factor receptor mAb approved for use in colorectal cancer patients, led to the development of two separate immunoassays for the detection of anti-panitumumab Abs. The first immunoassay used a bridging ELISA capable of detecting 10 ng/ml positive control anti-panitumumab Ab. The ELISA incorporated an acid dissociation step to reduce drug interference and tolerated the presence of approximately 100-fold molar excess of drug. During eight clinical trials, the ELISA detected developing Ab responses in 2 of 612 (0.3%) subjects. In one of the ELISA positive subjects, neutralizing Abs were detected using an epidermal growth factor receptor phosphorylation bioassay. The second immunoassay used a Biacore biosensor immunoassay format capable of detecting 1 mug/ml positive control Ab while tolerating the presence of equal molar amounts of drug. Although less sensitive and less tolerant to competing drug in the assay, the Biacore assay detected developing Ab responses in 25 of the 604 (4.1%) subjects. Additionally, the Biacore assay identified eight subjects who developed neutralizing Abs. Mouse mAbs with affinities ranging from 1.1 x 10(-6) to 8.4 x 10(-10) M were used to characterize both assay types. The ELISA was more sensitive for the detection of higher affinity mAbs and detected high-affinity mAbs in the presence of higher molar ratio of drug to mAb. The Biacore assay was more sensitive for detection of lower affinity mAbs and detected low affinity Abs in the presence of higher molar ratios of drug to mAb.
Collapse
Affiliation(s)
- James A Lofgren
- Department of Clinical Immunology, Amgen, Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kast RE, Altschuler EL. Consideration of use of phenothiazines in particular trifluorperazine for epidermal growth factor receptor associated cancers. Med Hypotheses 2007; 69:1074-5. [PMID: 17448610 DOI: 10.1016/j.mehy.2006.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 08/09/2006] [Indexed: 11/23/2022]
Abstract
Papers from a generation ago suggested that phenothiazines--in particular trifluorperazine (Stelazine) a medicinal approved by the FDA and still commonly used for schizophrenia--downregulate the epidermal growth factor receptor. As numerous cancers--e.g., colon cancer, breast cancer, pancreatic cancer and glioblastoma--are dependent on signaling via this receptor, we here suggest that phenothiazines such as trifluorperazine be considered for use in epidermal growth factor receptor associated cancers.
Collapse
Affiliation(s)
- Richard E Kast
- Department of Psychiatry, College of Medicine, University of Vermont, 2 Church Street, Burlington, VT 05401, United States
| | | |
Collapse
|
20
|
Wu G, Yang W, Barth RF, Kawabata S, Swindall M, Bandyopadhyaya AK, Tjarks W, Khorsandi B, Blue TE, Ferketich AK, Yang M, Christoforidis GA, Sferra TJ, Binns PJ, Riley KJ, Ciesielski MJ, Fenstermaker RA. Molecular Targeting and Treatment of an Epidermal Growth Factor Receptor-Positive Glioma Using Boronated Cetuximab. Clin Cancer Res 2007; 13:1260-8. [PMID: 17317838 DOI: 10.1158/1078-0432.ccr-06-2399] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of the present study was to evaluate the anti-epidermal growth factor monoclonal antibody (mAb) cetuximab (IMC-C225) as a delivery agent for boron neutron capture therapy (BNCT) of a human epidermal growth factor receptor (EGFR) gene-transfected rat glioma, designated as F98(EGFR). EXPERIMENTAL DESIGN A heavily boronated polyamidoamine dendrimer was chemically linked to cetuximab by means of the heterobifunctional reagents N-succinimidyl 3-(2-pyridyldithio)-propionate and N-(k-maleimido undecanoic acid)-hydrazide. The bioconjugate, designated as BD-C225, was specifically taken up by F98(EGFR) glioma cells in vitro compared with receptor-negative F98 wild-type cells (41.8 versus 9.1 microg/g). For in vivo biodistribution studies, F98(EGFR) cells were implanted stereotactically into the brains of Fischer rats, and 14 days later, BD-C225 was given intracerebrally by either convection enhanced delivery (CED) or direct intratumoral (i.t.) injection. RESULTS The amount of boron retained by F98(EGFR) gliomas 24 h following CED or i.t. injection was 77.2 and 50.8 microg/g, respectively, with normal brain and blood boron values <0.05 mug/g. Boron neutron capture therapy was carried out at the Massachusetts Institute of Technology Research Reactor 24 h after CED of BD-C225, either alone or in combination with i.v. boronophenylalanine (BPA). The corresponding mean survival times (MST) were 54.5 and 70.9 days (P = 0.017), respectively, with one long-term survivor (more than 180 days). In contrast, the MSTs of irradiated and untreated controls, respectively, were 30.3 and 26.3 days. In a second study, the combination of BD-C225 and BPA plus sodium borocaptate, given by either i.v. or intracarotid injection, was evaluated and the MSTs were equivalent to that obtained with BD-C225 plus i.v. BPA. CONCLUSIONS The survival data obtained with BD-C225 are comparable with those recently reported by us using boronated mAb L8A4 as the delivery agent. This mAb recognizes the mutant receptor, EGFRvIII. Taken together, these data convincingly show the therapeutic efficacy of molecular targeting of EGFR using a boronated mAb either alone or in combination with BPA and provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors.
Collapse
Affiliation(s)
- Gong Wu
- Department of Pathology, The Ohio State University, Columbus 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Viale PH, Sommers R. Nursing Care of Patients Receiving Chemotherapy for Metastatic Colorectal Cancer: Implications of the Treatment Continuum Concept. Semin Oncol Nurs 2007. [DOI: 10.1016/j.soncn.2006.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 2007; 34:850-8. [PMID: 17262214 DOI: 10.1007/s00259-006-0361-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR) on the surface of cancer cells, was approved by the FDA to treat patients with metastatic colorectal cancer. It is currently also in advanced-stage development for the treatment of several other solid tumors. Here we report for the first time the quantitative positron emission tomography (PET) imaging of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab. METHODS We conjugated cetuximab with macrocyclic chelating agent 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA), labeled with 64Cu, and tested the resulting 64Cu-DOTA-cetuximab in seven xenograft tumor models. The tracer uptake measured by PET was correlated with the EGFR expression quantified by western blotting. The estimated human dosimetry based on the PET data in Sprague-Dawley rats was also calculated. RESULTS MicroPET imaging showed that 64Cu-DOTA-cetuximab had increasing tumor activity accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-negative tumors at all times examined (<5%ID/g). There was a good correlation (R2=0.80) between the tracer uptake (measured by PET) and the EGFR expression level (measured by western blotting). Human dosimetry estimation indicated that the tracer may be safely administered to human patients for tumor diagnosis, with the dose-limiting organ being the liver. CONCLUSION The success of EGFR-positive tumor imaging using 64Cu-DOTA-cetuximab can be translated into the clinic to characterize the pharmacokinetics, to select the right population of patients for EGFR-targeted therapy, to monitor the therapeutic efficacy of anti-EGFR treatment, and to optimize the dosage of either cetuximab alone or cetuximab in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Weibo Cai
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, 1201 Welch Rd P095, Stanford, CA 94305-5484, USA
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Budman DR, Soong R, Calabro A, Tai J, Diasio R. Identification of potentially useful combinations of epidermal growth factor receptor tyrosine kinase antagonists with conventional cytotoxic agents using median effect analysis. Anticancer Drugs 2006; 17:921-8. [PMID: 16940802 DOI: 10.1097/01.cad.0000224457.36522.60] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Targeted therapy for breast carcinoma has achieved a major advance with the use of trastuzumab in Her2/neu-positive tumors. The epidermal growth factor receptor superfamily thus becomes an attractive target for therapeutic agents. As the epidermal growth factor receptor tyrosine kinase family has a conformational binding site, which allows small molecules to interfere with its function, we have explored the effects of a dual kinase (epidermal growth factor receptor-1 and epidermal growth factor receptor-2) inhibitor (GW282974X) with a variety of cytotoxic agents looking for synergistic effects in vitro. Using a median effect model in four breast cancer cell lines in vitro, cytotoxic agents commonly used in treatment of human malignant disease were combined with trastuzumab or one of two epidermal growth factor receptor tyrosine kinase inhibitors in a 72-h culture and then analyzed for cytotoxic effect by 3-[26]-2,5-diphenyl-tetrazolium bromide assay. Combination index values within one standard deviation of unity were considered additive, less than unity as synergistic and more than unity as antagonistic. Synergistic results were confirmed by curve shift analysis and by an enzyme-linked immunosorbent assay measuring apoptosis by cytoplasmic histone-associated DNA fragments. Quantitative real-time polymerase chain reaction analysis was used to measure the expression of three of the critical enzymes in 5'-deoxy-5-fluorouridine metabolism and activity: thymidine phosphorylase, dihydropyrimidine dehydrogenase and thymidine synthase. 5'-Deoxy-5-fluorouridine with GW282974X demonstrated global synergy, both in high and low expressing epidermal growth factor receptor breast cancer cell lines. These results were confirmed by apoptosis assay and cell counts. RNA quantification following treatment with the dual kinase inhibitor suggested reduction in thymidine synthase levels to be a potential mechanism of synergy. The triplet of trastuzumab, GW282974X and 5'-deoxy-5-fluorouridine, and the triplet of GW282974X, epirubicin and 5'-deoxy-5-fluorouridine were highly synergistic in low expression cells (MCF7/wt) and high expression cells (MCF7/adr). These experiments suggest further studies of the dual kinase inhibitor with selected cytotoxics such as 5'-deoxy-5-fluorouridine are warranted.
Collapse
Affiliation(s)
- Daniel R Budman
- Experimental Therapeutics Section, Don Monti Division of Oncology, North Shore University Hospital, New York University, Manhasset, NY, USA.
| | | | | | | | | |
Collapse
|
25
|
Oliveira S, van Bergen en Henegouwen PMP, Storm G, Schiffelers RM. Molecular biology of epidermal growth factor receptor inhibition for cancer therapy. Expert Opin Biol Ther 2006; 6:605-17. [PMID: 16706607 DOI: 10.1517/14712598.6.6.605] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the role of the epidermal growth factor receptor (EGFR) in cellular signalling processes underlying malignancy has enabled the development of rationally designed EGFR-targeted therapeutics. Strategies have been devised to interfere with the EGFR signalling at three different levels: at the extracellular level, competing with ligand binding; at the intracellular level, inhibiting the activation of the tyrosine kinase; or at the mRNA level, modulating the expression of the EGFR protein. Each of these strategies has proven to have an antitumour effect mediated by events such as inhibition of cell proliferation, induction of apoptosis, decrease of cellular invasion and migration; and/or inhibition of angiogenesis. Furthermore, the combination of these strategies with traditional chemotherapy or radiotherapy has generally resulted in enhanced antitumour effects. Likewise, the benefit of interfering simultaneously with different signalling pathways has been documented to improve tumour growth inhibition. These preclinical results have encouraged clinical studies that led to the FDA approval of three drugs. However, finding the perfect strategy for each individual patient appears to be a limiting factor, demanding further research to be able to generate relevant molecular expression profiles on a case-to-case basis. Taken together, a successful EGFR inhibition will require a better understanding of signalling pathways in combination with the development of rationally designed effective molecules.
Collapse
Affiliation(s)
- Sabrina Oliveira
- Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University, PO Box 80.082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|