1
|
Tůmová L, Ježková J, Prediger J, Holubová N, Sak B, Konečný R, Květoňová D, Hlásková L, Rost M, McEvoy J, Xiao L, Santín M, Kváč M. Cryptosporidium mortiferum n. sp. (Apicomplexa: Cryptosporidiidae), the species causing lethal cryptosporidiosis in Eurasian red squirrels (Sciurus vulgaris). Parasit Vectors 2023; 16:235. [PMID: 37454101 DOI: 10.1186/s13071-023-05844-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cryptosporidium spp. are globally distributed parasites that infect epithelial cells in the microvillus border of the gastrointestinal tract of all classes of vertebrates. Cryptosporidium chipmunk genotype I is a common parasite in North American tree squirrels. It was introduced into Europe with eastern gray squirrels and poses an infection risk to native European squirrel species, for which infection is fatal. In this study, the biology and genetic variability of different isolates of chipmunk genotype I were investigated. METHODS The genetic diversity of Cryptosporidium chipmunk genotype I was analyzed by PCR/sequencing of the SSU rRNA, actin, HSP70, COWP, TRAP-C1 and gp60 genes. The biology of chipmunk genotype I, including oocyst size, localization of the life cycle stages and pathology, was examined by light and electron microscopy and histology. Infectivity to Eurasian red squirrels and eastern gray squirrels was verified experimentally. RESULTS Phylogenic analyses at studied genes revealed that chipmunk genotype I is genetically distinct from other Cryptosporidium spp. No detectable infection occurred in chickens and guinea pigs experimentally inoculated with chipmunk genotype I, while in laboratory mice, ferrets, gerbils, Eurasian red squirrels and eastern gray squirrels, oocyst shedding began between 4 and 11 days post infection. While infection in mice, gerbils, ferrets and eastern gray squirrels was asymptomatic or had mild clinical signs, Eurasian red squirrels developed severe cryptosporidiosis that resulted in host death. The rapid onset of clinical signs characterized by severe diarrhea, apathy, loss of appetite and subsequent death of the individual may explain the sporadic occurrence of this Cryptosporidium in field studies and its concurrent spread in the population of native European squirrels. Oocysts obtained from a naturally infected human, the original inoculum, were 5.64 × 5.37 μm and did not differ in size from oocysts obtained from experimentally infected hosts. Cryptosporidium chipmunk genotype I infection was localized exclusively in the cecum and anterior part of the colon. CONCLUSIONS Based on these differences in genetics, host specificity and pathogenicity, we propose the name Cryptosporidium mortiferum n. sp. for this parasite previously known as Cryptosporidium chipmunk genotype I.
Collapse
Affiliation(s)
- Lenka Tůmová
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jana Ježková
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
| | - Jitka Prediger
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
| | - Nikola Holubová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Roman Konečný
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Michael Rost
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, 1523 Centennial Blvd, Van Es Hall, Fargo, ND, 58102, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Monica Santín
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Martin Kváč
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
3
|
Harvey W, Hutto EH, Chilton JA, Chamanza R, Mysore JV, Parry NM, Dick E, Wojcinski ZW, Piaia A, Garcia B, Flandre TD, Pardo ID, Cramer S, Wright JA, Bradley AE. Infectious diseases of non-human primates. SPONTANEOUS PATHOLOGY OF THE LABORATORY NON-HUMAN PRIMATE 2023:15-69. [DOI: 10.1016/b978-0-12-813088-9.00020-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Johnson AL, Keesler RI, Lewis AD, Reader JR, Laing ST. Common and Not-So-Common Pathologic Findings of the Gastrointestinal Tract of Rhesus and Cynomolgus Macaques. Toxicol Pathol 2022; 50:638-659. [PMID: 35363082 PMCID: PMC9308647 DOI: 10.1177/01926233221084634] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhesus and cynomolgus macaques are the most frequently used nonhuman primate (NHP) species for biomedical research and toxicology studies of novel therapeutics. In recent years, there has been a shortage of laboratory macaques due to a variety of competing factors. This was most recently exacerbated by the surge in NHP research required to address the severe acute respiratory syndrome (SARS)-coronavirus 2 pandemic. Continued support of these important studies has required the use of more varied cohorts of macaques, including animals with different origins, increased exposure to naturally occurring pathogens, and a wider age range. Diarrhea and diseases of the gastrointestinal tract are the most frequently occurring spontaneous findings in macaques of all origins and ages. The purpose of this review is to alert pathologists and scientists involved in NHP research to these findings and their impact on animal health and study endpoints, which may otherwise confound the interpretation of data generated using macaques.
Collapse
Affiliation(s)
| | | | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - J Rachel Reader
- California National Primate Research Center, Davis, California, USA
| | | |
Collapse
|
5
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
6
|
Duszynski DW. Biodiversity of the Coccidia (Apicomplexa: Conoidasida) in vertebrates: what we know, what we do not know, and what needs to be done. Folia Parasitol (Praha) 2021; 68. [PMID: 33527909 DOI: 10.14411/fp.2021.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Over the last two decades my colleagues and I have assembled the literature on a good percentage of most of the coccidians (Conoidasida) known, to date, to parasitise: Amphibia, four major lineages of Reptilia (Amphisbaenia, Chelonia, Crocodylia, Serpentes), and seven major orders in the Mammalia (Carnivora, Chiroptera, Lagomorpha, Insectivora, Marsupialia, Primates, Scandentia). These vertebrates, combined, comprise about 15,225 species; only about 899 (5.8%) of them have been surveyed for coccidia and 1,946 apicomplexan valid species names or other forms are recorded in the literature. Based on these compilations and other factors, I extrapolated that there yet may be an additional 31,381 new apicomplexans still to be discovered in just these 12 vertebrate groups. Extending the concept to all of the other extant vertebrates on Earth; i.e. lizards (6,300 spp.), rodents plus 12 minor orders of mammals (3,180 spp.), birds (10,000 spp.), and fishes (33,000 spp.) and, conservatively assuming only two unique apicomplexan species per each vertebrate host species, I extrapolate and extend my prediction that we may eventually find 135,000 new apicomplexans that still need discovery and to be described in and from those vertebrates that have not yet been examined for them! Even doubling that number is a significant underestimation in my opinion.
Collapse
|
7
|
Chen L, Hu S, Jiang W, Zhao J, Li N, Guo Y, Liao C, Han Q, Feng Y, Xiao L. Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques. Parasit Vectors 2019; 12:350. [PMID: 31307508 PMCID: PMC6631616 DOI: 10.1186/s13071-019-3604-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/06/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Non-human primates are often infected with human-pathogenic Cryptosporidium hominis subtypes, but rarely with Cryptosporidium parvum. In this study, 1452 fecal specimens were collected from farmed crab-eating macaques (Macaca fascicularis) in Hainan, China during the period April 2016 to January 2018. These specimens were analyzed for Cryptosporidium species and subtypes by using PCR and sequence analysis of the 18S rRNA and 60 kDa glycoprotein (gp60) genes, respectively. RESULTS Altogether, Cryptosporidium was detected using 18S rRNA-based PCR in 132 (9.1%) sampled animals, with significantly higher prevalence in females (12.5% or 75/599 versus 6.1% or 43/706), younger animals (10.7% or 118/1102 in monkeys 1-3-years-old versus 4.0% or 14/350 in those over 3-years-old) and animals with diarrhea (12.6% or 46/365 versus 7.9% or 86/1087). Four Cryptosporidium species were identified, namely C. hominis, C. parvum, Cryptosporidium muris and Cryptosporidium ubiquitum in 86, 30, 15 and 1 animal, respectively. The identified C. parvum, C. hominis and C. ubiquitum were further subtyped by using gp60 PCR. Among them, C. parvum belonged to subtypes in two known subtype families, namely IIoA14G1 (in 18 animals) and IIdA19G1 (in 2 animals). In contrast, C. hominis mostly belonged to two new subtype families Im and In, which are genetically related to Ia and Id, respectively. The C. hominis subtypes identified included ImA18 (in 38 animals), InA14 (in six animals), InA26 (in six animals), InA17 (in one animal) and IiA17 (in three animals). The C. ubiquitum isolates belonged to subtype family XIId. By subtype, ImA18 and IIoA14G1 were detected in animals with diarrhea whereas the remaining ones were mostly found in asymptomatic animals. Compared with C. parvum and C. muris, higher oocyst shedding intensity was observed in animals infected with C. hominis, especially those infected with the Im subtype family. CONCLUSIONS Data from the study suggest that crab-eating macaques are infected with diverse C. parvum and C. hominis subtypes. The C. parvum IIo subtype family previously seen in rodents in China has apparently expanded its host range.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, 200237 China
| | - Suhui Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Wen Jiang
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, 200237 China
| | - Jianguo Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 Hainan China
| | - Na Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Yaqiong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Chenghong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 Hainan China
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 Hainan China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, 200237 China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
8
|
Masuno K, Yanai T, Hirata A, Yonemaru K, Sakai H, Satoh M, Masegi T, Nakai Y. Morphological and Immunohistochemical Features of Cryptosporidium andersoni in Cattle. Vet Pathol 2016; 43:202-7. [PMID: 16537941 DOI: 10.1354/vp.43-2-202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Light and electron microscopic features and immunohistochemical features of Cryptosporidium andersoni ( C. andersoni) and host reaction in the mucosa were studied. Although the affected cattle demonstrated no apparent clinical signs, a severe infection of C. andersoni was observed in the abomasum. C. andersoni were round in shape, measured 6-8 μm in size and were mainly observed to be freely located in the gastric pits, being attached in occasional cases to the surface of the abomasum epithelium. Frequent inflammatory cells had infiltrated the lamina propria of the affected mucosa, and frequent mitotic figures were observed in epithelial cells at the dilated isthmus. To access the cell kinetics, the number of epithelial cells infected with C. andersoni were counted and compared with noninfected cattle. The number of gastric pit cells in infected cattle was significantly higher than that in the controls. The number of proliferative cells determined by the Ki-67 antigen in C. andersoni infected cattle was also significantly higher than that in the controls. Transmission electron microscopy and scanning electron microscopy revealed that the morphology of the C. andersoni organism was common to those of other Cryptosporidium spp. immunohistochemically, several commercial antibodies against Cryptosporidium spp. showed positive reactions at the wall of these oocysts or parasitophorous vacuoles. This report is possibly the first to discuss the prominent hyperplasia of the abomasum mucosa, as well as morphologic features of C. andersoni in cattle.
Collapse
Affiliation(s)
- K Masuno
- Department of Veterinary Pathology, Faculty of Agriculture, Gifu University 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
The fine structure of sexual stage development and sporogony of Cryptosporidium parvum in cell-free culture. Parasitology 2016; 143:749-61. [PMID: 26935529 DOI: 10.1017/s0031182016000275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sexual stages and new oocysts development of Cryptosporidium parvum were investigated in a cell-free culture system using transmission electron microscopy (TEM). Sexual development was extremely rapid after inoculation of oocysts into the medium. The process began within 1/2-12 h and was completed with new oocyst formation 120 h post-inoculation. The macrogamonts were bounded by two membranes and had amylopectin granules and two distinct types of wall-forming bodies. The microgamonts had a large nucleus showing lobe projections and condensation of chromatin, giving rise to peripherally budding microgametes. The microgametes contained a large area of granular substance containing groups of microtubules surrounding the electron-dense nucleus. In some instances, the dividing microgamy was observed in cell-free cultures with no preceding merogonic process. Fertilization was observed with the bullet-shaped microgamete penetrating an immature macrogamont at 24 and 216 h. The new thin- and thick-walled oocysts had a large residuum with polysaccharide granules and sporogony noted inside these oocysts. Novel immature four-layer walled thick oocysts with irregular knob-like protrusions on the outer layer resembling the immature Eimeria oocysts were also observed. The present study confirms the gametogony and sporogony of C. parvum in cell-free culture and describes their ultra-structure for the first time.
Collapse
|
10
|
Kváč M, Havrdová N, Hlásková L, Daňková T, Kanděra J, Ježková J, Vítovec J, Sak B, Ortega Y, Xiao L, Modrý D, Chelladurai JRJJ, Prantlová V, McEvoy J. Cryptosporidium proliferans n. sp. (Apicomplexa: Cryptosporidiidae): Molecular and Biological Evidence of Cryptic Species within Gastric Cryptosporidium of Mammals. PLoS One 2016; 11:e0147090. [PMID: 26771460 PMCID: PMC4714919 DOI: 10.1371/journal.pone.0147090] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/26/2015] [Indexed: 11/23/2022] Open
Abstract
The morphological, biological, and molecular characteristics of Cryptosporidium muris strain TS03 are described, and the species name Cryptosporidium proliferans n. sp. is proposed. Cryptosporidium proliferans obtained from a naturally infected East African mole rat (Tachyoryctes splendens) in Kenya was propagated under laboratory conditions in rodents (SCID mice and southern multimammate mice, Mastomys coucha) and used in experiments to examine oocyst morphology and transmission. DNA from the propagated C. proliferans isolate, and C. proliferans DNA isolated from the feces of an African buffalo (Syncerus caffer) in Central African Republic, a donkey (Equus africanus) in Algeria, and a domestic horse (Equus caballus) in the Czech Republic were used for phylogenetic analyses. Oocysts of C. proliferans are morphologically distinguishable from C. parvum and C. muris HZ206, measuring 6.8–8.8 (mean = 7.7 μm) × 4.8–6.2 μm (mean = 5.3) with a length to width ratio of 1.48 (n = 100). Experimental studies using an isolate originated from T. splendens have shown that the course of C. proliferans infection in rodent hosts differs from that of C. muris and C. andersoni. The prepatent period of 18–21 days post infection (DPI) for C. proliferans in southern multimammate mice (Mastomys coucha) was similar to that of C. andersoni and longer than the 6–8 DPI prepatent period for C. muris RN66 and HZ206 in the same host. Histopatologicaly, stomach glands of southern multimammate mice infected with C. proliferans were markedly dilated and filled with necrotic material, mucus, and numerous Cryptosporidium developmental stages. Epithelial cells of infected glands were atrophic, exhibited cuboidal or squamous metaplasia, and significantly proliferated into the lumen of the stomach, forming papillary structures. The epithelial height and stomach weight were six-fold greater than in non-infected controls. Phylogenetic analyses based on small subunit rRNA, Cryptosporidium oocyst wall protein, thrombospondin-related adhesive protein of Cryptosporidium-1, heat shock protein 70, actin, heat shock protein 90 (MS2), MS1, MS3, and M16 gene sequences revealed that C. proliferans is genetically distinct from C. muris and other previously described Cryptosporidium species.
Collapse
Affiliation(s)
- Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- * E-mail:
| | - Nikola Havrdová
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tereza Daňková
- Grammar School and High School of Economics, Vimperk, Czech Republic
| | - Jiří Kanděra
- Grammar School and High School of Economics, Vimperk, Czech Republic
| | - Jana Ježková
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Jiří Vítovec
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ynes Ortega
- Center for Food Safety, Department of Food Science & Technology, University of Georgia, Griffin, Georgia, United States of America
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David Modrý
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- CEITEC VFU, Brno, Czech Republic
| | | | - Veronika Prantlová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - John McEvoy
- Veterinary and Microbiological Sciences Department, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
11
|
Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:88-109. [PMID: 28560163 PMCID: PMC5439462 DOI: 10.1016/j.ijppaw.2015.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Collapse
|
12
|
Sak B, Petrželková KJ, Květoňová D, Mynářová A, Pomajbíková K, Modrý D, Cranfield MR, Mudakikwa A, Kváč M. Diversity of microsporidia, Cryptosporidium and Giardia in mountain gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda. PLoS One 2014; 9:e109751. [PMID: 25386754 PMCID: PMC4227647 DOI: 10.1371/journal.pone.0109751] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Infectious diseases represent the greatest threats to endangered species, and transmission from humans to wildlife under increased anthropogenic pressure has been always stated as a major risk of habituation. AIMS To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, one hundred mountain gorillas (Gorilla beringei beringei) from seven groups habituated either for tourism or for research in Volcanoes National Park, Rwanda were screened for the presence of microsporidia, Cryptosporidium spp. and Giardia spp. using molecular diagnostics. RESULTS The most frequently detected parasites were Enterocytozoon bieneusi found in 18 samples (including genotype EbpA, D, C, gorilla 2 and five novel genotypes gorilla 4-8) and Encephalitozoon cuniculi with genotype II being more prevalent (10 cases) compared to genotype I (1 case). Cryptosporidium muris (2 cases) and C. meleagridis (2 cases) were documented in great apes for the first time. Cryptosporidium sp. infections were identified only in research groups and occurrence of E. cuniculi in research groups was significantly higher in comparison to tourist groups. No difference in prevalence of E. bieneusi was observed between research and tourist groups. CONCLUSION Although our data showed the presence and diversity of important opportunistic protists in Volcanoes gorillas, the source and the routes of the circulation remain unknown. Repeated individual sampling, broad sampling of other hosts sharing the habitat with gorillas and quantification of studied protists would be necessary to acquire more complex data.
Collapse
Affiliation(s)
- Bohumil Sak
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
| | - Klára J. Petrželková
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
- Liberec Zoo, Liberec, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
| | - Anna Mynářová
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Kateřina Pomajbíková
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - David Modrý
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Michael R. Cranfield
- Gorilla Doctors, Karen C Drayer Wildlife Health Center, Davis, CA, United States of America
| | | | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
13
|
Chappell CL, Okhuysen PC, Langer-Curry RC, Lupo PJ, Widmer G, Tzipori S. Cryptosporidium muris: infectivity and illness in healthy adult volunteers. Am J Trop Med Hyg 2014; 92:50-5. [PMID: 25311695 DOI: 10.4269/ajtmh.14-0525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although Cryptosporidium parvum and C. hominis cause the majority of human cryptosporidiosis cases, other Cryptosporidium species are also capable of infecting humans, particularly when individuals are immunocompromised. Ten C. muris cases have been reported, primarily in human immunodeficiency virus (HIV) -positive patients with diarrhea. However, asymptomatic cases were reported in two HIV-negative children, and in another case, age and immune status were not described. This study examines the infectivity of C. muris in six healthy adults. Volunteers were challenged with 10(5) C. muris oocysts and monitored for 6 weeks for infection and/or illness. All six patients became infected. Two patients experienced a self-limited diarrheal illness. Total oocysts shed during the study ranged from 6.7 × 10(6) to 4.1 × 10(8), and the number was slightly higher in volunteers with diarrhea (2.8 × 10(8)) than asymptomatic shedders (4.4 × 10(7)). C. muris-infected subjects shed oocysts longer than occurred with other species studied in healthy volunteers. Three volunteers shed oocysts for 7 months. Physical examinations were normal, with no reported recurrence of diarrhea or other gastrointestinal complaints. Two persistent shedders were treated with nitazoxanide, and the infection was resolved. Thus, healthy adults are susceptible to C. muris, which can cause mild diarrhea and result in persistent, asymptomatic infection.
Collapse
Affiliation(s)
- Cynthia L Chappell
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Pablo C Okhuysen
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Rebecca C Langer-Curry
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Philip J Lupo
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Giovanni Widmer
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Saul Tzipori
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| |
Collapse
|
14
|
Karim MR, Zhang S, Jian F, Li J, Zhou C, Zhang L, Sun M, Yang G, Zou F, Dong H, Li J, Rume FI, Qi M, Wang R, Ning C, Xiao L. Multilocus typing of Cryptosporidium spp. and Giardia duodenalis from non-human primates in China. Int J Parasitol 2014; 44:1039-47. [PMID: 25148945 DOI: 10.1016/j.ijpara.2014.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022]
Abstract
Non-human primates (NHPs) are commonly infected with Cryptosporidium spp. and Giardia duodenalis. However, molecular characterisation of these pathogens from NHPs remains scarce. In this study, 2,660 specimens from 26 NHP species in China were examined and characterised by PCR amplification of 18S rRNA, 70kDa heat shock protein (hsp70) and 60kDa glycoprotein (gp60) gene loci for Cryptosporidium; and 1,386 of the specimens by ssrRNA, triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) gene loci for Giardia. Cryptosporidium was detected in 0.7% (19/2660) specimens of four NHP species including rhesus macaques (0.7%), cynomolgus monkeys (1.0%), slow lorises (10.0%) and Francois' leaf monkeys (6.7%), belonging to Cryptosporidium hominis (14/19) and Cryptosporidium muris (5/19). Two C. hominis gp60 subtypes, IbA12G3 and IiA17 were observed. Based on the tpi locus, G. duodenalis was identified in 2.2% (30/1,386) of specimens including 2.1% in rhesus macaques, 33.3% in Japanese macaques, 16.7% in Assam macaques, 0.7% in white-headed langurs, 1.6% in cynomolgus monkeys and 16.7% in olive baboons. Sequence analysis of the three targets indicated that all of the Giardia-positive specimens belonged to the zoonotic assemblage B. Highest sequence polymorphism was observed at the tpi locus, including 11 subtypes: three known and eight new ones. Phylogenetic analysis of the subtypes showed that most of them were close to the so-called subtype BIV. Intragenotypic variations at the gdh locus revealed six types of sequences (three known and three new), all of which belonged to so-called subtype BIV. Three specimens had co-infection with C. hominis (IbA12G3) and G. duodenalis (BIV). The presence of zoonotic genotypes and subtypes of Cryptosporidium spp. and G. duodenalis in NHPs suggests that these animals can potentially contribute to the transmission of human cryptosporidiosis and giardiasis.
Collapse
Affiliation(s)
- Md Robiul Karim
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiacheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunxiang Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingfei Sun
- Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
| | - Fengcai Zou
- College of Animal Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Haiju Dong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Li
- College of Animal Science &Technology, Guangxi University, Nanning 530004, China
| | - Farzana Islam Rume
- Department of Microbiology, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
15
|
Qi M, Huang L, Wang R, Xiao L, Xu L, Li J, Zhang L. Natural infection of Cryptosporidium muris in ostriches (Struthio camelus). Vet Parasitol 2014; 205:518-22. [PMID: 25178556 DOI: 10.1016/j.vetpar.2014.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/22/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
A total of 303 fecal samples were collected from ostriches (Struthio camelus) and 31 samples (10.2%) were Cryptosporidium-positive upon microscopic analysis. The infection rate was 27.6% in ostriches aged 16-60 days, 1.2% in those aged 61-180 days, and 20.4% in those aged >10 years. The Cryptosporidium-positive isolates were genotyped with a restriction fragment length polymorphism analysis and DNA sequence analysis of the small subunit (SSU) rRNA gene. The 22 isolates from ostriches aged >10 years were identified as Cryptosporidium muris, whereas the nine isolates from ostriches <180 days were Cryptosporidium baileyi. Ten of the 22 C. muris isolates were analyzed based on the actin and HSP70 genes, and the results were identical to those observed for the SSU rRNA gene. Cross-transmission studies demonstrated that the C. muris isolate infected BALB/c mice and Mongolian gerbils, but did not infect chickens. C. muris isolated in this study appears to be host-adapted, consistent with a previous multilocus sequence typing analysis. Further studies are required to understand the prevalence and transmission of Cryptosporidium spp. in ostriches in different geographic areas.
Collapse
Affiliation(s)
- Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Lei Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Lina Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China.
| |
Collapse
|
16
|
Pathological features of Cryptosporidium andersoni-induced lesions in SCID mice. Exp Parasitol 2013; 134:381-3. [DOI: 10.1016/j.exppara.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/21/2022]
|
17
|
Sasseville VG, Mansfield KG, Mankowski JL, Tremblay C, Terio KA, Mätz-Rensing K, Gruber-Dujardin E, Delaney MA, Schmidt LD, Liu D, Markovits JE, Owston M, Harbison C, Shanmukhappa S, Miller AD, Kaliyaperumal S, Assaf BT, Kattenhorn L, Macri SC, Simmons HA, Baldessari A, Sharma P, Courtney C, Bradley A, Cline JM, Reindel JF, Hutto DL, Montali RJ, Lowenstine LJ. Meeting report: Spontaneous lesions and diseases in wild, captive-bred, and zoo-housed nonhuman primates and in nonhuman primate species used in drug safety studies. Vet Pathol 2012; 49:1057-69. [PMID: 23135296 PMCID: PMC4034460 DOI: 10.1177/0300985812461655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The combination of loss of habitat, human population encroachment, and increased demand of select nonhuman primates for biomedical research has significantly affected populations. There remains a need for knowledge and expertise in understanding background findings as related to the age, source, strain, and disease status of nonhuman primates. In particular, for safety/biomedical studies, a broader understanding and documentation of lesions would help clarify background from drug-related findings. A workshop and a minisymposium on spontaneous lesions and diseases in nonhuman primates were sponsored by the concurrent Annual Meetings of the American College of Veterinary Pathologists and the American Society for Veterinary Clinical Pathology held December 3-4, 2011, in Nashville, Tennessee. The first session had presentations from Drs Lowenstine and Montali, pathologists with extensive experience in wild and zoo populations of nonhuman primates, which was followed by presentations of 20 unique case reports of rare or newly observed spontaneous lesions in nonhuman primates (see online files for access to digital whole-slide images corresponding to each case report at http://www.scanscope.com/ACVP%20Slide%20Seminars/2011/Primate%20Pathology/view.apml). The minisymposium was composed of 5 nonhuman-primate researchers (Drs Bradley, Cline, Sasseville, Miller, Hutto) who concentrated on background and spontaneous lesions in nonhuman primates used in drug safety studies. Cynomolgus and rhesus macaques were emphasized, with some material presented on common marmosets. Congenital, acquired, inflammatory, and neoplastic changes were highlighed with a focus on clinical, macroscopic, and histopathologic findings that could confound the interpretation of drug safety studies.
Collapse
Affiliation(s)
- V G Sasseville
- Novartis Institutes for Biomedical Research, 300 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Multilocus sequence subtyping and genetic structure of Cryptosporidium muris and Cryptosporidium andersoni. PLoS One 2012; 7:e43782. [PMID: 22937094 PMCID: PMC3427161 DOI: 10.1371/journal.pone.0043782] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/25/2012] [Indexed: 11/19/2022] Open
Abstract
In this study, nine C. muris and 43 C. andersoni isolates from various animals in China were subtyped by a multilocus sequence typing (MLST) tool. DNA sequence analyses showed the presence of 1–2 subtypes of C. muris and 2–6 subtypes of C. andersoni at each of the four loci (MS1, MS2, MS3, and MS16), nine of which represented new subtypes. Altogether, two C. muris and 10 C. andersoni MLST subtypes were detected. Linkage disequilibrium analysis indicated although the overall population structure of the two parasites was clonal, the Chinese C. andersoni in cattle has an epidemic structure. Three and two clusters were produced in the C. muris and C. andersoni populations by Structure 2.3.3 analysis, with Chinese C. muris and C. andersoni substructures differing from other countries. Thus, this study suggested the prevalence of C. andersoni in China is not attributed to the introduction of dairy cattle. More studies involving more genetic loci and systematic sampling are needed to better elucidate the population genetic structure of C. muris and C. andersoni in the world and the genetic basis for the difference in host specificity among the two most common gastric parasites.
Collapse
|
19
|
Development of a multilocus sequence tool for typing Cryptosporidium muris and Cryptosporidium andersoni. J Clin Microbiol 2010; 49:34-41. [PMID: 20980577 DOI: 10.1128/jcm.01329-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although widely used for the characterization of the transmission of intestinal Cryptosporidium spp., genotyping tools are not available for C. muris and C. andersoni, two of the most common gastric Cryptosporidium spp. infecting mammals. In this study, we screened the C. muris whole-genome sequencing data for microsatellite and minisatellite sequences. Among the 13 potential loci (6 microsatellite and 7 minisatellite loci) evaluated by PCR and DNA sequencing, 4 were eventually chosen. DNA sequence analyses of 27 C. muris and 17 C. andersoni DNA preparations showed the presence of 5 to 10 subtypes of C. muris and 1 to 4 subtypes of C. andersoni at each locus. Altogether, 11 C. muris and 7 C. andersoni multilocus sequence typing (MLST) subtypes were detected among the 16 C. muris and 12 C. andersoni specimens successfully sequenced at all four loci. In all analyses, the C. muris isolate (TS03) that originated from an East African mole rat differed significantly from other C. muris isolates, approaching the extent of genetic differences between C. muris and C. andersoni. Thus, an MLST technique was developed for the high-resolution typing of C. muris and C. andersoni. It should be useful for the characterization of the population genetics and transmission of gastric Cryptosporidium spp.
Collapse
|
20
|
Abstract
An approximately one-and-a-half-year-old, neutered male, mixed-breed dog was presented for a chronic history of vomiting. Profuse diarrhea was also noted during examination. An exploratory laparotomy was performed, bone chips were removed from the stomach, and a raised, circular area of gastric mucosa was biopsied. Histologically, there was severe gastric cryptosporidiosis as well as numerous spiral bacteria, consistent with Helicobacter spp. Polymerase chain reaction revealed visible bands for the 18S ribosomal RNA gene for Cryptosporidium spp. The polymerase chain reaction product was sequenced and was found to be most similar to Cryptosporidium muris. Both the gastric location and the species of Cryptosporidium are unusual in a dog.
Collapse
Affiliation(s)
- A. E. Ellis
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - C. A. Brown
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - D. L. Miller
- Tifton Veterinary Diagnostic and Investigational Laboratory, Tifton, Georgia
| |
Collapse
|
21
|
Plutzer J, Karanis P. Genetic polymorphism in Cryptosporidium species: an update. Vet Parasitol 2009; 165:187-99. [PMID: 19660869 DOI: 10.1016/j.vetpar.2009.07.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/29/2009] [Accepted: 07/02/2009] [Indexed: 11/17/2022]
Abstract
Cryptosporidia, widely distributed protozoan parasites of vertebrates, have attracted increasing interest due to several serious waterborne outbreaks, the life-threatening nature of infection in immunocompromised patients, and the realization of economic losses caused by these pathogens in livestock. Genetic polymorphism within Cryptosporidium species is being detected at a continuously growing rate, owing to the widespread use of modern molecular techniques. The aim of this paper is to review the current status of taxonomy, genotyping and molecular phylogeny of Cryptosporidium species. To this date, 20 Cryptosporidium species have been recognized. Two named species of Cryptosporidium have been found in fish, 1 in amphibians, 2 in reptiles, 3 in birds, and 12 in mammals. Nearly 61 Cryptosporidium genotypes with uncertain species status have been found based on SSUrRNA sequences. The gp-60 gene showed a high degree of sequence polymorphism among isolates of Cryptosporidium species and several subtype groups and subgenotypes have been identified, of which the Cryptosporidium parvum IIa and IId subtype groups were found to be zoonotic. This review describes considerable progress in the identification, genetic characterization, and strain differentiation of Cryptosporidium over the last 20 years. All the valid species, genotypes and zoonotic subtypes of Cryptosporidium reported in the international literature are included in this paper with respect to the taxonomy, epidemiology, transmission and morphologic-genetic information for each species.
Collapse
Affiliation(s)
- Judit Plutzer
- National Institute of Environmental Health, Department of Water Hygiene, Gyáli ut 2-6, Budapest H-1096, Hungary.
| | | |
Collapse
|
22
|
Fayer R. Taxonomy and species delimitation in Cryptosporidium. Exp Parasitol 2009; 124:90-7. [PMID: 19303009 DOI: 10.1016/j.exppara.2009.03.005] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/20/2009] [Accepted: 03/06/2009] [Indexed: 11/29/2022]
Abstract
Amphibians, reptiles, birds and mammals serve as hosts for 19 species of Cryptosporidium. All 19 species have been confirmed by morphological, biological, and molecular data. Fish serve as hosts for three additional species, all of which lack supporting molecular data. In addition to the named species, gene sequence data from more than 40 isolates from various vertebrate hosts are reported in the scientific literature or are listed in GenBank. These isolates lack taxonomic status and are referred to as genotypes based on the host of origin. Undoubtedly, some will eventually be recognized as species. For them to receive taxonomic status sufficient morphological, biological, and molecular data are required and names must comply with the rules of the International Code for Zoological Nomenclature (ICZN). Because the ICZN rules may be interpreted differently by persons proposing names, original names might be improperly assigned, original literature might be overlooked, or new scientific methods might be applicable to determining taxonomic status, the names of species and higher taxa are not immutable. The rapidly evolving taxonomic status of Cryptosporidium sp. reflects these considerations.
Collapse
Affiliation(s)
- Ronald Fayer
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
23
|
Kvác M, Sak B, Kvetonová D, Ditrich O, Hofmannová L, Modrý D, Vítovec J, Xiao L. Infectivity, pathogenicity, and genetic characteristics of mammalian gastric Cryptosporidium spp. in domestic ruminants. Vet Parasitol 2008; 153:363-7. [PMID: 18343038 DOI: 10.1016/j.vetpar.2008.01.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/15/2008] [Accepted: 01/23/2008] [Indexed: 11/27/2022]
Abstract
Farm ruminants were infected experimentally with four mammalian gastric Cryptosporidium, namely Cryptosporidium andersoni LI03 originated from cattle and three isolates of Cryptosporidium muris from brown rat (isolate RN66), Bactrian camel (isolate CB03) and firstly characterized isolate from East African mole rat (isolate TS03). Sequence characterizations of the small-subunit rRNA gene showed that the LI03 isolate was C. andersoni and the other three isolates belonged to C. muris, although the TS03 isolate showed unique sequence variations (one single nucleotide change and four nucleotide insertions). C. andersoni LI03 was infectious for calves only, whereas lambs and kids were susceptible to C. muris CB03. C. muris TS03 and RN66 were not infectious for any farm ruminants. Infection dynamics including prepatent and patent period and infection intensity of the isolates used differed depending on the host species, but no clinical signs of cryptosporidiosis were observed in any of experimentally infected hosts. Cryptosporidium developmental stages were only detected in infected animals in the abomasum region. Histopathological changes were characterized by dilatation and epithelial metaplasia of infected gastric glands with no significant inflammatory responses in the lamina propria.
Collapse
Affiliation(s)
- Martin Kvác
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Ceské Budejovice, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Xiao L, Fayer R, Ryan U, Upton SJ. Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev 2004; 17:72-97. [PMID: 14726456 PMCID: PMC321466 DOI: 10.1128/cmr.17.1.72-97.2004] [Citation(s) in RCA: 564] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has been an explosion of descriptions of new species of Cryptosporidium during the last two decades. This has been accompanied by confusion regarding the criteria for species designation, largely because of the lack of distinct morphologic differences and strict host specificity among Cryptosporidium spp. A review of the biologic species concept, the International Code of Zoological Nomenclature (ICZN), and current practices for Cryptosporidium species designation calls for the establishment of guidelines for naming Cryptosporidium species. All reports of new Cryptosporidium species should include at least four basic components: oocyst morphology, natural host specificity, genetic characterizations, and compliance with the ICZN. Altogether, 13 Cryptosporidium spp. are currently recognized: C. muris, C. andersoni, C. parvum, C. hominis, C. wrairi, C. felis, and C. cannis in mammals; C. baïleyi, C. meleagridis, and C. galli in birds; C. serpentis and C. saurophilum in reptiles; and C. molnari in fish. With the establishment of a framework for naming Cryptosporidium species and the availability of new taxonomic tools, there should be less confusion associated with the taxonomy of the genus Cryptosporidium. The clarification of Cryptosporidium taxonomy is also useful for understanding the biology of Cryptosporidium spp., assessing the public health significance of Cryptosporidium spp. in animals and the environment, characterizing transmission dynamics, and tracking infection and contamination sources.
Collapse
Affiliation(s)
- Lihua Xiao
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Chamblee, Georgia 30341, USA.
| | | | | | | |
Collapse
|
25
|
Kvác M, Vítovec J. Prevalence and pathogenicity of Cryptosporidium andersoni in one herd of beef cattle. ACTA ACUST UNITED AC 2004; 50:451-7. [PMID: 14633200 DOI: 10.1046/j.0931-1793.2003.00701.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over a 35-week period from January to July 2002, a breed of Hereford beef cattle (H) and their hybrids were monitored. Five hundred and ninety-nine individual fecal samples from calves and 96 samples from their mothers were examined. First excretion of Cryptosporidium andersoni oocysts in calves was found in the 9th week after the start of calving (a calf 63-day old). The prevalence of C. andersoni in calves ranged from 11.1 to 92.9% depending on age. The mean prevalence in their mothers was found to be 43.8%. The size of oocysts was 8.48 +/- 0.78 x 6.41 +/- 0.59 microm. Infection intensity in calves ranged from 32 000 to 4 375 000 oocysts per gram (OPG) and in mothers from 78 000 to 2 552 000 OPG. Three cases of abomasal cryptosporidiosis slaughtered at the age of 81, 157 and 236 days were examined histologically and ultrastructurally [transmission electron microscopy (TEM) and scanning electron microscopy (SEM)]. Cryptosporidium infection of the abomasum was located in the upper half of the mucosal glands in the plicae spirales of the fundus, corpus and near the ostium omasoabomasicum. Cryptosporidia were not located in the glandular epithelium of the pars pylorica in the abomasum minimally 10 cm from pylorus. Histopathological changes in the site of cryptosporidial infection in the abomasum had a non-inflammatory character and included distinctive dilatation of infected parts of the glands with atrophy and metaplasia of the glandular epithelial cells, goblet cell activation and mucus hyperproduction. The TEM revealed a relatively small number of Cryptosporidium life cycle stages attached to glandular epithelial cells. In SEM the inner mucosal abomasal surface appeared swollen but was never infected by cryptosporidia.
Collapse
Affiliation(s)
- M Kvác
- Department of Anatomy and Physiology of Farm Animals, Faculty of Agriculture, University of South Bohemia in Ceské Budejovice, Studentská 13, Ceské Budejovice 370 05, Czech Republic
| | | |
Collapse
|
26
|
Palmer CJ, Xiao L, Terashima A, Guerra H, Gotuzzo E, Saldías G, Bonilla JA, Zhou L, Lindquist A, Upton SJ. Cryptosporidium muris, a rodent pathogen, recovered from a human in Perú. Emerg Infect Dis 2003; 9:1174-6. [PMID: 14519260 PMCID: PMC3016761 DOI: 10.3201/eid0909.030047] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cryptosporidium muris, predominantly a rodent species of Cryptosporidium, is not normally considered a human pathogen. Recently, isolated human infections have been reported from Indonesia, Thailand, France, and Kenya. We report the first case of C. muris in a human in the Western Hemisphere. This species may be an emerging zoonotic pathogen capable of infecting humans.
Collapse
Affiliation(s)
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | - Ling Zhou
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alan Lindquist
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | | |
Collapse
|