1
|
Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res 2025; 12:13. [PMID: 40108680 PMCID: PMC11924829 DOI: 10.1186/s40779-025-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair. Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated, the intimate relationship between the central nervous system and bone remains less understood, yet it has emerged as a hot topic in the bone field. In this review, we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism, either intact or after injury. First, we explored mechanistic studies linking specific brain nuclei with bone homeostasis, including the ventromedial hypothalamus, arcuate nucleus, paraventricular hypothalamic nucleus, amygdala, and locus coeruleus. We then focused on the characteristics of bone innervation and nerve subtypes, such as sensory, sympathetic, and parasympathetic nerves. Moreover, we summarized the molecular features and regulatory functions of these nerves. Finally, we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration. Therefore, considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process, ultimately benefiting future clinical translation.
Collapse
Affiliation(s)
- Tong-Zhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zhe-Yu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Yue-Jun Lin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zi-Yi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Sha Tin, 999077, Hong Kong, China.
| |
Collapse
|
2
|
Wei X, Li M, You J, Luo J, Zhai J, Zhang J, Feng J, Wang H, Zhou Y. A Procedural Overview of the Involvement of Small Molecules in the Nervous System in the Regulation of Bone Healing. Int J Nanomedicine 2025; 20:1263-1284. [PMID: 39906525 PMCID: PMC11792627 DOI: 10.2147/ijn.s505677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Clinically, a multitude of factors can contribute to the development of bone defects. In the process of bone healing, the nervous system plays a vital role in bone regeneration. Small molecules from the nervous system, such as neurotrophic factors and neuropeptides, have been found to stimulate osteoblast proliferation and differentiation by activating signaling pathways associated with bone calcification and angiogenesis. These small molecules play a crucial regulatory role at various stages of bone healing. The systematic release mechanism of small molecules within the nervous system through diverse bone tissue engineering materials holds significant clinical implications for the controlled regulation of the bone healing process. This review provides an overview of the involvement of various nervous system small molecules at different stages of bone healing and discusses their regulatory mechanisms, aiming to establish a theoretical foundation for programmed regulation in bone regeneration and design of replacement materials in bone tissue engineering.
Collapse
Affiliation(s)
- Xuyan Wei
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mucong Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Feng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
3
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Chen W, Ma L, Sun W, Xiao W, Guo H, Xiu J, Jiang X. CGRP promotes osteogenic differentiation by regulating macrophage M2 polarization through HDAC6/AKAP12 signaling pathway. Regen Med 2024; 19:379-391. [PMID: 39072399 PMCID: PMC11370908 DOI: 10.1080/17460751.2024.2370697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: To determine the mechanism of Calcitonin gene-related peptide (CGRP) in bone healing.Materials & methods: Alkaline phosphatase (ALP) activity and inflammatory-factor levels were detected using ELISA. Osteogenic differentiation was assessed using Alizarin red staining technique. The interaction between histone deacetylase 6 (HDAC6) and A-kinase anchoring protein 12 (AKAP12) was investigated through Co- immunoprecipitation.Results: CGRP treatment promoted rat bone marrow-derived macrophages (BMDMs) M2 polarization. CGRP facilitated osteogenic differentiation by enhancing M2 polarization of BMDMs. Mechanistically, CGRP promoted AKAP12 acetylation to activate the extracellular regulated protein kinases pathway by HDAC6 inhibition.Conclusion: CGRP promoted M2 polarization of rat BMDMs and facilitated osteogenic differentiation through the HDAC6/AKAP12/extracellular regulated protein kinases signaling pathway, thereby promoting bone healing.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Pathology, Qiqihar First Hospital, Qiqihar, 161005, Helongjiang Province, PR China
| | - Lin Ma
- Department of Anesthesiology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Wencai Sun
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Wenlong Xiao
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Hao Guo
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Jiang Xiu
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| | - Xin Jiang
- The Fifth department of Orthopaedics & Traumatology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, Helongjiang Province, PR China
| |
Collapse
|
5
|
Damiati LA, El Soury M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review. Front Med (Lausanne) 2024; 11:1386683. [PMID: 38690172 PMCID: PMC11059066 DOI: 10.3389/fmed.2024.1386683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Neuro bone tissue engineering is a multidisciplinary field that combines both principles of neurobiology and bone tissue engineering to develop innovative strategies for repairing and regenerating injured bone tissues. Despite the fact that regeneration and development are considered two distinct biological processes, yet regeneration can be considered the reactivation of development in later life stages to restore missing tissues. It is noteworthy that the regeneration capabilities are distinct and vary from one organism to another (teleost fishes, hydra, humans), or even in the same organism can vary dependent on the injured tissue itself (Human central nervous system vs. peripheral nervous system). The skeletal tissue is highly innervated, peripheral nervous system plays a role in conveying the signals and connecting the central nervous system with the peripheral organs, moreover it has been shown that they play an important role in tissue regeneration. Their regeneration role is conveyed by the different cells' resident in it and in its endoneurium (fibroblasts, microphages, vasculature associated cells, and Schwann cells) these cells secrete various growth factors (NGF, BDNF, GDNF, NT-3, and bFGF) that contribute to the regenerative phenotype. The peripheral nervous system and central nervous system synchronize together in regulating bone homeostasis and regeneration through neurogenic factors and neural circuits. Receptors of important central nervous system peptides such as Serotonin, Leptin, Semaphorins, and BDNF are expressed in bone tissue playing a role in bone homeostasis, metabolism and regeneration. This review will highlight the crosstalk between peripheral nerves and bone in the developmental stages as well as in regeneration and different neuro-bone tissue engineering strategies for repairing severe bone injuries.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
6
|
Jiang S, Xie W, Knapstein PR, Donat A, Albertsen LC, Sevecke J, Erdmann C, Appelt J, Fuchs M, Hildebrandt A, Maleitzke T, Frosch KH, Baranowsky A, Keller J. Transcript-dependent effects of the CALCA gene on the progression of post-traumatic osteoarthritis in mice. Commun Biol 2024; 7:223. [PMID: 38396204 PMCID: PMC10891124 DOI: 10.1038/s42003-024-05889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis represents a chronic degenerative joint disease with exceptional clinical relevance. Polymorphisms of the CALCA gene, giving rise to either a procalcitonin/calcitonin (PCT/CT) or a calcitonin gene-related peptide alpha (αCGRP) transcript by alternative splicing, were reported to be associated with the development of osteoarthritis. The objective of this study was to investigate the role of both PCT/CT and αCGRP transcripts in a mouse model of post-traumatic osteoarthritis (ptOA). WT, αCGRP-/- and CALCA-/- mice were subjected to anterior cruciate ligament transection (ACLT) to induce ptOA of the knee. Mice were sacrificed 4 and 8 weeks post-surgery, followed by micro-CT and histological evaluation. Here we show that the expression of both PCT/CT and αCGRP transcripts is induced in ptOA knees. CALCA-/- mice show increased cartilage degeneration and subchondral bone loss with elevated osteoclast numbers compared to αCGRP-/- and WT mice. Osteophyte formation is reduced to the same extent in CALCA-/- and αCGRP-/- mice compared to WT controls, while a reduced synovitis score is noticed exclusively in mice lacking CALCA. Our data show that expression of the PCT/CT transcript protects from the progression of ptOA, while αCGRP promotes osteophyte formation, suggesting that CALCA-encoded peptides may represent novel targets for the treatment of ptOA.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilly-Charlotte Albertsen
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sevecke
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Appelt
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Melanie Fuchs
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Alexander Hildebrandt
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma Surgery, Orthopedics and Sports Traumatology, BG Hospital Hamburg, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
7
|
Miki K, Takeshita N, Yamashita M, Kitamura M, Murakami S. Calcitonin gene-related peptide regulates periodontal tissue regeneration. Sci Rep 2024; 14:1344. [PMID: 38228723 PMCID: PMC10791604 DOI: 10.1038/s41598-024-52029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide composed of 37 amino acids secreted from the sensory nerve endings, reportedly possesses various physiological effects, such as vasodilation and neurotransmission. Recently, there have been increasing reports of the involvement of CGRP in bone metabolism; however, its specific role in the pathogenesis of periodontitis, particularly in the repair and healing processes, remains to be elucidated. Therefore, this study aimed to investigate dynamic expression patterns of CGRP during the destruction and regeneration processes of periodontal tissues in a mouse model of experimental periodontitis. We also explored the effects of CGRP on periodontal ligament cells, which can differentiate to hard tissue-forming cells (cementoblasts or osteoblasts). Our findings demonstrated that CGRP stimulation promotes the differentiation of periodontal ligament cells into hard tissue-forming cells. Experimental results using a ligature-induced periodontitis mouse model also suggested fluctuations in CGRP expression during periodontal tissue healing, underscoring the vital role of CGRP signaling in alveolar bone recovery. The study results highlight the important role of nerves in the periodontal ligament not only in sensory reception in the periphery, as previously known, but also in periodontal tissue homeostasis and tissue repair processes.
Collapse
Affiliation(s)
- Koji Miki
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Noboru Takeshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motozo Yamashita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Gollamudi J, Karkoska KA, Gbotosho OT, Zou W, Hyacinth HI, Teitelbaum SL. A bone to pick-cellular and molecular mechanisms of bone pain in sickle cell disease. FRONTIERS IN PAIN RESEARCH 2024; 4:1302014. [PMID: 38239327 PMCID: PMC10794347 DOI: 10.3389/fpain.2023.1302014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
The bone is one of the most commonly affected organs in sickle cell disease (SCD). Repeated ischemia, oxidative stress and inflammation within the bone is largely responsible for promoting bone pain. As more individuals with SCD survive into adulthood, they are likely to experience a synergistic impact of both aging and SCD on their bone health. As bone health deteriorates, bone pain will likely exacerbate. Recent mechanistic and observational studies emphasize an intricate relationship between bone remodeling and the peripheral nervous system. Under pathological conditions, abnormal bone remodeling plays a key role in the propagation of bone pain. In this review, we first summarize mechanisms and burden of select bone complications in SCD. We then discuss processes that contribute to pathological bone pain that have been described in both SCD as well as non-sickle cell animal models. We emphasize the role of bone-nervous system interactions and pitfalls when designing new therapies especially for the sickle cell population. Lastly, we also discuss future basic and translational research in addressing questions about the complex role of stress erythropoiesis and inflammation in the development of SCD bone complications, which may lead to promising therapies and reduce morbidity in this vulnerable population.
Collapse
Affiliation(s)
- Jahnavi Gollamudi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristine A Karkoska
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Oluwabukola T Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wei Zou
- Department of Medicine, Division of Bone and Mineral Diseases, and Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, and Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Thai J, Fuller‐Jackson J, Ivanusic JJ. Using tissue clearing and light sheet fluorescence microscopy for the three-dimensional analysis of sensory and sympathetic nerve endings that innervate bone and dental tissue of mice. J Comp Neurol 2024; 532:e25582. [PMID: 38289188 PMCID: PMC10952626 DOI: 10.1002/cne.25582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
Bone and dental tissues are richly innervated by sensory and sympathetic neurons. However, the characterization of the morphology, molecular phenotype, and distribution of nerves that innervate hard tissue has so far mostly been limited to thin histological sections. This approach does not adequately capture dispersed neuronal projections due to the loss of important structural information during three-dimensional (3D) reconstruction. In this study, we modified the immunolabeling-enabled imaging of solvent-cleared organs (iDISCO/iDISCO+) clearing protocol to image high-resolution neuronal structures in whole femurs and mandibles collected from perfused C57Bl/6 mice. Axons and their nerve terminal endings were immunolabeled with antibodies directed against protein gene product 9.5 (pan-neuronal marker), calcitonin gene-related peptide (peptidergic nociceptor marker), or tyrosine hydroxylase (sympathetic neuron marker). Volume imaging was performed using light sheet fluorescence microscopy. We report high-quality immunolabeling of the axons and nerve terminal endings for both sensory and sympathetic neurons that innervate the mouse femur and mandible. Importantly, we are able to follow their projections through full 3D volumes, highlight how extensive their distribution is, and show regional differences in innervation patterns for different parts of each bone (and surrounding tissues). Mapping the distribution of sensory and sympathetic axons, and their nerve terminal endings, in different bony compartments may be important in further elucidating their roles in health and disease.
Collapse
Affiliation(s)
- Jenny Thai
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Jason J. Ivanusic
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
10
|
Hildebrandt A, Dietrich T, Weber J, Günderoth MM, Zhou S, Fleckenstein FN, Jiang S, Winkler T, Duda GN, Tsitsilonis S, Keller J, Maleitzke T. The dual pro-inflammatory and bone-protective role of calcitonin gene-related peptide alpha in age-related osteoarthritis. Arthritis Res Ther 2023; 25:244. [PMID: 38102666 PMCID: PMC10722726 DOI: 10.1186/s13075-023-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The vasoactive neuropeptide calcitonin gene-related peptide alpha (αCGRP) enhances nociception in primary knee osteoarthritis (OA) and has been shown to disrupt cartilage and joint integrity in experimental rheumatoid arthritis (RA). Little is known about how αCGRP may alter articular structures in primary OA. We investigated whether αCGRP modulates local inflammation and concomitant cartilage and bone changes in a murine model of age-dependent OA. METHODS Sixteen- to 18-month-old αCGRP-deficient mice (αCGRP-/-aged) were compared to, first, age-matched wild type (WTaged) and, second, young 4- to 5-month-old non-OA αCGRP-deficient (αCGRP-/-CTRL) and non-OA WT animals (WTCTRL). αCGRP levels were measured in serum. Knee and hip joint inflammation, cartilage degradation, and bone alterations were assessed by histology (OARSI histopathological grading score), gene expression analysis, and µ-computed tomography. RESULTS WTaged mice exhibited elevated αCGRP serum levels compared to young WTCTRL animals. Marked signs of OA-induced cartilage destruction were seen in WTaged animals, while αCGRP-/-aged mice were mostly protected from this effect. Age-dependent OA was accompanied by an increased gene expression of pro-inflammatory Tnfa, Il1b, and Il6 and catabolic Mmp13, Adamts5, Ctsk, Tnfs11 (Rankl), and Cxcl12/Cxcr4 in WTaged but not in αCGRP-/-aged mice. αCGRP-deficiency however further aggravated subchondral bone sclerosis of the medial tibial plateau and accelerated bone loss in the epi- and metaphyseal trabecular tibial bone in age-dependent OA. CONCLUSIONS Similar to its function in experimental RA, αCGRP exerts a dual pro-inflammatory and bone-protective function in murine primary OA. Although anti-CGRP treatment was previously not successful in reducing pain in OA clinically, these data underline a crucial pathophysiological role of αCGRP in age-related OA.
Collapse
Affiliation(s)
- Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Tamara Dietrich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Jérôme Weber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Mara Meyer Günderoth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Sijia Zhou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Florian N Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Winkler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany.
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Nekomoto A, Nakasa T, Ikuta Y, Ding C, Miyaki S, Adachi N. Feasibility of administration of calcitonin gene-related peptide receptor antagonist on attenuation of pain and progression in osteoarthritis. Sci Rep 2023; 13:15354. [PMID: 37717108 PMCID: PMC10505157 DOI: 10.1038/s41598-023-42673-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Suppressing inflammation and abnormal subchondral bone turnover is essential for reducing osteoarthritis (OA) progression and pain relief. This study focused on calcitonin gene-related peptide (CGRP), which is involved in inflammation and bone metabolism, and investigated whether a CGRP receptor antagonist (rimegepant) could suppress OA progression and relieve pain in two OA models. C57BL/6 mice (10-week-old) underwent surgical destabilization of the medial meniscus, and Rimegepant (1.0 mg/kg/100 μL) or phosphate-buffered saline (100 μL) was administered weekly intraperitoneally after OA surgery and evaluated at 4, 8, and 12 weeks. In the senescence-accelerated mice (SAM)-prone 8 (SAMP8), rimegepant was administered weekly before and after subchondral bone sclerosis and sacrificed at 9 and 23 weeks, respectively. Behavioral assessment and immunohistochemical staining (CGRP) of the dorsal root ganglion (DRG) were conducted to assess pain. In DMM mice, synovitis, cartilage degeneration, and osteosclerosis were significantly suppressed in the rimegepant group. In SAMP8, synovitis, cartilage degeneration, and osteosclerosis were significantly suppressed by rimegepant at 9 weeks; however, not at 23 weeks. Behavioral assessment shows the traveled distance and the number of standings in the rimegepant group were significantly longer and higher. In addition, CGRP expression of the DRG was significantly lower in the rimegepant group at 8 and 12 weeks of DMM and 9 weeks of SAMP8 treatment. No adverse effects were observed in either of the mouse models. Inhibition of CGRP signaling has the potential to be a therapeutic target to prevent OA progression and suppress pain through the attenuation of subchondral bone sclerosis and synovitis.
Collapse
Affiliation(s)
- Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan.
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| |
Collapse
|
12
|
Wee NKY, Novak S, Ghosh D, Root SH, Dickerson IM, Kalajzic I. Inhibition of CGRP signaling impairs fracture healing in mice. J Orthop Res 2023; 41:1228-1239. [PMID: 36281531 PMCID: PMC10123175 DOI: 10.1002/jor.25474] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by sensory nerves and functions as a pain sensor. It acts by binding to the calcitonin-like receptor (CLR, protein; Calcrl, gene). CGRP inhibition has been recently introduced as therapeutic treatment of migraine-associated pain. Previous studies have shown that CGRP stimulates bone formation. The aim of our study is to determine whether the inhibition of CGRP signaling negatively impacted fracture healing. Using α-smooth muscle actin (αSMA) Cre animals crossed with Ai9 reporter mice, we showed that CGRP-expressing nerves are near αSMA + cells in the periosteum. In vitro experiments revealed that periosteal cells express Calcrl and receptor activity modifying protein 1; and CGRP stimulation increased periosteal cell proliferation. Using a tamoxifen-inducible model αSMACre/CLRfl/fl , we targeted the deletion of CLR to periosteal progenitor cells and examined fracture healing. Microcomputed tomography of fractured femurs showed a reduction in bone mass in αSMACre+/CLRfl/fl female mice relative to controls and callus volume in males. Pharmacological CGRP-CLR inhibition was achieved by subcutaneous delivery of customized pellets with small molecule inhibitor olcegepant (BIBN-4096) at a dose of 10 μg/day. BIBN-4096-treated C57BL/6J mice had a higher latency toward thermal nociception than placebo-treated mice, indicating impaired sensory function through CGRP inhibition. CGRP inhibition also resulted in reduced callus volume, bone mass, and bone strength compared to placebo controls. These results indicate that inhibiting CGRP by deleting CLR or by using BIBN-4096, contributes to delayed bone healing.
Collapse
Affiliation(s)
- Natalie KY Wee
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Bone Cell Biology and Disease Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Sanja Novak
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sierra H Root
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ian M Dickerson
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
13
|
Wang Q, Qin H, Deng J, Xu H, Liu S, Weng J, Zeng H. Research Progress in Calcitonin Gene-Related Peptide and Bone Repair. Biomolecules 2023; 13:biom13050838. [PMID: 37238709 DOI: 10.3390/biom13050838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) has 37 amino acids. Initially, CGRP had vasodilatory and nociceptive effects. As research progressed, evidence revealed that the peripheral nervous system is closely associated with bone metabolism, osteogenesis, and bone remodeling. Thus, CGRP is the bridge between the nervous system and the skeletal muscle system. CGRP can promote osteogenesis, inhibit bone resorption, promote vascular growth, and regulate the immune microenvironment. The G protein-coupled pathway is vital for its effects, while MAPK, Hippo, NF-κB, and other pathways have signal crosstalk, affecting cell proliferation and differentiation. The current review provides a detailed description of the bone repair effects of CGRP, subjected to several therapeutic studies, such as drug injection, gene editing, and novel bone repair materials.
Collapse
Affiliation(s)
- Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Clinical Medicine, Department of Medicine, Shenzhen University, Shenzhen 518061, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huihui Xu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| |
Collapse
|
14
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
15
|
Asada N, Katayama Y. A mysterious triangle of blood, bones, and nerves. J Bone Miner Metab 2023; 41:404-414. [PMID: 36752904 DOI: 10.1007/s00774-023-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
The relationship between bone tissue and bone marrow, which is responsible for hematopoiesis, is inseparable. Osteoblasts and osteocytes, which produce and consist of bone tissue, regulate the function of hematopoietic stem cells (HSC), the ancestors of all hematopoietic cells in the bone marrow. The peripheral nervous system finely regulates bone remodeling in bone tissue and modulates HSC function within the bone marrow, either directly or indirectly via modification of the HSC niche function. Peripheral nerve signals also play an important role in the development and progression of malignant tumors (including hematopoietic tumors) and normal tissues, and peripheral nerve control is emerging as a potential new therapeutic target. In this review, we summarize recent findings on the linkage among blood system, bone tissue, and peripheral nerves.
Collapse
Affiliation(s)
- Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yoshio Katayama
- Division of Hematology, Department of Medicine, Kobe University Hospital, 7-5-2 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
16
|
Wank I, Niedermair T, Kronenberg D, Stange R, Brochhausen C, Hess A, Grässel S. Influence of the Peripheral Nervous System on Murine Osteoporotic Fracture Healing and Fracture-Induced Hyperalgesia. Int J Mol Sci 2022; 24:510. [PMID: 36613952 PMCID: PMC9820334 DOI: 10.3390/ijms24010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP -/-), SP-deficient (Tac1-/-) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures.
Collapse
Affiliation(s)
- Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149 Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149 Münster, Germany
| | | | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Susanne Grässel
- Centre for Medical Biotechnology (ZMB), Department of Orthopedic Surgery, Experimental Orthopedics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Basedau H, Oppermann T, Gundelwein Silva E, Peng KP, May A. Galcanezumab modulates Capsaicin-induced C-fiber reactivity. Cephalalgia 2022; 42:1331-1338. [PMID: 35796521 PMCID: PMC9638712 DOI: 10.1177/03331024221112906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The vasodilatory calcitonin-gene related peptide (CGRP) is understood as
pivotal mediator in migraine pathophysiology. Blocking CGRP with small
molecules or monoclonal antibodies (CGRP-mAb) reduces migraine frequency.
However, prescription of CGRP-mAbs is still regulated and possible
predictive measures of therapeutic success would be useful. Methods Using standardized capsaicin-induced dermal blood flow model, 29 migraine
patients underwent a laser speckle imaging measurement before and after
administration of galcanezumab. At both sessions dermal blood flow before
and after capsaicin stimulation as well as flare size were analyzed over all
three trigeminal branches and the volar forearm for extracranial control.
Long-term measures were repeated in 14 patients after continuous treatment
ranging from 6 to 12 months. Results Resting dermal blood flow remained unchanged after administration of
galcanezumab. Capsaicin-induced dermal blood flow decreased significantly
after CGRP-mAb in all tested areas compared to baseline and this was
consistent even after 12 months of treatment. However, following
galcanezumab administration, the flare size decreased only in the three
trigeminal dermatomes, not the arm and was therefore specific for the
trigemino-vascular system. None of these two markers distinguished between
responders and non-responders. Conclusion CGRP-mAb changed blood flow response to capsaicin stimulation profoundly and
this effect did not change over a 12-month application. Neither
capsaicin-induced flare nor dermal blood flow can be used as a predictor for
treatment efficacy. These data suggest that the mechanism of headache
development in migraine is not entirely CGRP-mediated.
Collapse
Affiliation(s)
- Hauke Basedau
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thalea Oppermann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisa Gundelwein Silva
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kuan-Po Peng
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Rizzo MG, Palermo N, D’Amora U, Oddo S, Guglielmino SPP, Conoci S, Szychlinska MA, Calabrese G. Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering. Int J Mol Sci 2022; 23:ijms23137388. [PMID: 35806393 PMCID: PMC9266819 DOI: 10.3390/ijms23137388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-β and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Nicoletta Palermo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials—National Research Council, Viale J. F. Kennedy 54, Mostra d’Oltremare, Pad. 20, 80125 Naples, Italy;
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Correspondence: (S.C.); (G.C.)
| | - Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Correspondence: (S.C.); (G.C.)
| |
Collapse
|
19
|
Sun Q, Li G, Liu D, Xie W, Xiao W, Li Y, Cai M. Peripheral nerves in the tibial subchondral bone : the role of pain and homeostasis in osteoarthritis. Bone Joint Res 2022; 11:439-452. [PMID: 35775136 PMCID: PMC9350689 DOI: 10.1302/2046-3758.117.bjr-2021-0355.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain. Cite this article: Bone Joint Res 2022;11(7):439–452.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Gen Li
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Baranowsky A, Jahn D, Jiang S, Yorgan T, Ludewig P, Appelt J, Albrecht KK, Otto E, Knapstein P, Donat A, Winneberger J, Rosenthal L, Köhli P, Erdmann C, Fuchs M, Frosch KH, Tsitsilonis S, Amling M, Schinke T, Keller J. Procalcitonin is expressed in osteoblasts and limits bone resorption through inhibition of macrophage migration during intermittent PTH treatment. Bone Res 2022; 10:9. [PMID: 35087025 PMCID: PMC8795393 DOI: 10.1038/s41413-021-00172-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Intermittent injections of parathyroid hormone (iPTH) are applied clinically to stimulate bone formation by osteoblasts, although continuous elevation of parathyroid hormone (PTH) primarily results in increased bone resorption. Here, we identified Calca, encoding the sepsis biomarker procalcitonin (ProCT), as a novel target gene of PTH in murine osteoblasts that inhibits osteoclast formation. During iPTH treatment, mice lacking ProCT develop increased bone resorption with excessive osteoclast formation in both the long bones and axial skeleton. Mechanistically, ProCT inhibits the expression of key mediators involved in the recruitment of macrophages, representing osteoclast precursors. Accordingly, ProCT arrests macrophage migration and causes inhibition of early but not late osteoclastogenesis. In conclusion, our results reveal a potential role of osteoblast-derived ProCT in the bone microenvironment that is required to limit bone resorption during iPTH.
Collapse
Affiliation(s)
- Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Kai K Albrecht
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Ellen Otto
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Paul Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jack Winneberger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Lana Rosenthal
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Paul Köhli
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Melanie Fuchs
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany. .,Berlin Institute of Health, Berlin, 10178, Germany.
| |
Collapse
|
21
|
Torres-Rodríguez HF, Graniel-Amador MA, Cruz-Camacho CJ, Cantú-Martínez AA, Martínez-Martínez A, Petricevich VL, Montes S, Castañeda-Corral G, Jiménez-Andrade JM. Characterization of pain-related behaviors, changes in bone microarchitecture and sensory innervation induced by chronic cadmium exposure in adult mice. Neurotoxicology 2022; 89:99-109. [PMID: 35065951 DOI: 10.1016/j.neuro.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
|
22
|
Liu S, Chen T, Wang R, Huang H, Fu S, Zhao Y, Wang S, Wan L. Exploring the effect of the "quaternary regulation" theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis" on osteoporosis based on neuropeptides. Front Endocrinol (Lausanne) 2022; 13:908043. [PMID: 35983518 PMCID: PMC9379541 DOI: 10.3389/fendo.2022.908043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a common bone metabolic disease among the middle-aged and elderly, with its high incidence rate and a major cause of disability and mortality. Early studies found that bone metabolic homeostasis is achieved through osteogenesis-osteoclast coupling. Although current anti-osteoporosis drugs can attenuate bone loss caused by aging, they present specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014, the effect of H-type blood vessels on bone metabolism has been valued by researchers, and the ternary regulation theory of bone metabolism of "Angiogenesis-Osteoclast-Osteogenesis" has also been recognized. Nowadays, more studies have confirmed that peripheral nerves substantially impact bone metabolism. However, due to the complex function of peripheral nerves, the crosstalk mechanism of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis" has not yet been fully revealed. Neuropeptide serves as signaling molecules secreted by peripheral nerves that regulate blood vessels, osteoblasts, and osteoclasts' functions. It is likely to be the breakthrough point of the quaternary regulation theory of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis". Here, we discuss the effect of peripheral nerves on osteoporosis based on neuropeptides.
Collapse
Affiliation(s)
- Shuhua Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongying Chen
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Wang
- Department of Nephrology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai Fu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lei Wan,
| |
Collapse
|
23
|
Kondo H, Kondo M, Hayashi K, Kusafuka S, Hamamura K, Tanaka K, Kodama D, Hirai T, Sato T, Ariji Y, Miyazawa K, Ariji E, Goto S, Togari A. Orthodontic tooth movement-activated sensory neurons contribute to enhancing osteoclast activity and tooth movement through sympathetic nervous signalling. Eur J Orthod 2021; 44:404-411. [PMID: 34642757 DOI: 10.1093/ejo/cjab072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Orthodontic tooth movement (OTM) increases sympathetic and sensory neurological markers in periodontal tissue. However, the relationship between the sympathetic and sensory nervous systems during OTM remains unclear. Therefore, the present study investigated the relationship between the sympathetic and sensory nervous systems activated by OTM using pharmacological methods. MATERIALS AND METHODS We compared the effects of sympathectomy and sensory nerve injury during OTM in C57BL6/J mice. Capsaicin (CAP) was used to induce sensory nerve injury. Sympathectomy was performed using 6-hydroxydopamine. To investigate the effects of a β-agonist on sensory nerve injury, isoproterenol (ISO) was administered to CAP-treated mice. Furthermore, to examine the role of the central nervous system in OTM, the ventromedial hypothalamic nucleus (VMH) was ablated using gold thioglucose. RESULTS Sensory nerve injury and sympathectomy both suppressed OTM and decreased the percent of the alveolar socket covered with osteoclasts (Oc.S/AS) in periodontal tissue. Sensory nerve injury inhibited increases in OTM-induced calcitonin gene-related peptide (CGRP) immunoreactivity (IR), a marker of sensory neurons, and tyrosine hydroxylase (TH) IR, a marker of sympathetic neurons, in periodontal tissue. Although sympathectomy did not decrease the number of CGRP-IR neurons in periodontal tissue, OTM-induced increases in the number of TH-IR neurons were suppressed. The ISO treatment restored sensory nerve injury-inhibited tooth movement and Oc.S/AS. Furthermore, the ablation of VMH, the centre of the sympathetic nervous system, suppressed OTM-induced increases in tooth movement and Oc.S/AS. CONCLUSIONS The present results suggest that OTM-activated sensory neurons contribute to enhancements in osteoclast activity and tooth movement through sympathetic nervous signalling.
Collapse
Affiliation(s)
- Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Mayo Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kaori Hayashi
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Sae Kusafuka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kenjiro Tanaka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Daisuke Kodama
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takao Hirai
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Yoshiko Ariji
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Eiichiro Ariji
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
24
|
Chen H, Lu H, Huang J, Wang Z, Chen Y, Zhang T. Calcitonin Gene-Related Peptide Influences Bone-Tendon Interface Healing Through Osteogenesis: Investigation in a Rabbit Partial Patellectomy Model. Orthop J Sports Med 2021; 9:23259671211003982. [PMID: 34345631 PMCID: PMC8280850 DOI: 10.1177/23259671211003982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/12/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Calcitonin gene-related peptide (CGRP), which has been shown to play an
important role in osteogenesis during fracture repair, is also widely
distributed throughout the tendon and ligament. Few studies have focused on
the role of CGRP in repair of the bone-tendon interface (BTI). Purpose: To explore the effect of CGRP expression on BTI healing in a rabbit partial
patellectomy model. Study Design: Controlled laboratory study. Methods: A total of 60 mature rabbits were subjected to a partial patellectomy and
then randomly assigned to CGRP, CGRP-antagonist, and control groups. In the
CGRP-antagonist group, the CGRP receptor antagonist BIBN4096BS was
administered to block CGRP receptors. The patella–patellar tendon complex
was harvested at 8 and 16 weeks postoperatively and subjected to
radiographic, microlaser Raman spectroscopy, histologic, and biomechanical
evaluation. Results: Radiographic data showed that local CGRP expression improved the growth
parameters of newly formed bone, including area and volumetric bone mineral
density (P < .05 for both). Raman spectroscopy revealed
that the relative bone mineral composition increased in the CGRP group
compared with in the control group and the CGRP-antagonist group
(P < .05 for both). Histologic testing revealed that
the CGRP group demonstrated better integration, characterized by
well-developed trabecular bone expansion from the residual patella and
marrow cavity formation, at the 8- and 16-week time points. Mechanical
testing demonstrated that the failure load, ultimate strength, and stiffness
in the CGRP group were significantly higher than those in the control group
(P < .05 for all), whereas these parameters in the
CGRP-antagonist group were significantly lower compared with those in the
control group at 16 weeks after surgery (P < .05 for
all). Conclusion: Increasing the local concentration of CGRP in the early stages of BTI healing
enhanced osteogenesis in a rabbit partial patellectomy model and promoted
healing of the BTI injury, whereas treatment using a CGRP antagonist had the
opposite effect. However, exogenous CGRP expression did not induce novel
bone remolding. Clinical Relevance: CGRP may have potential as a new therapy for BTI injuries or may be added to
postoperative regimens to facilitate healing.
Collapse
Affiliation(s)
- Huabin Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Jianjun Huang
- Department of Orthopaedics, Ningde Affiliated Hospital, Fujian Medical University, Ningde, Fujian, People's Republic of China
| | - Zhanwen Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, People's Republic of China
| |
Collapse
|
25
|
Maleitzke T, Hildebrandt A, Weber J, Dietrich T, Appelt J, Jahn D, Zocholl D, Baranowsky A, Duda GN, Tsitsilonis S, Keller J. Proinflammatory and bone protective role of calcitonin gene-related peptide alpha in collagen antibody-induced arthritis. Rheumatology (Oxford) 2021; 60:1996-2009. [PMID: 33221885 DOI: 10.1093/rheumatology/keaa711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Calcitonin gene-related peptide alpha (αCGRP) represents an immunomodulatory neuropeptide implicated in pain perception. αCGRP also functions as a critical regulator of bone formation and is overexpressed in patients with rheumatoid arthritis (RA). In the present study, we investigated the role of αCGRP in experimental RA regarding joint inflammation and bone remodelling. METHODS Collagen II-antibody-induced arthritis (CAIA) was induced in wild type (WT) and αCGRP-deficient (αCGRP-/-) mice. Animals were monitored over 10 and 48 days with daily assessments of the semiquantitative arthritis score and grip strength test. Joint inflammation, cartilage degradation and bone erosions were assessed by histology, gene expression analysis and µCT. RESULTS CAIA was accompanied by an overexpression of αCGRP in WT joints. αCGRP-/- mice displayed reduced arthritic inflammation and cartilage degradation. Congruently, the expression of TNF-α, IL-1β, CD80 and MMP13 was induced in WT, but not αCGRP-/- animals. WT mice displayed an increased bone turnover during the acute inflammatory phase, which was not the case in αCGRP-/- mice. Interestingly, WT mice displayed a full recovery from the inflammatory bone disease, whereas αCGRP-/- mice exhibited substantial bone loss over time. CONCLUSION This study demonstrates a proinflammatory and bone protective role of αCGRP in CAIA. Our data indicate that αCGRP not only enhances joint inflammation, but also controls bone remodelling as part of arthritis resolution. As novel αCGRP inhibitors are currently introduced clinically for the treatment of migraine, their potential impact on RA progression warrants further clinical investigation.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Alexander Hildebrandt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jérôme Weber
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tamara Dietrich
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dario Zocholl
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Keller
- Berlin Institute of Health (BIH), Berlin, Germany.,Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Li H, Qu J, Zhu H, Wang J, He H, Xie X, Wu R, Lu Q. CGRP Regulates the Age-Related Switch Between Osteoblast and Adipocyte Differentiation. Front Cell Dev Biol 2021; 9:675503. [PMID: 34124062 PMCID: PMC8187789 DOI: 10.3389/fcell.2021.675503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoporosis is a chronic age-related disease. During aging, bone marrow-derived mesenchymal stem cells (BMSCs) display increased adipogenic, along with decreased osteogenic, differentiation capacity. The aim of the present study was to investigate the effect of calcitonin gene-related peptide (CGRP) on the osteogenic and adipogenic differentiation potential of BMSC-derived osteoblasts. Here, we found that the level of CGRP was markedly lower in bone marrow supernatant from aged mice compared with that in young mice. In vitro experiments indicated that CGRP promoted the osteogenic differentiation of BMSCs while inhibiting their adipogenic differentiation. Compared with vehicle-treated controls, aged mice treated with CGRP showed a substantial promotion of bone formation and a reduction in fat accumulation in the bone marrow. Similarly, we found that CGRP could significantly enhance bone formation in ovariectomized (OVX) mice in vivo. Together, our results suggested that CGRP may be a key regulator of the age-related switch between osteogenesis and adipogenesis in BMSCs and may represent a potential therapeutic strategy for the treatment of age-related bone loss.
Collapse
Affiliation(s)
- Hang Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyan Xie
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
27
|
Jansen S, Baulain U, Habig C, Ramzan F, Schauer J, Schmitt AO, Scholz AM, Sharifi AR, Weigend A, Weigend S. Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests. Genes (Basel) 2021; 12:702. [PMID: 34066823 PMCID: PMC8151682 DOI: 10.3390/genes12050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens.
Collapse
Affiliation(s)
- Simon Jansen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Ulrich Baulain
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Christin Habig
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Faisal Ramzan
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| | - Armin Manfred Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany;
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Annett Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| |
Collapse
|
28
|
Wang L, Hou S, Sabsovich I, Guo TZ, Wei T, Kingery WS. Mice lacking substance P have normal bone modeling but diminished bone formation, increased resorption, and accelerated osteopenia with aging. Bone 2021; 144:115806. [PMID: 33333245 PMCID: PMC7856000 DOI: 10.1016/j.bone.2020.115806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Substance P (SP) is a sensory neuropeptide that is expressed by the neurons innervating bone. There is considerable evidence that SP can regulate bone cell function in vitro, but it is unclear whether SP modulates bone modeling or remodeling in vivo. To answer this question we characterized the bone phenotype of mice with deletion of the Tac1 gene expressing SP. The phenotypes of 2-month-old and 5-month-old SP deficient mice and their wildtype controls were characterized by using μCT imaging, static and dynamic bone histomorphometry, and urinary deoxypyridinoline cross-links (DPD) measurement. No differences in bone phenotypes were observed between the 2 strains at 2 months of age. By 5 months both the wildtype and SP deficient mice had developed cancellous osteopenia, but relative to the wild-type mice the SP deficient mice had significantly greater cancellous bone loss. The SP deficient mice also exhibited decreased bone formation, increased osteoclast number, and increased urinary DPD levels. Cortical defect early repair was delayed in 5-month-old mice lacking SP. Collectively, these findings indicate that SP signaling is not required for bone modeling, but SP signaling reduces age-related osteopenia and accelerates cortical defect reparation, data supporting the hypothesis that SP is an anabolic physiologic regulator of bone metabolism.
Collapse
Affiliation(s)
- Liping Wang
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America.
| | - Saiyun Hou
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Ilya Sabsovich
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America.
| | - Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America.
| |
Collapse
|
29
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
30
|
Xu J, Wang J, Chen X, Li Y, Mi J, Qin L. The Effects of Calcitonin Gene-Related Peptide on Bone Homeostasis and Regeneration. Curr Osteoporos Rep 2020; 18:621-632. [PMID: 33030684 DOI: 10.1007/s11914-020-00624-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are two folds: (1) to describe the recent understandings on the roles of calcitonin gene-related peptide-α (CGRP) in bone homeostasis and the underlying mechanisms of related neuronal regulation and (2) to propose innovative CGRP-modulated approaches for enhancing bone regeneration in challenging bone disorders. RECENT FINDINGS CGRP is predominantly produced by the densely distributed sensory neuronal fibers in bone, declining with age. Under mechanical and biochemical stimulations, CGRP releases and exerts either physiological or pathophysiological roles. CGRP at physiological level orchestrates the communications of bone cells with cells of other lineages, affecting not only osteogenesis, osteoclastogenesis, and adipogenesis but also angiogenesis, demonstrating with pronounced anabolic effect, thus is essential for maintaining bone homeostasis, with tuned nerve-vessel-bone network. In addition, its effects on immunity and cell recruitment are also crucial for bone fracture healing. Binding to the G protein-coupled receptor composited by calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1) on cellular surface, CGRP triggers various intracellular signaling cascades involving cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Peaking at early stage post-fracture, CGRP promotes bone formation, displaying with larger callus. Then CGRP gradually decreases over time, allowing normal or physiological bone remodeling. By elevating CGRP at early stage, low-intensity pulsed ultrasound (LIPUS), electrical stimulation, and magnesium-based bio-mineral products may promisingly accelerate bone regeneration experimentally in medical conditions like osteoporosis, osteoporotic fracture, and spine fusion. Excess CGRP expression is commonly observed in pathological conditions including cancer metastatic lesions in bone and fracture delayed- or non-healing, resulting in persistent chronic pain. To date, these discoveries have largely been limited to animal models. Clinical applications are highly desirable. Compelling evidence show the anabolic effects of CGRP on bone in animals. However, further validation on the role of CGRP and the underlying mechanisms in human skeletons is required. It remains unclear if it is type H vessel connecting neuronal CGRP to osteogenesis, and if there is only specific rather than all osteoprogenitors responsible to CGRP. Clear priority should be put to eliminate these knowledge gaps by integrating with high-resolution 3D imaging of transparent bulk bone and single-cell RNA-sequencing. Last but not the least, given that small molecule antagonists such as BIBN4096BS can block the beneficial effects of CGRP on bone, concerns on the potential side effects of humanized CGRP-neutralizing antibodies when systemically administrated to treat migraine in clinics are arising.
Collapse
Affiliation(s)
- Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Zhang Q, Wu B, Yuan Y, Zhang X, Guo Y, Gong P, Xiang L. CGRP-modulated M2 macrophages regulate osteogenesis of MC3T3-E1 via Yap1. Arch Biochem Biophys 2020; 697:108697. [PMID: 33232717 DOI: 10.1016/j.abb.2020.108697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Bone fractures are one of the most frequent injuries in the musculoskeletal system. Despite the best treatment efforts, a large proportion of bone fracture cases still display undesirable outcomes. Here, we verified that calcitonin gene-related peptide (CGRP), a 37-amino acid neuropeptides, might be a critical regulator that link the nervous, immune and skeletal systems during bone healing. We used a CGRP overexpression lentiviral system and stably transfected M2 macrophages. Then, we investigated the biological function and the intrinsic mechanisms of CGRP on M2 macrophages. We confirmed that CGRP downregulated osteogenic factors (BMP2, BMP6, WNT10b and OSM) secretion at first and promoted them late on (p < 0.05). In addition, we utilized an indirect coculture system and further ascertain the influences of CGRP-induced M2 macrophages on MC3T3 osteogenesis. The results implied that CGRP-modulated osteoimmune environment elicit multiple effects on osteogenesis of MC3T3 during the entire observation period. Notably, verteporfin, a yes-associated protein 1 (Yap1) inhibitor, impaired CGRP effects significantly in our experiments. Taken together, our findings illustrated that CGRP might regulate osteogenesis by modulating the osteoimmune response of M2 macrophages via Yap1.
Collapse
Affiliation(s)
- Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Kacena MA, White FA. No pain, no gain: Will migraine therapies increase bone loss and impair fracture healing? EBioMedicine 2020; 60:103025. [PMID: 32971471 PMCID: PMC7516061 DOI: 10.1016/j.ebiom.2020.103025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| | - Fletcher A White
- Richard L. Roudebush VA Medical Center, IN, USA; Department of Anesthesia, Indiana University School of Medicine, IN, USA
| |
Collapse
|
33
|
Lai M, Yan X, Shen K, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y. The effect of calcitonin gene-related peptide functionalized TiO2 nanotubes on osteoblast and osteoclast differentiation in vitro. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Appelt J, Baranowsky A, Jahn D, Yorgan T, Köhli P, Otto E, Farahani SK, Graef F, Fuchs M, Herrera A, Amling M, Schinke T, Frosch KH, Duda GN, Tsitsilonis S, Keller J. The neuropeptide calcitonin gene-related peptide alpha is essential for bone healing. EBioMedicine 2020; 59:102970. [PMID: 32853990 PMCID: PMC7452713 DOI: 10.1016/j.ebiom.2020.102970] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Impaired fracture healing represents an ongoing clinical challenge, as treatment options remain limited. Calcitonin gene-related peptide (CGRP), a neuropeptide targeted by emerging anti-migraine drugs, is also expressed in sensory nerve fibres innervating bone tissue. Method Bone healing following a femoral osteotomy stabilized with an external fixator was analysed over 21 days in αCGRP-deficient and WT mice. Bone regeneration was evaluated by serum analysis, µCT analysis, histomorphometry and genome-wide expression analysis. Bone-marrow-derived osteoblasts and osteoclasts, as well as the CGRP antagonist olcegepant were employed for mechanistic studies. Findings WT mice with a femoral fracture display increased CGRP serum levels. αCGRP mRNA expression after skeletal injury is exclusively induced in callus tissue, but not in other organs. On protein level, CGRP and its receptor, calcitonin receptor-like receptor (CRLR) complexing with RAMP1, are differentially expressed in the callus during bone regeneration. On the other hand, αCGRP-deficient mice display profoundly impaired bone regeneration characterised by a striking reduction in the number of bone-forming osteoblasts and a high rate of incomplete callus bridging and non-union. As assessed by genome-wide expression analysis, CGRP induces the expression of specific genes linked to ossification, bone remodeling and adipogenesis. This suggests that CGRP receptor-dependent PPARγ signaling plays a central role in fracture healing. Interpretation This study demonstrates an essential role of αCGRP in orchestrating callus formation and identifies CGRP receptor agonism as a potential approach to stimulate bone regeneration. Moreover, as novel agents blocking CGRP or its receptor CRLR are currently introduced clinically for the treatment of migraine disorders, their potential negative impact on bone regeneration warrants clinical investigation. Funding This work was funded by grants from the Else-Kröner-Fresenius-Stiftung (EKFS), the Deutsche Forschungsgemeinschaft (DFG), and the Berlin Institute of Health (BIH).
Collapse
Affiliation(s)
- Jessika Appelt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany; Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany; Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Paul Köhli
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Ellen Otto
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Saeed Khomeijani Farahani
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Frank Graef
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Melanie Fuchs
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Aarón Herrera
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany; Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| |
Collapse
|
35
|
Yates TH, Cooperman SR, Shofler D, Agrawal DK. Current concepts underlying the pathophysiology of acute Charcot neuroarthropathy in the diabetic foot and ankle. Expert Rev Clin Immunol 2020; 16:839-845. [PMID: 32735458 DOI: 10.1080/1744666x.2020.1804869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION With a complex and often misunderstood etiology, acute Charcot neuroarthropathy (ACN) is a devastating complication of peripheral neuropathy. In patients with diabetes, timely diagnosis of ACN in the foot and ankle is essential to prevent loss of both limb and life. AREAS COVERED Herein, the authors evaluate the growing body of evidence in identifying targeted pathways for future therapeutic interventions. A literature search was conducted through the PubMed research database. Searched terms included 'Charcot,' 'foot and ankle,' 'neuroarthropathy,' 'pathophysiology,' 'arthropathy,' 'diabetic foot,' and 'Charcot foot.' EXPERT OPINION The interplay between the acute inflammatory response, cytokine signaling, and bone metabolism equilibrium can now be better understood with the aid of several novel immunobiologic mechanisms. The more recently elucidated roles of advanced glycation end-products, neuropeptides, monocyte differentiation, and genomics combine with classical Charcot pathophysiology to aid researchers and clinicians alike in combatting this often puzzling consequence of peripheral neuropathy.
Collapse
Affiliation(s)
- Thomas H Yates
- Western University of Health Sciences, College of Podiatric Medicine , Pomona, California, USA
| | - Steven R Cooperman
- Western University of Health Sciences, College of Podiatric Medicine , Pomona, California, USA
| | - David Shofler
- Western University of Health Sciences, College of Podiatric Medicine , Pomona, California, USA
| | - Devendra K Agrawal
- Western University of Health Sciences, College of Podiatric Medicine , Pomona, California, USA
| |
Collapse
|
36
|
Andreou AP, Fuccaro M, Lambru G. The role of erenumab in the treatment of migraine. Ther Adv Neurol Disord 2020; 13:1756286420927119. [PMID: 32523630 PMCID: PMC7257830 DOI: 10.1177/1756286420927119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Calcitonin gene related peptide (CGRP) monoclonal antibodies (mAbs) have been the
first class of specifically developed preventive treatments for migraine.
Clinical trials data suggest superiority of the CGRP mAbs to placebo in terms of
prevention of migraine symptoms, migraine-specific quality of life and headache
related disability. Treatment-related side effects overall did not differ
significantly from placebo and discontinuation rate due to side effects has been
low across the clinical trials, perhaps in view of their peripheral mode of
action. Along with their route and frequency of administration, these novel
class of drugs may constitute an improvement compared with the established
arsenal of migraine treatments. Erenumab is a fully human antibody and the only
mAb acting on the CGRP pathway by blocking its receptor. It is the first of the
CGRP mAb class approved by the US Food and Drug Administration (May 2018) and
the European Medicines Agency (July 2018). Erenumab exists in two different
doses (70 mg and 140 mg) and it is administered with monthly subcutaneous
injections. This review summarises erenumab pharmacological characteristics,
clinical trials data, focusing on the potential role of this treatment in
clinical practice.
Collapse
Affiliation(s)
- Anna P Andreou
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Matteo Fuccaro
- Department of Neurology, Treviso Hospital, Treviso, Italy
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
37
|
Niedermair T, Schirner S, Lasheras MG, Straub RH, Grässel S. Absence of α-calcitonin gene-related peptide modulates bone remodeling properties of murine osteoblasts and osteoclasts in an age-dependent way. Mech Ageing Dev 2020; 189:111265. [PMID: 32446790 DOI: 10.1016/j.mad.2020.111265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
Abstract
Mice with an overall deletion of the sensory neuropeptide α-calcitonin gene-related peptide (α-CGRP) develop an age-dependent osteopenic bone phenotype. Underlying molecular mechanisms of how αCGRP affects bone cell metabolism are not well understood. This study aims to characterize differences in metabolic parameters of osteoblast-like cells (OB) and differentiated bone marrow-derived macrophages (BMM)/osteoclast (OC) cultures isolated from 3 month (3 m) and 9 month old (9 m) α-CGRP-deficient mice (-/-) and age-matched WT controls. All WT bone cell cultures endogenously produced and secreted α-CGRP. We found higher BMM but reduced OB numbers and reduced OB vitality after isolation from 9 m compared to 3 m mice, independent of genotype. Absence of α-CGRP reduced cell spreading, increased apoptosis rate throughout osteogenic differentiation, and reduced ALP activity during late osteogenic differentiation in 9 m OB-/- cultures, whereas minor effects were found in 3 m OB-/- cultures. Cathepsin K activity was reduced in 3 m OC-/- cultures. On the contrary, 9 m OC-/- cells demonstrated increased proliferation and caspase3/7 activity. The absence of α-CGRP influenced bone formation and resorption rate differently in bone cells from 3 and 9 m old mice. In summary we suggest, that an increase of dysfunctional mature osteoblasts might occur during aging and contribute to the development of the osteopenic bone phenotype in mature adult (9 m) α-CGRP-deficient mice.
Collapse
Affiliation(s)
- Tanja Niedermair
- Department of Orthopaedic Surgery, University of Regensburg, Germany; Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Stephan Schirner
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Mar Guaza Lasheras
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University of Regensburg, Germany.
| | - Susanne Grässel
- Department of Orthopaedic Surgery, University of Regensburg, Germany; Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| |
Collapse
|
38
|
Muschter D, Fleischhauer L, Taheri S, Schilling AF, Clausen-Schaumann H, Grässel S. Sensory neuropeptides are required for bone and cartilage homeostasis in a murine destabilization-induced osteoarthritis model. Bone 2020; 133:115181. [PMID: 31926346 DOI: 10.1016/j.bone.2019.115181] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022]
Abstract
Numerous studies identified a role for the sensory neuropeptides substance P (SP) and alpha calcitonin gene-related peptide (αCGRP) in osteoarthritis (OA) pain behavior. Surprisingly, little attention has been paid on how their trophic effects on cartilage and bone cells might affect structural changes of bone and cartilage in OA pathology. Here, we sought to elucidate sensory neuropeptides influence on structural alterations of bone and cartilage during murine OA pathophysiology. OA was induced by destabilization of the medial meniscus (DMM) in the right knee joint of 12 weeks old male C57Bl/6J wildtype (WT) mice and mice either deficient for SP (tachykinin 1 (Tac1)-/-) or αCGRP. By OARSI histopathological grading we observed significant cartilage matrix degradation after DMM surgery in αCGRP-deficient mice after 4 weeks whereas Tac1-/- scores were not different to sham mice before 12 weeks after surgery. Indentation-type atomic force microscopy (IT-AFM) identified a strong superficial zone (SZ) cartilage phenotype in Tac1-/- Sham mice. Opposed to WT and αCGRP-/- mice, SZ cartilage of Tac1-/- mice softened 2 weeks after OA induction. In Tac1-/- DMM mice, bone volume to total volume ratio (BV/TV) increased significantly compared to the Tac1-/- Sham group, 2 weeks after surgery. WT mice had reduced BV/TV compared to αCGRP-/- and Tac1-/- mice after 12 weeks. Increased calcified cartilage thickness and medial condyle diameter were detected in the medial tibia of all groups 8 weeks after OA induction by nanoCT analysis. Meniscal ossification occurred in all OA groups, but was significantly stronger in the absence of neuropeptides. Increased serum concentration of the respective non-deleted neuropeptide was observed in both neuropeptide-deficient mice strains. Both neuropeptides protect from age-related bone structural changes under physiological conditions and SP additionally demonstrates an anabolic effect on bone structure preservation in a pathophysiological situation. Both neuropeptide deficient mice display an intrinsic structural cartilage matrix phenotype that might alter progression of cartilage degeneration in OA.
Collapse
Affiliation(s)
- Dominique Muschter
- Dept. of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Germany.
| | - Lutz Fleischhauer
- Department of Applied Sciences and Mechatronics, University of Applied Sciences Munich, Germany; Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, Germany; Center for NanoScience, Ludwig-Maximilians-University, Munich, Germany.
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medicine Göttingen.
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medicine Göttingen.
| | - Hauke Clausen-Schaumann
- Department of Applied Sciences and Mechatronics, University of Applied Sciences Munich, Germany.
| | - Susanne Grässel
- Dept. of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Germany.
| |
Collapse
|
39
|
Impact of the Sensory and Sympathetic Nervous System on Fracture Healing in Ovariectomized Mice. Int J Mol Sci 2020; 21:ijms21020405. [PMID: 31936403 PMCID: PMC7013559 DOI: 10.3390/ijms21020405] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
The peripheral nervous system modulates bone repair under physiological and pathophysiological conditions. Previously, we reported an essential role for sensory neuropeptide substance P (SP) and sympathetic nerve fibers (SNF) for proper fracture healing and bone structure in a murine tibial fracture model. A similar distortion of bone microarchitecture has been described for mice lacking the sensory neuropeptide α-calcitonin gene-related peptide (α-CGRP). Here, we hypothesize that loss of SP, α-CGRP, and SNF modulates inflammatory and pain-related processes and also affects bone regeneration during fracture healing under postmenopausal conditions. Intramedullary fixed femoral fractures were set to 28 days after bilateral ovariectomy (OVX) in female wild type (WT), SP-, α-CGRP-deficient, and sympathectomized (SYX) mice. Locomotion, paw withdrawal threshold, fracture callus maturation and numbers of TRAP-, CD4-, CD8-, F4/80-, iNos-, and Arg1-positive cells within the callus were analyzed. Nightly locomotion was reduced in unfractured SP-deficient and SYX mice after fracture. Resistance to pressure was increased for the fractured leg in SP-deficient mice during the later stages of fracture healing, but was decreased in α-CGRP-deficient mice. Hypertrophic cartilage area was increased nine days after fracture in SP-deficient mice. Bony callus maturation was delayed in SYX mice during the later healing stages. In addition, the number of CD 4-positive cells was reduced after five days and the number of CD 8-positive cells was additionally reduced after 21 days in SYX mice. The number of Arg1-positive M2 macrophages was higher in α-CGRP-deficient mice five days after fracture. The alkaline phosphatase level was increased in SYX mice 16 days after fracture. Absence of α-CGRP appears to promote M2 macrophage polarization and reduces the pain threshold, but has no effect on callus tissue maturation. Absence of SP reduces locomotion, increases the pain-threshold, and accelerates hypertrophic callus tissue remodeling. Destruction of SNF reduces locomotion after fracture and influences bony callus tissue remodeling during the later stages of fracture repair, whereas pain-related processes are not affected.
Collapse
|
40
|
Ma L, Xiang L, Ma X, Zhang S, Gong P. Effects of αCGRP on the Adhesion, Proliferation and Differentiation of Osteoblasts Cultured on Titanium Surfaces. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Li Ma
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Lin Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University
| | - Xiaoni Ma
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University
| | - Shuning Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University
| |
Collapse
|
41
|
Tomlinson RE, Christiansen BA, Giannone AA, Genetos DC. The Role of Nerves in Skeletal Development, Adaptation, and Aging. Front Endocrinol (Lausanne) 2020; 11:646. [PMID: 33071963 PMCID: PMC7538664 DOI: 10.3389/fendo.2020.00646] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
The skeleton is well-innervated, but only recently have the functions of this complex network in bone started to become known. Although our knowledge of skeletal sensory and sympathetic innervation is incomplete, including the specific locations and subtypes of nerves in bone, we are now able to reconcile early studies utilizing denervation models with recent work dissecting the molecular signaling between bone and nerve. In total, sensory innervation functions in bone much as it does elsewhere in the body-to sense and respond to stimuli, including mechanical loading. Similarly, sympathetic nerves regulate autonomic functions related to bone, including homeostatic remodeling and vascular tone. However, more study is required to translate our current knowledge of bone-nerve crosstalk to novel therapeutic strategies that can be effectively utilized to combat skeletal diseases, disorders of low bone mass, and age-related decreases in bone quality.
Collapse
Affiliation(s)
- Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ryan E. Tomlinson
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Adrienne A. Giannone
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
42
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
43
|
Xiao F, Zhou Y, Liu Y, Xie M, Guo G. Inhibitory Effect of Sirtuin6 (SIRT6) on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Med Sci Monit 2019; 25:8412-8421. [PMID: 31701920 PMCID: PMC6858786 DOI: 10.12659/msm.917118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The imbalance between bone resorption and formation is the basic mechanism underlying osteoporosis in the elderly. Osteogenesis is the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts. Sirtuin6 (SIRT6) regulates various biological functions, including differentiation. Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a non-selective cation channel that can be activated by physical and chemical stimulation. However, experimental data supporting the role of SIRT6 in osteogenic differentiation (OD) of hMSCs are lacking. MATERIAL AND METHODS Differentiation of hMSCs was induced. The expressions of SIRT6, TRPV1, and CGRP were detected by Q-PCR, Western blot, and ELISA, respectively. SIRT6 was overexpressed in hMSCs by transfection. ALP activity and Alizarin Red staining were utilized to detect the effect of SIRT6 on hMSC OD. Then, capsaicin and capsazepine, the TRPV1 agonist and antagonist, respectively, were administrated to assess the role of TRPV1. RESULTS SIRT6 expression was downregulated during hMSC differentiation. SIRT6 overexpression was accompanied by reduced expression of specific genes and alkaline phosphatase (ALP) activity in osteoblasts. Furthermore, TRPV1 channel was also reduced by SIRT6 overexpression via ubiquitinating TRPV1. Capsaicin was utilized in SIRT6-overexpressed cells. Capsaicin therapy counteracted the effect of SIRT6 overexpression on OD, and markedly decreased OD. CONCLUSIONS The SIRT6-TRPV1-CGRP signal axis is the key to regulating OD in hMSCs, which could be a potential therapeutic target for osteoporosis and bone loss-related diseases.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yun Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yongfu Liu
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Mian Xie
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Guancheng Guo
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
44
|
Wang B, Lin J, Zhang Q, Zhang X, Yu H, Gong P, Xiang L. αCGRP Affects BMSCs' Migration and Osteogenesis via the Hippo-YAP Pathway. Cell Transplant 2019; 28:1420-1431. [PMID: 31426665 PMCID: PMC6802143 DOI: 10.1177/0963689719871000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alpha-calcitonin gene-related peptide (αCGRP) plays a significant pathophysiological role in the regulation of bone metabolism. Our previous research indicated that αCGRP might have a potential application in enhancing osseointegration in vivo. To further uncover the intrinsic mechanism of its networks in bone regeneration, here we investigate the impact of αCGRP on osteogenic differentiation in bone marrow-derived mesenchymal stem cells (BMSCs) from both wild-type and αCGRP-/- mice. Considering the half-life of αCGRP in plasma is only 10 min, we applied αCGRP lentivirus and stably transfected it into BMSCs, followed by transfection identification and cell cycle assay. We further conducted a series of in vitro tests, and the results revealed that biological functions including migratory ability and osteogenicity exhibited positive correlation with BMSCs' αCGRP expression. Meanwhile, this phenomenon was associated with an enhanced expression of YAP (Yes-associated protein), the key downstream effector of the Hippo pathway. To sum up, our data together with previous in vivo observations is likely to elucidate the intrinsic mechanism of αCGRP in bone remodeling, and αCGRP would appear to be a novel treatment to promote bone wound healing.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Both the authors contributed equally to this article
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Both the authors contributed equally to this article
| | - Qin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J Bone Miner Res 2019; 34:1393-1406. [PMID: 31247122 PMCID: PMC6697229 DOI: 10.1002/jbmr.3822] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022]
Abstract
The innervation of bone has been described for centuries, and our understanding of its function has rapidly evolved over the past several decades to encompass roles of subtype-specific neurons in skeletal homeostasis. Current research has been largely focused on the distribution and function of specific neuronal populations within bone, as well as their cellular and molecular relationships with target cells in the bone microenvironment. This review provides a historical perspective of the field of skeletal neurobiology that highlights the diverse yet interconnected nature of nerves and skeletal health, particularly in the context of bone anabolism and pain. We explore what is known regarding the neuronal subtypes found in the skeleton, their distribution within bone compartments, and their central projection pathways. This neuroskeletal map then serves as a foundation for a comprehensive discussion of the neural control of skeletal development, homeostasis, repair, and bone pain. Active synthesis of this research recently led to the first biotherapeutic success story in the field. Specifically, the ongoing clinical trials of anti-nerve growth factor therapeutics have been optimized to titrated doses that effectively alleviate pain while maintaining bone and joint health. Continued collaborations between neuroscientists and bone biologists are needed to build on this progress, leading to a more complete understanding of neural regulation of the skeleton and development of novel therapeutics. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA
| | - Alec T Beeve
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Clarissa S Craft
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Erica L Scheller
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
46
|
Sunohara M, Kamata H, Maeda Y, Miwa Y, Karibe H, Sato I. Distribution of glutamate receptor, ionotropic, kainate 1 and neuropeptide calcitonin gene-related peptide mRNAs during formation of the embryonic and postnatal mouse molar in the maxilla. Ann Anat 2019; 227:151401. [PMID: 31330309 DOI: 10.1016/j.aanat.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is a well-characterized neurotransmitter. Glutamate receptor, ionotropic, kainate 1 (Grik1) has also been demonstrated to generate high-affinity kainate receptors. However, little is known about the roles of CGRP and Grik1 during the developmental formation of teeth. In this study, we endeavoured to analyse the expression and localization of CGRP and Grik1 mRNAs using in situ hybridization on the mouse maxilla during development from the embryonic stage (E18.5) to after birth (P10, P15 and P20). We found that hybridization with an anti-sense probe for CGRP clearly localized in the maxilla at E18.5 in contrast to that of P15 and P20. Hybridization with an anti-sense probe for CGRP was not detected in the dental pulp of molars in the maxilla at P10, which is in contrast to Grik1 mRNA at the same developmental stage. Hybridization with an anti-sense probe for Grik1 mRNA was detected in the basal region of the dental pulp of molars at P10 and P15. Finally, these markers were not detected in molars in the mouse maxilla at P20. The ratio of positive cells for the hybridization signals of Grik1and CGRP in the dental pulp decreased from E18.5 (p<0.001). These features in CGRP and Grik1r mRNAs may indicate roles of function during tooth development between embryonic and postnatal stages with root formation and erupted movements.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hiroaki Kamata
- Division of Pediatric Dentistry, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan; Department of Pediatric Dentistry, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Yuuki Maeda
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan; Division of Anatomy, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan
| | - Yoko Miwa
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hiroyuki Karibe
- Department of Pediatric Dentistry, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
47
|
Abstract
Poorly controlled diabetes with comorbid manifestations negatively affects outcomes in lower extremity trauma, increasing the risk of short-term and long-term complications. Management strategies of patients with diabetes that experience lower extremity trauma should also include perioperative management of hyperglycemia to reduce adverse and serious adverse events.
Collapse
Affiliation(s)
- George T Liu
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390-8883, USA; Foot and Ankle Service, Orthopaedic Surgery, Parkland Memorial Hospital, Level 1 Trauma Center, 5200 Harry Hines Boulevard, Dallas, TX 75235, USA.
| | - Drew T Sanders
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390-8883, USA; Orthopaedic Trauma Service, Parkland Memorial Hospital, Level 1 Trauma Center, 5200 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Katherine M Raspovic
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390-8883, USA; Foot and Ankle Service, Orthopaedic Surgery, Parkland Memorial Hospital, Level 1 Trauma Center, 5200 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Dane K Wukich
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390-8883, USA; Foot and Ankle Service, Orthopaedic Surgery, Parkland Memorial Hospital, Level 1 Trauma Center, 5200 Harry Hines Boulevard, Dallas, TX 75235, USA
| |
Collapse
|
48
|
Bussiere JL, Davies R, Dean C, Xu C, Kim KH, Vargas HM, Chellman GJ, Balasubramanian G, Rubio-Beltran E, MaassenVanDenBrink A, Monticello TM. Nonclinical safety evaluation of erenumab, a CGRP receptor inhibitor for the prevention of migraine. Regul Toxicol Pharmacol 2019; 106:224-238. [PMID: 31085251 DOI: 10.1016/j.yrtph.2019.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Calcitonin gene-related peptide (CGRP) and its receptor have been implicated as a key mediator in the pathophysiology of migraine. Thus, erenumab, a monoclonal antibody antagonist of the CGRP receptor, administered as a once monthly dose of 70 or 140 mg has been approved for the preventive treatment of migraine in adults. Due to the species specificity of erenumab, the cynomolgus monkey was used in the pharmacology, pharmacokinetics, and toxicology studies to support the clinical program. There were no effects of erenumab on platelets in vitro (by binding, activation or phagocytosis assays). Specific staining of human tissues with erenumab did not indicated any off-target binding. There were no erenumab-related findings in a cardiovascular safety pharmacology study in cynomolgus monkeys or in vitro in human isolated coronary arteries. Repeat-dose toxicology studies conducted in cynomolgus monkeys at dose levels up to 225 mg/kg (1 month) or up to 150 mg/kg (up to 6 months) with twice weekly subcutaneous (SC) doses showed no evidence of erenumab-mediated adverse toxicity. There were no effects on pregnancy, embryo-fetal or postnatal growth and development in an enhanced pre-postnatal development study in the cynomolgus monkey. There was evidence of placental transfer of erenumab based on measurable serum concentrations in the infants up to 3 months post birth. The maternal and developmental no-observed-effect level (NOEL) was the highest dose tested (50 mg/kg SC Q2W). These nonclinical data in total indicate no safety signal of concern to date and provide adequate margins of exposure between the observed safe doses in animals and clinical dose levels.
Collapse
Affiliation(s)
| | - Rhian Davies
- Amgen Research, 1120 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - Charles Dean
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Cen Xu
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Kyung Hoon Kim
- Amgen Research, 1120 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - Hugo M Vargas
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Gary J Chellman
- Charles River Laboratories Inc., 6995 Longley Lane, Reno, NV, 89511, USA
| | | | | | | | | |
Collapse
|
49
|
Gatenholm B, Brittberg M. Neuropeptides: important regulators of joint homeostasis. Knee Surg Sports Traumatol Arthrosc 2019; 27:942-949. [PMID: 30039292 DOI: 10.1007/s00167-018-5074-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE This review explores the mechanisms of joint pain with a special focus on the role of neuropeptides in pain transmission and their potential role in the progression of joint degeneration as seen in osteoarthritis. METHODS A literature search was performed on papers published between January 1990 and September 2017 using the Web of Science Core Collection, MEDLINE and Scopus databases. RESULTS What is seen in the subchondral bone and synovia is mirrored in the central nervous system (CNS). Substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and neuropeptide Y are the major peptides involved both in the generation of pain as well as reducing pain post-joint trauma. The interplay between them and other neuropeptides and cytokines influence how noxious stimuli are transduced, transmitted and modulated for a final pain perception as part of a complex cascade of events. There is a close interaction between the different components in the joint that together cross-talk to adapt to load and catabolic factors during injury and inflammation. CONCLUSION The articular joint should be seen as an organ where local joint pain development and maintenance is influenced by interplay between the local transmitters in the joints as well as their dependence on the CNS. A slow-release cocktail of mixed antibodies targeted against neuropeptides and receptor blockers/stimulators involved in the events of early joint pain or any inflammatory joint disease is a future treatment target. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- Birgitta Gatenholm
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Mats Brittberg
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Hallands Sjukhus, Kungsbacka, Sweden
| |
Collapse
|
50
|
Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev 2019; 99:781-805. [PMID: 30540227 DOI: 10.1152/physrev.00066.2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcitonin was discovered over 50 yr ago as a new hormone that rapidly lowers circulating calcium levels. This effect is caused by the inhibition of calcium efflux from bone, as calcitonin is a potent inhibitor of bone resorption. Calcitonin has been in clinical use for conditions of accelerated bone turnover, including Paget's disease and osteoporosis; although in recent years, with the development of drugs that are more potent inhibitors of bone resorption, its use has declined. A number of peptides that are structurally similar to calcitonin form the calcitonin family, which currently includes calcitonin gene-related peptides (αCGRP and βCGRP), amylin, adrenomedullin, and intermedin. Apart from being structurally similar, the peptides signal through related receptors and have some overlapping biological activities, although other activities are peptide specific. In bone, in vitro studies and administration of the peptides to animals generally found inhibitory effects on osteoclasts and bone resorption and positive effects on osteoblasts and bone formation. Surprisingly, studies in genetically modified mice have demonstrated that the physiological role of calcitonin appears to be the inhibition of osteoblast activity and bone turnover, whereas amylin inhibits osteoclast activity. The review article focuses on the activities of peptides of the calcitonin family in bone and the challenges in understanding the relationship between the pharmacological effects and the physiological roles of these peptides.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|