1
|
Amorim T, Freitas L, Metsios GS, Gomes TN, Wyon M, Flouris AD, Maia J, Marques F, Nogueira L, Adubeiro N, Koutedakis Y. Associations between nutrition, energy expenditure and energy availability with bone mass acquisition in dance students: a 3-year longitudinal study. Arch Osteoporos 2021; 16:141. [PMID: 34561723 DOI: 10.1007/s11657-021-01005-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED Three years of study showed that female and male vocational dancers displayed lower bone mass compared to controls, at forearm, lumbar spine and femoral neck. Energy intake was found to positively predict bone mass accruals only in female dancers at femoral neck. Vocational dancers can be a risk population to develop osteoporosis. PURPOSE To determine whether risk factors normally associated with low bone mass in athletic populations (i.e. nutrition intake, energy expenditure and energy availability) are significant predictors of bone mass changes in vocational dance students. METHODS The total of 101 vocational dancers (63 females, 12.8 ± 2.2 years; 38 males, 12.7 ± 2.2 years) and 115 age-matched controls (68 females, 13.0 ± 2.1 years; 47 males, 13.0 ± 1.8 years) were monitored for 3 consecutive years. Bone mass parameters were measured annually at impact sites (femoral neck, FN; lumber spine, LS) and non-impact site (forearm) using DXA. Nutrition (3-day record), energy expenditure (accelerometer), energy availability and IGF-1 serum concentration (immunoradiometric assays) were also assessed. RESULTS Female and male vocational dancers had consistently reduced bone mass at all anatomical sites (p < 0.001) than controls. IGF-1 did not differ between male vocational dancers and controls, but female dancers showed it higher than controls. At baseline, calcium intake was significantly greater in female vocational dancers than controls (p < 0.05). Male vocational dancers' fat and carbohydrate intakes were significantly lower than matched controls (p < 0.001 and p < 0.05, respectively). Energy availability of both female and male vocational dancers was within the normal range. A significant group effect was found at the FN regarding energy intake (p < 0.05) in female dancers. No significant predictors were found to explain bone mass differences in males. CONCLUSION Our 3-year study revealed that both female and male vocational dancers displayed lower bone mass compared to controls, at both impact and non-impact sites. The aetiology of these findings may be grounded on factors different than those usually considered in athletic populations.
Collapse
Affiliation(s)
- Tânia Amorim
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Gorway Rd, Walsall, Wolverhampton, WS1 3BE, UK. .,Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal.
| | - Laura Freitas
- Research Centre for Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - George S Metsios
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Gorway Rd, Walsall, Wolverhampton, WS1 3BE, UK.,School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| | - Thayse Natacha Gomes
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
| | - Matthew Wyon
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Gorway Rd, Walsall, Wolverhampton, WS1 3BE, UK
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - José Maia
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
| | - Franklim Marques
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Nogueira
- School of Health Technology of Porto, Polytechnic Institute of Porto, Porto, Portugal
| | - Nuno Adubeiro
- School of Health Technology of Porto, Polytechnic Institute of Porto, Porto, Portugal
| | - Yiannis Koutedakis
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Gorway Rd, Walsall, Wolverhampton, WS1 3BE, UK.,School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| |
Collapse
|
2
|
Hou R, Cole SA, Graff M, Wang Y, Haack K, Laston S, Mehta NR, Shypailo RJ, Gourlay ML, Comuzzie AG, North KE, Butte NF, Voruganti VS. Genetic variants and physical activity interact to affect bone density in Hispanic children. BMC Pediatr 2021; 21:79. [PMID: 33588791 PMCID: PMC7883422 DOI: 10.1186/s12887-021-02537-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background Our aim was to investigate if moderate to vigorous physical activity (MVPA), calcium intake interacts with bone mineral density (BMD)-related single nucleotide polymorphisms (SNPs) to influence BMD in 750 Hispanic children (4-19y) of the cross-sectional Viva La Familia Study. Methods Physical activity and dietary intake were measured by accelerometers and multiple-pass 24 h dietary recalls, respectively. Total body and lumbar spine BMD were measured by dual energy X-ray absorptiometry. A polygenic risk score (PRS) was computed based on SNPs identified in published literature. Regression analysis was conducted with PRSs, MVPA and calcium intake with total body and lumbar spine BMD. Results We found evidence of statistically significant interaction effects between the PRS and MVPA on total body BMD and lumbar spine BMD (p < 0.05). Higher PRS was associated with a lower total body BMD (β = − 0.040 ± 0.009, p = 1.1 × 10− 5) and lumbar spine BMD (β = − 0.042 ± 0.013, p = 0.0016) in low MVPA group, as compared to high MVPA group (β = − 0.015 ± 0.006, p = 0.02; β = 0.008 ± 0.01, p = 0.4, respectively). Discussion The study indicated that calcium intake does not modify the relationship between genetic variants and BMD, while it implied physical activity interacts with genetic variants to affect BMD in Hispanic children. Due to limited sample size of our study, future research on gene by environment interaction on bone health and functional studies to provide biological insights are needed. Conclusions Bone health in Hispanic children with high genetic risk for low BMD is benefitted more by MVPA than children with low genetic risk. Our results may be useful to predict disease risk and tailor dietary and physical activity advice delivery to people, especially children. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02537-y.
Collapse
Affiliation(s)
- Ruixue Hou
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sandra Laston
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Nitesh R Mehta
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Roman J Shypailo
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Margaret L Gourlay
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancy F Butte
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Venkata Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
| |
Collapse
|
3
|
Noirrit-Esclassan E, Valera MC, Tremollieres F, Arnal JF, Lenfant F, Fontaine C, Vinel A. Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications. Int J Mol Sci 2021; 22:ijms22041568. [PMID: 33557249 PMCID: PMC7913980 DOI: 10.3390/ijms22041568] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a multi-skilled tissue, protecting major organs, regulating calcium phosphate balance and producing hormones. Its development during childhood determines height and stature as well as resistance against fracture in advanced age. Estrogens are key regulators of bone turnover in both females and males. These hormones play a major role in longitudinal and width growth throughout puberty as well as in the regulation of bone turnover. In women, estrogen deficiency is one of the major causes of postmenopausal osteoporosis. In this review, we will summarize the main clinical and experimental studies reporting the effects of estrogens not only in females but also in males, during different life stages. Effects of estrogens on bone involve either Estrogen Receptor (ER)α or ERβ depending on the type of bone (femur, vertebrae, tibia, mandible), the compartment (trabecular or cortical), cell types involved (osteoclasts, osteoblasts and osteocytes) and sex. Finally, we will discuss new ongoing strategies to increase the benefit/risk ratio of the hormonal treatment of menopause.
Collapse
Affiliation(s)
- Emmanuelle Noirrit-Esclassan
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Pediatric Dentistry, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
| | - Marie-Cécile Valera
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Pediatric Dentistry, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
| | - Florence Tremollieres
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Menopause and Metabolic Bone Disease Center, Hôpital Paule de Viguier, University Hospital of Toulouse, F-31000 Toulouse, France
| | - Jean-Francois Arnal
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Françoise Lenfant
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Coralie Fontaine
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Alexia Vinel
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Periodontology, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
- Correspondence: ; Tel.: +33-5-61-77-36-10
| |
Collapse
|
4
|
Montazeri-Najafabady N, Dabbaghmanesh MH, Mohammadian Amiri R, Mirzai Z. Influence of Estrogen Receptor Alpha Polymorphism on Bone Mineral Density in Iranian Children. Hum Hered 2019; 84:82-89. [PMID: 31655805 DOI: 10.1159/000502230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bone mass acquisition in childhood is directly linked to adult bone mineral density (BMD) and fracture risk. BMD is a heritable trait, more than 70% of its variability among a population is affected by genetic factors. OBJECTIVES In the present study, we wanted to investigate the association between estrogen receptor alpha (ESR1) polymorphisms, PvuII (rs2234693) and XbaI (rs9340799), and bone area, bone mineral content (BMC), and BMD of the lumbar spine, femoral neck, and also of the total body less the head in Iranian children. METHODS The ESR1 gene PvuII and XbaI genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. Bone area, BMC, BMD, and bone mineral apparent density (BMAD) were assessed by dual-energy X-ray absorptiometry (DEXA). Linear regression was carried out to examine the effects of the ESR1 (PvuII and XbaI) polymorphisms on DEXA outputs when adjusted for confounding factors (i.e., age, sex, BMI, and pubertal stage) in 3 models. RESULTS ESR1 (PvuII) gene polymorphisms (CT vs. CC) showed significant effects on the BMC of the total body less the head in all 3 models. For ESR1 (XbaI), individuals with the AG genotype had higher lumbar spine BMD and lumbar spine BMAD compared to other genotypes. CONCLUSIONS It seems that the PvuII and XbaI polymorphisms of ESR1 could be associated with BMC and BMD variation in Iranian children and adolescents.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Rajeeh Mohammadian Amiri
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mirzai
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Georgiou L, Kivell TL, Pahr DH, Buck LT, Skinner MM. Trabecular architecture of the great ape and human femoral head. J Anat 2019; 234:679-693. [PMID: 30793309 PMCID: PMC6481414 DOI: 10.1111/joa.12957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 11/27/2022] Open
Abstract
Studies of femoral trabecular structure have shown that the orientation and volume of bone are associated with variation in loading and could be informative about individual joint positioning during locomotion. In this study, we analyse for the first time trabecular bone patterns throughout the femoral head using a whole-epiphysis approach to investigate how potential trabecular variation in humans and great apes relates to differences in locomotor modes. Trabecular architecture was analysed using microCT scans of Pan troglodytes (n = 20), Gorilla gorilla (n = 14), Pongo sp. (n = 5) and Homo sapiens (n = 12) in medtool 4.1. Our results revealed differences in bone volume fraction (BV/TV) distribution patterns, as well as overall trabecular parameters of the femoral head between great apes and humans. Pan and Gorilla showed two regions of high BV/TV in the femoral head, consistent with hip posture and loading during two discrete locomotor modes: knuckle-walking and climbing. Most Pongo specimens also displayed two regions of high BV/TV, but these regions were less discrete and there was more variability across the sample. In contrast, Homo showed only one main region of high BV/TV in the femoral head and had the lowest BV/TV, as well as the most anisotropic trabeculae. The Homo trabecular structure is consistent with stereotypical loading with a more extended hip compared with great apes, which is characteristic of modern human bipedalism. Our results suggest that holistic evaluations of femoral head trabecular architecture can reveal previously undetected patterns linked to locomotor behaviour in extant apes and can provide further insight into hip joint loading in fossil hominins and other primates.
Collapse
Affiliation(s)
- Leoni Georgiou
- Skeletal Biology Research CentreSchool of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Tracy L. Kivell
- Skeletal Biology Research CentreSchool of Anthropology and ConservationUniversity of KentCanterburyUK
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Dieter H. Pahr
- Institute for Lightweight Design and Structural BiomechanicsVienna University of TechnologyViennaAustria
- Department of Anatomy and BiomechanicsKarl Landsteiner Private University of Health SciencesKrems an der DonauAustria
| | - Laura T. Buck
- Department of AnthropologyUniversity of CaliforniaDavisCAUSA
| | - Matthew M. Skinner
- Skeletal Biology Research CentreSchool of Anthropology and ConservationUniversity of KentCanterburyUK
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
6
|
Winn NC, Jurrissen TJ, Grunewald ZI, Cunningham RP, Woodford ML, Kanaley JA, Lubahn DB, Manrique-Acevedo C, Rector RS, Vieira-Potter VJ, Padilla J. Estrogen receptor-α signaling maintains immunometabolic function in males and is obligatory for exercise-induced amelioration of nonalcoholic fatty liver. Am J Physiol Endocrinol Metab 2019; 316:E156-E167. [PMID: 30512987 PMCID: PMC6397364 DOI: 10.1152/ajpendo.00259.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of estrogen receptor-α (ERα) signaling in immunometabolic function is established in females. However, its necessity in males, while appreciated, requires further study. Accordingly, we first determined whether lower metabolic function in male mice compared with females is related to reduced ERα expression. ERα protein expression in metabolically active tissues was lower in males than in females, and this lower expression was associated with worse glucose tolerance. Second, we determined whether ERα is required for optimal immunometabolic function in male mice consuming a chow diet. Despite lower expression of ERα in males, its genetic ablation (KO) caused an insulin-resistant phenotype characterized by enhanced adiposity, glucose intolerance, hepatic steatosis, and metaflammation in adipose tissue and liver. Last, we determined whether ERα is essential for exercise-induced metabolic adaptations. Twelve-week-old wild-type (WT) and ERα KO mice either remained sedentary (SED) or were given access to running wheels (WR) for 10 wk while fed an obesogenic diet. Body weight and fat mass were lower in WR mice regardless of genotype. Daily exercise obliterated immune cell infiltration and inflammatory gene transcripts in adipose tissue in both genotypes. In the liver, however, wheel running suppressed hepatic steatosis and inflammatory gene transcripts in WT but not in KO mice. In conclusion, the present findings indicate that ERα is required for optimal immunometabolic function in male mice despite their reduced ERα protein expression in metabolically active tissues. Furthermore, for the first time, we show that ERα signaling appears to be obligatory for exercise-induced prevention of hepatic steatosis.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Rory P Cunningham
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri , Columbia, Missouri
| | - Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, University of Missouri , Columbia, Missouri
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri , Columbia, Missouri
- Research Service, Harry S. Truman Memorial Hospital, University of Missouri , Columbia, Missouri
| | | | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
- Department of Child Health, University of Missouri , Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| |
Collapse
|
7
|
Amorim T, Durães C, Machado JC, Metsios GS, Wyon M, Maia J, Flouris AD, Marques F, Nogueira L, Adubeiro N, Koutedakis Y. Genetic variation in Wnt/β-catenin and ER signalling pathways in female and male elite dancers and its associations with low bone mineral density: a cross-section and longitudinal study. Osteoporos Int 2018; 29:2261-2274. [PMID: 29978256 DOI: 10.1007/s00198-018-4610-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022]
Abstract
UNLABELLED The association of genetic polymorphisms with low bone mineral density in elite athletes have not been considered previously. The present study found that bone mass phenotypes in elite and pre-elite dancers are related to genetic variants at the Wnt/β-catenin and ER pathways. INTRODUCTION Some athletes (e.g. gymnasts, dancers, swimmers) are at increased risk for low bone mineral density (BMD) which, if untreated, can lead to osteoporosis. To investigate the association of genetic polymorphisms in the oestrogen receptor (ER) and the Wnt/β-catenin signalling pathways with low BMD in elite and pre-elite dancers (impact sport athletes). METHODS The study included three phases: (1) 151 elite and pre-elite dancers were screened for the presence of low BMD and traditional osteoporosis risk factors (low body weight, menstrual disturbances, low energy availability); (2) a genetic association study was conducted in 151 elite and pre-elite dancers and age- and sex- controls; (3) serum sclerostin was measured in 101 pre-elite dancers and age- and sex-matched controls within a 3-year period. RESULTS Eighty dancers revealed low BMD: 56.3% had at least one traditional osteoporosis risk factor, whereas 28.6% did not display any risk factor (37.2% revealed traditional osteoporosis risk factors, but had normal BMD). Body weight, menstrual disturbances and energy availability did not fully predict bone mass acquisition. Instead, genetic polymorphisms in the ER and Wnt/β-catenin pathways were found to be risk factors for low BMD in elite dancers. Sclerostin was significantly increased in dancers compared to controls during the 3-year follow-up (p < 0.05). CONCLUSIONS Elite and pre-elite dancers demonstrate high prevalence of low BMD, which is likely related to genetic variants at the Wnt/β-catenin and ER pathways and not to factors usually associated with BMD in athletes (body weight, menstrual disturbances, energy deficiency).
Collapse
Affiliation(s)
- T Amorim
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Gorway Rd, Walsall, WS1 3BD, UK.
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal.
| | - C Durães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - J C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - G S Metsios
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Gorway Rd, Walsall, WS1 3BD, UK
- FAME Laboratory, School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| | - M Wyon
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Gorway Rd, Walsall, WS1 3BD, UK
| | - J Maia
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal
| | - A D Flouris
- FAME Laboratory, School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| | - F Marques
- Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - L Nogueira
- School of Health Technology of Porto, Polytechnic Institute of Porto, Porto, Portugal
| | - N Adubeiro
- School of Health Technology of Porto, Polytechnic Institute of Porto, Porto, Portugal
| | - Y Koutedakis
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Gorway Rd, Walsall, WS1 3BD, UK
- FAME Laboratory, School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| |
Collapse
|
8
|
Association of glutathione S-transferase M1 and T1 null/present polymorphism with physical performance in the Korean population. Genes Genomics 2018; 41:71-78. [PMID: 30203367 DOI: 10.1007/s13258-018-0737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Human physical performance is a highly complex phenotype that is influenced by various factors. In particular, genetic factors related to muscle fiber type, bone density, muscle performance, and metabolic processes are known to contribute in varying degrees to athlete status and physical performance in various ethnic groups. To investigate the relationship between these genetic factors and physical performances, we genotyped five genetic polymorphisms (ACE Ins/Del, ACTN3 R577X, ER-α C/T, GSTM1 null/present, and GSTT1 null/present) in 111 Korean athletes and 145 controls. We examined genotype and allele frequency differences between athletes and control groups, along with the odds ratios, using Chi square. One-way analysis of variance (ANOVA) was used to test the significance of differences in continuous variables between the multiple genetic polymorphisms and physical performance test results. The GSTM1 polymorphism exhibited a highly significant association in athletes (p = 0.017). Combined analysis of GSTM1 and GSTT1 also revealed significant differences between athletes and controls (p < 0.05). In the analysis of physical performance within athletes, the ER-α gene polymorphism was associated with the sargent jump and the side-step (p < 0.05), and the GSTM1 gene polymorphism was significantly associated with the 20 m shuttle run and sit-up (p < 0.05). Thus, our data imply that GSTM1 and ER-α gene polymorphisms were associated with physical performance in Korean athletes, although functional studies with larger sample sizes are necessary to elaborate upon these findings.
Collapse
|
9
|
Georgiou L, Kivell TL, Pahr DH, Skinner MM. Trabecular bone patterning in the hominoid distal femur. PeerJ 2018; 6:e5156. [PMID: 30002981 PMCID: PMC6035864 DOI: 10.7717/peerj.5156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In addition to external bone shape and cortical bone thickness and distribution, the distribution and orientation of internal trabecular bone across individuals and species has yielded important functional information on how bone adapts in response to load. In particular, trabecular bone analysis has played a key role in studies of human and nonhuman primate locomotion and has shown that species with different locomotor repertoires display distinct trabecular architecture in various regions of the skeleton. In this study, we analyse trabecular structure throughout the distal femur of extant hominoids and test for differences due to locomotor loading regime. METHODS Micro-computed tomography scans of Homo sapiens (n = 11), Pan troglodytes (n = 18), Gorilla gorilla (n = 14) and Pongo sp. (n = 7) were used to investigate trabecular structure throughout the distal epiphysis of the femur. We predicted that bone volume fraction (BV/TV) in the medial and lateral condyles in Homo would be distally concentrated and more anisotropic due to a habitual extended knee posture at the point of peak ground reaction force during bipedal locomotion, whereas great apes would show more posteriorly concentrated BV/TV and greater isotropy due to a flexed knee posture and more variable hindlimb use during locomotion. RESULTS Results indicate some significant differences between taxa, with the most prominent being higher BV/TV in the posterosuperior region of the condyles in Pan and higher BV/TV and anisotropy in the posteroinferior region in Homo. Furthermore, trabecular number, spacing and thickness differ significantly, mainly separating Gorilla from the other apes. DISCUSSION The trabecular architecture of the distal femur holds a functional signal linked to habitual behaviour; however, there was more similarity across taxa and greater intraspecific variability than expected. Specifically, there was a large degree of overlap in trabecular structure across the sample, and Homo was not as distinct as predicted. Nonetheless, this study offers a comparative sample of trabecular structure in the hominoid distal femur and can contribute to future studies of locomotion in extinct taxa.
Collapse
Affiliation(s)
- Leoni Georgiou
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
| | - Tracy L. Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dieter H. Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
- Department of Anatomy and Biomechanics, Karl Landsteiner Private University of Health Sciences, Krems an der Donau, Austria
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Frølich J, Hansen S, Winkler LAD, Andresen AK, Hermann AP, Støving RK. The Role of Body Weight on Bone in Anorexia Nervosa: A HR-pQCT Study. Calcif Tissue Int 2017; 101:24-33. [PMID: 28224178 PMCID: PMC5486942 DOI: 10.1007/s00223-017-0254-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/06/2017] [Indexed: 01/13/2023]
Abstract
Anorexia nervosa (AN) is associated with decreased bone mineral density and increased risk of fracture. The aim of this study was to assess bone geometry, volumetric bone mineral density (vBMD), trabecular microarchitecture and estimated failure load in weight-bearing vs. non-weight-bearing bones in AN. We included twenty-five females with AN, and twenty-five female controls matched on age and height. Bone geometry, vBMD and trabecular microarchitecture were assessed using high-resolution peripheral quantitative computed tomography of the distal radius and tibia. At both sites, cortical perimeter and total bone area were similar in patients and controls. Total vBMD was lower in the AN group in the tibia (p < 0.0005) but not in the radius. In the tibia, cortical thickness was approximately 25% lower (p < 0.0005) in the AN group, whereas there was no significant difference in the radius. In terms of trabecular microarchitecture, all indices [bone volume/tissue volume (BV/TV); trabecular thickness (Tb.Th.), trabecular number (Tb.N) and trabecular spacing (Tb.Sp.)] were impaired in AN in the tibia (p values range < 0.01-0.0001). In the radius, BV/TV and Tb.N were lower (p < 0.05 and p < 0.001, respectively); Tb.Sp. was higher (p < 0.001), whereas Tb.Th. did not differ, compared to controls. Estimated failure load was lower in patients in both the radius and the tibia (p < 0.0005 and p < 0.0001, respectively), most pronounced in the tibia. In conclusion, the impairment of cortical thickness and estimated failure load were significantly more pronounced in the weight-bearing tibia, compared to the non-weight-bearing radius, implying a direct effect of low body weight on bone loss in AN.
Collapse
Affiliation(s)
- Jacob Frølich
- Centre for Eating Disorders, Department of Endocrinology, Odense University Hospital & Psychiatry of Region Southern Denmark, University of Southern Denmark, Odense, Denmark.
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.
- Centre of Eating Disorders and Department of Endocrinology, Odense University Hospital, Kloevervaenget 10, 6th floor, 5000, Odense C, Denmark.
| | - Stinus Hansen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Laura Al-Dakhiel Winkler
- Centre for Eating Disorders, Department of Endocrinology, Odense University Hospital & Psychiatry of Region Southern Denmark, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Andreas K Andresen
- Center for Spine Surgery and Research, Region of Southern Denmark, Middelfart, Denmark
| | | | - René K Støving
- Centre for Eating Disorders, Department of Endocrinology, Odense University Hospital & Psychiatry of Region Southern Denmark, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
11
|
Kitjaroentham A, Hananantachai H, Phonrat B, Preutthipan S, Tungtrongchitr R. Low density lipoprotein receptor-related protein 5 gene polymorphisms and osteoporosis in Thai menopausal women. J Negat Results Biomed 2016; 15:16. [PMID: 27582019 PMCID: PMC5007848 DOI: 10.1186/s12952-016-0059-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Abstract
Background Osteoporosis, characterized by low bone mineral density (BMD) and high bone fracture risk, is prevalent in Thai menopausal women. Genetic factors are known to play a key role in BMD. Low density lipoprotein receptor-related protein 5 (LRP5), a co-receptor in the Wnt/beta-catenin pathway, is involved in many aspects of bone biology. As coding single nucleotide polymorphisms (cSNPs) of LRP5, including A1330V (rs3736228), and Asian-related Q89R (rs41494349) and N740N (rs2306862), are associated with lowered BMD, this study aimed to determine the relationship between these LRP5 polymorphisms and BMD in 277 Thai menopausal women. Results Only rs3736228 deviated from the Hardy–Weinberg equilibrium of allele frequency (p = 0.022). The median, range and p value for the BMD related to each SNP parameter were compared (Mann–Whitney U test). Significant differences were observed between wild-type and risk alleles for both rs3736228 (total radial, p = 0.011; and radial 33, p = 0.001) and rs2306862 (radial 33: p = 0.015) SNPs, with no significant difference for rs41494349 SNP. Linkage disequilibrium was strong for both rs3736228 and rs2306862 SNPs. Haplotype analysis identified high CC frequency in both normal and osteopenia/osteoporosis groups, with a significant odds ratio for carrying the TT haplotype; however, this was non-significant after adjusting for age. Multivariate binary logistic regression analysis performed for rs3736228 showed that individuals with a body mass index <25 kg/m2 had an increased risk of osteoporosis for each decade, but the polymorphism had no effect. Conclusions This study did not identify LRP5 polymorphisms as a risk factor for osteoporosis in Thai menopausal women. Further studies with larger sample sizes are needed to further clarify the role of LRP5 as a genetic determinant of osteoporosis. Electronic supplementary material The online version of this article (doi:10.1186/s12952-016-0059-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anong Kitjaroentham
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Hathairad Hananantachai
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benjaluck Phonrat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sangchai Preutthipan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rungsunn Tungtrongchitr
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Mitchell JA, Chesi A, Elci O, McCormack SE, Roy SM, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA, Kelly A, Grant SF, Zemel BS. Physical Activity Benefits the Skeleton of Children Genetically Predisposed to Lower Bone Density in Adulthood. J Bone Miner Res 2016; 31:1504-12. [PMID: 27172274 PMCID: PMC4970901 DOI: 10.1002/jbmr.2872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/03/2023]
Abstract
Both genetics and physical activity (PA) contribute to bone mineral density (BMD), but it is unknown if the benefits of physical activity on childhood bone accretion depend on genetic risk. We, therefore, aimed to determine if PA influenced the effect of bone fragility genetic variants on BMD in childhood. Our sample comprised US children of European ancestry enrolled in the Bone Mineral Density in Childhood Study (N = 918, aged 5 to 19 years, and 52.4% female). We used a questionnaire to estimate hours per day spent in total, high-, and low-impact PA. We calculated a BMD genetic score (% BMD lowering alleles) using adult genome-wide association study (GWAS)-implicated BMD variants. We used dual-energy X-ray absorptiometry to estimate femoral neck, total hip, and spine areal-BMD and total body less head (TBLH) bone mineral content (BMC) Z-scores. The BMD genetic score was negatively associated with each bone Z-score (eg, TBLH-BMC: estimate = -0.03, p = 1.3 × 10(-6) ). Total PA was positively associated with bone Z-scores; these associations were driven by time spent in high-impact PA (eg, TBLH-BMC: estimate = 0.05, p = 4.0 × 10(-10) ) and were observed even for children with lower than average bone Z-scores. We found no evidence of PA-adult genetic score interactions (p interaction > 0.05) at any skeletal site, and there was no evidence of PA-genetic score-Tanner stage interactions at any skeletal site (p interaction > 0.05). However, exploratory analyses at the individual variant level revealed that PA statistically interacted with rs2887571 (ERC1/WNT5B) to influence TBLH-BMC in males (p interaction = 7.1 × 10(-5) ), where PA was associated with higher TBLH-BMC Z-score among the BMD-lowering allele carriers (rs2887571 AA homozygotes: estimate = 0.08 [95% CI 0.06, 0.11], p = 2.7 × 10(-9) ). In conclusion, the beneficial effect of PA on bone, especially high-impact PA, applies to the average child and those genetically predisposed to lower adult BMD (based on GWAS-implicated BMD variants). Independent replication of our exploratory individual variant findings is warranted. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jonathan A Mitchell
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Okan Elci
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana E McCormack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sani M Roy
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heidi J Kalkwarf
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan M Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha, NE, USA
| | - Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - John A Shepherd
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan Fa Grant
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Klein-Nulend J, van Oers RFM, Bakker AD, Bacabac RG. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J Biomech 2014; 48:855-65. [PMID: 25582356 DOI: 10.1016/j.jbiomech.2014.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/26/2022]
Abstract
Adaptation of bone to mechanical stresses normally produces a bone architecture that combines a proper resistance against failure with a minimal use of material. This adaptive process is governed by mechanosensitive osteocytes that transduce the mechanical signals into chemical responses, i.e. the osteocytes release signaling molecules, which orchestrate the recruitment and activity of bone forming osteoblasts and/or bone resorbing osteoclasts. Computer models have shown that the maintenance of a mechanically-efficient bone architecture depends on the intensity and spatial distribution of the mechanical stimulus as well as on the osteocyte response. Osteoporosis is a condition characterized by a reduced bone mass and a compromized resistance of bone against mechanical loads, which has led us to hypothesize that mechanotransduction by osteocytes is altered in osteoporosis. One of the major causal factors for osteoporosis is the loss of estrogen, the major hormonal regulator of bone metabolism. Loss of estrogen may increase osteocyte-mediated activation of bone remodeling, resulting in impaired bone mass and architecture. In this review we highlight current insights on how osteocytes perceive mechanical stimuli placed on whole bones. Particular emphasis is placed on the role of estrogen in signaling pathway activation by mechanical stimuli, and on computer simulation in combination with cell biology to unravel biological processes contributing to bone strength.
Collapse
Affiliation(s)
- Jenneke Klein-Nulend
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.
| | - René F M van Oers
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Department of Dental Materials Science, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Rommel G Bacabac
- Department of Physics, Medical Biophysics Group, University of San Carlos, Cebu City, Philippines
| |
Collapse
|
14
|
Influence of estrogen receptor α polymorphisms on bone density in response to habitual exercise in Japanese postmenopausal women. ScientificWorldJournal 2014; 2014:593927. [PMID: 25152917 PMCID: PMC4134819 DOI: 10.1155/2014/593927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/15/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
Estrogen receptor α (ER α) is one of candidate genes for osteoporosis. This study examined the influence of ER α gene, PvuII, and XbaI genotypes on bone density of calcaneus in response to habitual exercise. ER α polymorphisms were detected using PvuII and XbaI restriction enzymes in 316 Japanese postmenopausal women. The bone density was significantly lower in the women carrying PP, pp, or xx genotype without habitual exercise than in the age-matched women without those genotypes. The women carrying Pp genotype without habitual exercise had normal bone density compared to those without Pp genotype. The women carrying PPxx or ppxx polymorphism without habitual exercise had low bone density compared to those with habitual exercise. Thus, the reduction of bone density was attenuated in the women carrying PPxx or ppxx with habitual exercise. In addition, habitual exercise was highly effective for the bone density in the women carrying xx homozygote. These findings indicate that analyses of XbaI and PvuII polymorphisms of ER α may be useful to predict the effect of exercise on bone density, and habitual exercise attenuates the reduction of bone density in women with some genotypes.
Collapse
|
15
|
Michalopoulou M, Kambas A, Leontsini D, Chatzinikolaou A, Draganidis D, Avloniti A, Tsoukas D, Michopoulou E, Lyritis GP, Papaioannou N, Tournis S, Fatouros IG. Physical activity is associated with bone geometry of premenarcheal girls in a dose-dependent manner. Metabolism 2013; 62:1811-8. [PMID: 24054822 DOI: 10.1016/j.metabol.2013.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine the relationship between habitual physical activity (PA) level and peripheral qualitative computed tomography-determined quantitative tibia characteristics of premenarcheal girls. METHODS Premenarcheal girls matched for age (10-13 years), bone age and maturity level were assigned into: a) low PA group (LPA, n=25), b) moderate PA group (MPA, n=17), and c) high PA group (HPA, n=18). Participants' daily dietary intake, tibia's geometry and serum levels of calcium and vitamin D were assessed. RESULTS Premenarcheal girls demonstrating HPA exhibited greater pericortical thickness, cross-sectional area (CSA) and bone mineral content (BMC) (p<.001) in cortical bone, greater BMC, volumetric bone density (vBMD) and polar stress strength index (SSIp) in trabecular bone (p<0.001-0.05) and greater total BMC (p<.05) and vBMD (p<.01) when compared to their physically inactive or moderately active counterparts. MPA exhibited greater values of cortical BMC (p<.01) and SSIp (p<.05) than LPA. Partial correlation analysis (adjusted for BMI) revealed modest associations between PA score and bone geometry parameters (r=0.36-0.49, p<.05) at 38% of tibia length. CONCLUSIONS Habitual PA affects geometry of both cortical and trabecular areas of a long bone of premenarcheal girls in a dose-dependent manner. Specifically, PA increases both the density and size of cortical bone but only the density of trabecular bone during preadolescence. Given the importance of peak bone mass for future fracture risk, high levels of PA during childhood could be a major target for public health interventions aimed at optimising bone health in prepubertal children when the greatest bone gains occur.
Collapse
Affiliation(s)
- Maria Michalopoulou
- Department of Physical Education and Sport Sciences, Democritus University of Thrace, University Campus, 69100 Komotini, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Estrogen receptors' roles in the control of mechanically adaptive bone (re)modeling. BONEKEY REPORTS 2013; 2:413. [PMID: 24422120 DOI: 10.1038/bonekey.2013.147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/17/2023]
Abstract
The discovery that estrogen receptors (ERs) are involved in bone cells' responses to mechanical strain offered the prospect of establishing the link between declining levels of circulating estrogen and the progressive failure of the mechanically adaptive mechanisms that should maintain structurally appropriate levels of bone mass in age-related and post-menopausal osteoporosis. Such clarification remains elusive but studies have confirmed ligand-independent involvement of ERs as facilitators in a number of the pathways by which mechanical strain stimulates osteoblast proliferation and bone formation. The presence of α and β forms of ER that oppose, supplement or replace one another has complicated interpretation of studies to identify their individual roles when both are present in normal amounts. However, it appears that, in mice at least, ERα promotes cortical bone mass in both males and females through its effects in early members of the osteoblast lineage, but enhances loading-related cortical bone gain only in females. In addition to its role as a potential replacement for ERα, and modifier of ERα activity, the less well-studied ERβ appears to facilitate rapid early effects of strain including activation of extracellular signal-regulated kinase and downregulation of Sost in well-differentiated cells of the osteoblast lineage including osteocytes. If these different roles are substantiated by further studies, it would appear that under normal circumstances ERα contributes primarily to the size and extent of bones' osteogenic response to load bearing through facilitating anabolic influences in osteoblasts and osteoblast progenitors, whereas ERβ is more involved in the strain-related responses generated within resident cells including osteocytes.
Collapse
|
17
|
Windahl SH, Saxon L, Börjesson AE, Lagerquist MK, Frenkel B, Henning P, Lerner UH, Galea GL, Meakin LB, Engdahl C, Sjögren K, Antal MC, Krust A, Chambon P, Lanyon LE, Price JS, Ohlsson C. Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. J Bone Miner Res 2013; 28:291-301. [PMID: 22972752 PMCID: PMC3575695 DOI: 10.1002/jbmr.1754] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023]
Abstract
Estrogen receptor-α (ERα) is crucial for the adaptive response of bone to loading but the role of endogenous estradiol (E2) for this response is unclear. To determine in vivo the ligand dependency and relative roles of different ERα domains for the osteogenic response to mechanical loading, gene-targeted mouse models with (1) a complete ERα inactivation (ERα(-/-) ), (2) specific inactivation of activation function 1 (AF-1) in ERα (ERαAF-1(0) ), or (3) specific inactivation of ERαAF-2 (ERαAF-2(0) ) were subjected to axial loading of tibia, in the presence or absence (ovariectomy [ovx]) of endogenous E2. Loading increased the cortical bone area in the tibia mainly as a result of an increased periosteal bone formation rate (BFR) and this osteogenic response was similar in gonadal intact and ovx mice, demonstrating that E2 (ligand) is not required for this response. Female ERα(-/-) mice displayed a severely reduced osteogenic response to loading with changes in cortical area (-78% ± 15%, p < 0.01) and periosteal BFR (-81% ± 9%, p < 0.01) being significantly lower than in wild-type (WT) mice. ERαAF-1(0) mice also displayed a reduced response to mechanical loading compared with WT mice (cortical area -40% ± 11%, p < 0.05 and periosteal BFR -41% ± 8%, p < 0.01), whereas the periosteal osteogenic response to loading was unaffected in ERαAF-2(0) mice. Mechanical loading of transgenic estrogen response element (ERE)-luciferase reporter mice did not increase luciferase expression in cortical bone, suggesting that the loading response does not involve classical genomic ERE-mediated pathways. In conclusion, ERα is required for the osteogenic response to mechanical loading in a ligand-independent manner involving AF-1 but not AF-2.
Collapse
Affiliation(s)
- Sara H Windahl
- Department of Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Karasik D, Cohen-Zinder M. The genetic pleiotropy of musculoskeletal aging. Front Physiol 2012; 3:303. [PMID: 22934054 PMCID: PMC3429074 DOI: 10.3389/fphys.2012.00303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/11/2012] [Indexed: 12/30/2022] Open
Abstract
Musculoskeletal aging is detrimental to multiple bodily functions and starts early, probably in the fourth decade of an individual's life. Sarcopenia is a health problem that is expected to only increase as a greater portion of the population lives longer; prevalence of the related musculoskeletal diseases is similarly expected to increase. Unraveling the biological and biomechanical associations and molecular mechanisms underlying these diseases represents a formidable challenge. There are two major problems making disentangling the biological complexity of musculoskeletal aging difficult: (a) it is a systemic, rather than "compartmental," problem, which should be approached accordingly, and (b) the aging per se is neither well defined nor reliably measurable. A unique challenge of studying any age-related condition is a need of distinguishing between the "norm" and "pathology," which are interwoven throughout the aging organism. We argue that detecting genes with pleiotropic functions in musculoskeletal aging is needed to provide insights into the potential biological mechanisms underlying inter-individual differences insusceptibility to the musculoskeletal diseases. However, exploring pleiotropic relationships among the system's components is challenging both methodologically and conceptually. We aimed to focus on genetic aspects of the cross-talk between muscle and its "neighboring" tissues and organs (tendon, bone, and cartilage), and to explore the role of genetics to find the new molecular links between skeletal muscle and other parts of the "musculoskeleton." Identification of significant genetic variants underlying the musculoskeletal system's aging is now possible more than ever due to the currently available advanced genomic technologies. In summary, a "holistic" genetic approach is needed to study the systems's normal functioning and the disease predisposition in order to improve musculoskeletal health.
Collapse
Affiliation(s)
- David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University Safed, Israel
| | | |
Collapse
|
19
|
Saxon LK, Galea G, Meakin L, Price J, Lanyon LE. Estrogen receptors α and β have different gender-dependent effects on the adaptive responses to load bearing in cancellous and cortical bone. Endocrinology 2012; 153:2254-66. [PMID: 22416084 DOI: 10.1210/en.2011-1977] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To determine the effect of estrogen receptors (ER) α and β on bones' adaptive response to loading, we subjected the right tibiae of mice lacking ERα or ERβ activity to either axial loading or to disuse. Adaptive changes in architecture were assessed by comparing differences between the right (treated) and left (control) tibiae in these genotypes as assessed by microcomputed tomography. In female ERα(-/-) mice, the net-osteogenic response to loading was lower in cortical bone compared with their wild-type littermates (11.2 vs. 20.9% in ERα(+/+)), but it was higher in both cortical and cancellous bone of male ERα(-/-) mice (cortical 20.0 vs. 4.6% in ERα(+/+); cancellous 30.0 vs. 5.3% in ERα(+/+), P < 0.05). In ERβ(-/-) male and female mice, the net-osteogenic response to loading was higher in cortical bone (males 10.9 vs. 3.9% in ERβ(+/+); females 18.5 vs. 15.8% in ERβ(+/+), P < 0.05) but no different from controls in cancellous bone. The bone loss in response to disuse was less in cancellous bone of ERα(-/-) mice than in controls (-15.9 vs. -21.3%, respectively, P < 0.05) but no different at any other site or between any other groups. Our conclusion is that functional ERα enhances the net-osteogenic response to loading in cortical but not cancellous bone in female mice but reduces it in males. ERβ decreases the response to loading in cortical bone of males and females but has no effect in cancellous bone. Bone loss due to disuse in cortical bone is unaffected by ER status, but in cancellous bone, functional ERα contributes to greater disuse-related bone loss.
Collapse
Affiliation(s)
- L K Saxon
- The Royal Veterinary College, Royal College Street London, London NW1 OTU, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Curtis N, Jones MEH, Shi J, O'Higgins P, Evans SE, Fagan MJ. Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development. PLoS One 2011; 6:e29804. [PMID: 22216358 PMCID: PMC3247290 DOI: 10.1371/journal.pone.0029804] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically "over-designed" and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance.
Collapse
Affiliation(s)
- Neil Curtis
- Medical and Biological Engineering Research Group, Department of Engineering, University of Hull, Hull, United Kingdom.
| | | | | | | | | | | |
Collapse
|
21
|
Rauhio A, Uusi-Rasi K, Kunnas T, Nikkari ST, Kannus P, Sievänen H. Estrogen receptor-1 genotype is associated with bone structure in premenopausal obese women. Maturitas 2011; 68:362-7. [DOI: 10.1016/j.maturitas.2010.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 11/26/2022]
|
22
|
Bogl LH, Latvala A, Kaprio J, Sovijärvi O, Rissanen A, Pietiläinen KH. An investigation into the relationship between soft tissue body composition and bone mineral density in a young adult twin sample. J Bone Miner Res 2011; 26:79-87. [PMID: 20658559 PMCID: PMC3179317 DOI: 10.1002/jbmr.192] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to investigate the relationship of fat mass (FM) and lean mass (LM) with bone mineral density (BMD) independent of genetic effects. We also assessed the extent to which genetic and environmental influences explain the associations between these phenotypes. Body composition and BMD were measured using dual-energy X-ray absorptiometry in 57 monozygotic and 92 same-sex dizygotic twin pairs, aged 23 to 31 years, chosen to represent a wide range of intrapair differences in body mass index (BMI; 0 to 15.2 kg/m(2)). Heritability estimates were adjusted for height and gender. In multiple linear regression analysis, intrapair differences in both FM and LM were independently associated with intrapair differences in BMD at most skeletal sites after adjustment for gender and differences in height. Within monozygotic and dizygotic pairs, LM was a significantly stronger predictor of whole-body BMD than FM (p < .01). Additive genetic factors explained 87% [95% confidence interval (CI) 80%-91%), 81% (95% CI 70%-88%), and 61% (95% CI 41%-75%) of the variation in whole-body BMD, LM, and FM, respectively. Additive genetic factors also accounted for 69% to 88% of the covariance between LM and BMD and for 42% to 72% of the covariance between FM and BMD depending on the skeletal site. The genetic correlation between LM and whole-body BMD (r(g) = 0.46, 95% CI 0.32-0.58) was greater than that of FM and whole-body BMD (r(g) = 0.25, 95% CI 0.05-0.42). In conclusion, our data indicate that peak BMD is influenced by acquired body weight as well as genetic factors. In young adulthood, LM and BMD may have more genes in common than do FM and BMD.
Collapse
Affiliation(s)
- Leonie H Bogl
- The Finnish Twin Cohort Study, Department of Public Health, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
23
|
Karasik D, Kiel DP. Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 2010; 46:1226-37. [PMID: 20149904 PMCID: PMC4852133 DOI: 10.1016/j.bone.2010.01.382] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/20/2010] [Accepted: 01/29/2010] [Indexed: 12/25/2022]
Abstract
There are both theoretical and empirical underpinnings that provide evidence that the musculoskeletal system develops, functions, and ages as a whole. Thus, the risk of osteoporotic fracture can be viewed as a function of loading conditions and the ability of the bone to withstand the load. Both bone loss (osteoporosis) and muscle wasting (sarcopenia) are the two sides of the same coin, an involution of the musculoskeletal system. Skeletal loads are dominated by muscle action; both bone and muscle share environmental, endocrine and paracrine influences. Muscle also has an endocrine function by producing bioactive molecules, which can contribute to homeostatic regulation of both bone and muscle. It also becomes clear that bone and muscle share genetic determinants; therefore the consideration of pleiotropy is an important aspect in the study of the genetics of osteoporosis and sarcopenia. The aim of this review is to provide an additional evidence for existence of the tight genetic co-regulation of muscles and bones, starting early in development and still evident in aging. Recently, important papers were published, including those dealing with the cellular mechanisms and anatomic substrate of bone mechanosensitivity. Further evidence has emerged suggesting that the relationship between skeletal muscle and bone parameters extends beyond the general paradigm of bone responses to mechanical loading. We provide insights into several pathways and single genes, which apparently have a biologically plausible pleiotropic effect on both bones and muscles; the list is continuing to grow. Understanding the crosstalk between muscles and bones will translate into a conceptual framework aimed at studying the pleiotropic genetic relationships in the etiology of complex musculoskeletal disease. We believe that further progress in understanding the common genetic etiology of osteoporosis and sarcopenia will provide valuable insight into important biological underpinnings for both musculoskeletal conditions. This may translate into new approaches to reduce the burden of both conditions, which are prevalent in the elderly population.
Collapse
Affiliation(s)
- David Karasik
- Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA 02131, USA.
| | | |
Collapse
|
24
|
Baldwin KM, Haddad F. Research in the exercise sciences: where we are and where do we go from here--Part II. Exerc Sport Sci Rev 2010; 38:42-50. [PMID: 20335735 PMCID: PMC2846553 DOI: 10.1097/jes.0b013e3181d49644] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This decadal perspective summarizes novel, insightful observations achieved in exercise science. The topics span genomics and gene function, epigenetics, cell signaling, epidemiological phenomena, and other important areas. A future strategy is presented along two parallel, integrated paths involving the following: 1) a continuance of genomic discovery and gene function, and 2) classical biochemical/physiological approaches toward solving biological- and health/disease-related phenomena.
Collapse
Affiliation(s)
- Kenneth M Baldwin
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
25
|
Zaman G, Saxon LK, Sunters A, Hilton H, Underhill P, Williams D, Price JS, Lanyon LE. Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen receptor alpha and disuse. Bone 2010; 46:628-42. [PMID: 19857613 PMCID: PMC2887492 DOI: 10.1016/j.bone.2009.10.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/11/2009] [Accepted: 10/17/2009] [Indexed: 12/18/2022]
Abstract
Loading-related changes in gene expression in resident cells in the tibia of female mice in the contexts of normality (WT), estrogen deficiency (WT-OVX), absence of estrogen receptor alpha (ERalpha(-/-)) and disuse due to sciatic neurectomy (WT-SN) were established by microarray. Total RNA was extracted from loaded and contra-lateral non-loaded tibiae at selected time points after a single, short period of dynamic loading sufficient to engender an osteogenic response. There were marked changes in the expression of many genes according to context as well as in response to loading within those contexts. In WT mice at 3, 8, 12 and 24 h after loading the expression of 642, 341, 171 and 24 genes, respectively, were differentially regulated compared with contra-lateral bones which were not loaded. Only a few of the genes differentially regulated by loading in the tibiae of WT mice have recognized roles in bone metabolism or have been linked previously to osteogenesis (Opn, Sost, Esr1, Tgfb1, Lrp1, Ostn, Timp, Mmp, Ctgf, Postn and Irs1, BMP and DLX5). The canonical pathways showing the greatest loading-related regulation were those involving pyruvate metabolism, mitochondrial dysfunction, calcium-induced apoptosis, glycolysis/gluconeogenesis, aryl hydrocarbon receptor and oxidative phosphorylation. In the tibiae from WT-OVX, ERalpha(-/-) and WT-SN mice, 440, 439 and 987 genes respectively were differentially regulated by context alone compared to WT. The early response to loading in tibiae of WT-OVX mice involved differential regulation compared to their contra-lateral non-loaded pair of fewer genes than in WT, more down-regulation than up-regulation and a later response. This was shared by WT-SN. In tibiae of ERalpha(-/-) mice, the number of genes differentially regulated by loading was markedly reduced at all time points. These data indicate that in resident bone cells, both basal and loading-related gene expression is substantially modified by context. Many of the genes differentially regulated by the earliest loading-related response were primarily involved in energy metabolism and were not specific to bone.
Collapse
Affiliation(s)
- Gul Zaman
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yin J, Zhang Q, Liu A, Du W, Wang X, Hu X, Ma G. Factors affecting calcium balance in Chinese adolescents. Bone 2010; 46:162-6. [PMID: 19796716 DOI: 10.1016/j.bone.2009.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 11/18/2022]
Abstract
Chinese dietary reference intakes (DRIs) for calcium were developed mainly from studies conducted amongst Caucasians, yet a recent review showed that reference calcium intakes for Asians are likely to be different from those of Caucasians (Lee and Jiang, 2008). In order to develop calcium DRIs for Chinese adolescents, it is necessary to explore the characteristics and potential influencing factors of calcium metabolic balance in Chinese adolescents. A total of 80 students (15.1+/-0.8 years) were recruited stratified by gender from a 1-year calcium supplementation study. Subjects were randomly designed to four groups and supplemented with calcium carbonate tablets providing elemental calcium at 63, 354, 660, and 966 mg/day, respectively. Subjects consumed food from a 3-day cycle menu prepared by staff for 10 days. Elemental calcium in samples of foods, feces, and urine was determined in duplicates by inductively coupled plasma atomic emission spectrometry. The total calcium intake ranged from 352 to 1323 mg/day. The calcium apparent absorption efficiency and retention in boys were significantly higher than that in girls (68.7% vs. 46.4%, 480 mg/day vs. 204 mg/day, P<0.05). Calcium retention increased with calcium intakes, but did not reach a plateau. Calcium absorption efficiency in boys increased with calcium intake up to 665 mg/day, and decreased after that. In girls, calcium absorption efficiency decreased with calcium intake. Calcium absorption efficiency increased within 1 year after first spermatorrhea in boys, but decreased with pubertal development in girls. Sex, calcium intake, age, and pubertal development were the most important determinants of calcium absorption (R(2)=0.508, P<0.01) and retention (R(2)=0.745, P<0.05). This study indicates that sex, calcium intake, age, and pubertal development are important factors for calcium retention and absorption during growth, which should be considered for the development of calcium DRIs for Chinese adolescents.
Collapse
Affiliation(s)
- Jing Yin
- National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, 7 Pan Jia Yuan Nan Li, Beijing 100021, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Kim W, Cho HI, Kim KC, Lee HS, So YH. Assessment of association of estrogen receptor-α gene polymorphism with physical activity and bone metabolism. Genes Genomics 2009. [DOI: 10.1007/bf03191251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
|
29
|
Teran-Garcia M, Rankinen T, Bouchard C. Genes, exercise, growth, and the sedentary, obese child. J Appl Physiol (1985) 2008; 105:988-1001. [PMID: 18535128 DOI: 10.1152/japplphysiol.00070.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is still not possible to provide an evidence-based answer to the question of whether regular exercise is essential for normal growth. It is also unclear whether very low levels of exercise result in growth deficits. Regular exposure to exercise is characterized by heterogeneity in responsiveness, with most individuals experiencing improvements in fitness traits but a significant proportion showing only very minor gains. Whether a sedentary mode of life during the growing years results in a permanent deficit in cardiorespiratory fitness or a diminished ability to respond favorably to regular exercise later in life remains to be investigated. Although several genes have been associated with fitness levels or response to regular exercise, the quality of the evidence is weak mainly because studies are statistically underpowered. The special case of the obese, sedentary child is discussed, and the importance of the "energy gap" in the excess weight gain during growth is highlighted. Obese, sedentary children have high blood pressure, dyslipidemia, elevated glycemia and type 2 diabetes, hepatic steatosis, respiratory problems, orthopedic complications, and other health disorders more frequently than normal weight, physically active children. The role of genetic differences in the inclination to be sedentary or physically active is reviewed. An understanding of the true role of genetic differences and regular exercise on the growth of children will require more elaborate paradigms incorporating not only DNA sequence variants and exercise exposure but also information on nutrition, programming, and epigenetic events during fetal life and early postnatal years.
Collapse
|
30
|
|
31
|
Yin J, Zhang Q, Hu XQ, Du WJ, Liu AL, Wang XY, Tong ZQ, Ma GS. Interactions between effects of estrogen receptor gene polymorphisms on BMD and experiences of the first spermorrhea in Chinese Han boys. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:129-136. [PMID: 18548852 DOI: 10.1016/s0895-3988(08)60018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To study the interaction between polymorphisms of estrogen receptor (ER) gene and puberty on bone mineral density (BMD). METHODS One hundred and forty-six boys aged 13-17 years were divided into two groups according to their first spermorrhea. DNA was analyzed for Xba I and Pvu II genotypes by PCR-RFLP. BMD of the total body, forearm and lumbar spine was measured by dual-energy X-ray absorptiometry (DXA). The relationship between polymorphisms of ER gene and BMD in these two groups was analyzed. RESULTS The BMD at all sites in the spermorrhea group was significantly higher than that in the un-spermorrhea group. The independent contribution of ER genotypes to BMD at two pubertal stages was analyzed after adjusting co-variables. In the un-spermorrhea group, the BMD at distal 1/10 and 1/3 forearm of those carrying pp genotype was significantly higher than that of the non-carries, whereas in the spermorrhea group BMD in those carrying the same genotype was significantly lower than that in the non-carriers. Similar results were obtained by haplotype analysis. Multiple stepwise regression analysis showed that body weight, age and the first spermorrehea were the dominant determinants for BMD. BMD at forearm might be influenced by interaction between ER genotype and the first spermorrehea. CONCLUSION The polymorphisms of ER gene play a different role in BMD influenced by the first spermorrhea. Chinese boys carrying p or x allele should pay more attention to their bone mass.
Collapse
Affiliation(s)
- Jing Yin
- National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing 100050, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, Moyer-Mileur L, Shepherd J, Specker B, Ward K, Hans D. Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 2008; 11:59-74. [PMID: 18442753 DOI: 10.1016/j.jocd.2007.12.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/05/2007] [Indexed: 11/22/2022]
Abstract
Peripheral quantitative computed tomography (pQCT) has mainly been used as a research tool in children. To evaluate the clinical utility of pQCT and formulate recommendations for its use in children, the International Society of Clinical Densitometry (ISCD) convened a task force to review the literature and propose areas of consensus and future research. The types of pQCT technology available, the clinical application of pQCT for bone health assessment in children, the important elements to be included in a pQCT report, and quality control monitoring techniques were evaluated. The review revealed a lack of standardization of pQCT techniques, and a paucity of data regarding differences between pQCT manufacturers, models and software versions and their impact in pediatric assessment. Measurement sites varied across studies. Adequate reference data, a critical element for interpretation of pQCT results, were entirely lacking, although some comparative data on healthy children were available. The elements of the pQCT clinical report and quality control procedures are similar to those recommended for dual-energy X-ray absorptiometry. Future research is needed to establish evidence-based criteria for the selection of the measurement site, scan acquisition and analysis parameters, and outcome measures. Reference data that sufficiently characterize the normal range of variability in the population also need to be established.
Collapse
Affiliation(s)
- Babette Zemel
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104-4399, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ruffing JA, Nieves JW, Zion M, Tendy S, Garrett P, Lindsay R, Cosman F. The influence of lifestyle, menstrual function and oral contraceptive use on bone mass and size in female military cadets. Nutr Metab (Lond) 2007; 4:17. [PMID: 17683610 PMCID: PMC1997123 DOI: 10.1186/1743-7075-4-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 08/06/2007] [Indexed: 11/13/2022] Open
Abstract
Purpose To determine the influence of menstrual irregularity, oral contraceptive use and other factors on bone mineral density (BMD) and bone size at different skeletal sites in 135 college-aged fit women. Methods Menstrual history, oral contraceptive use, exercise history, and nutritional factors including calcium, caffeine, and alcohol intake as well as tobacco use were determined by written survey. Height, weight and fitness levels were measured. Spine and hip BMD were measured by dual x-ray absorptiometry (DXA), calcaneus BMD by peripheral DXA, and tibial bone mineral content (BMC) and size by peripheral Quantitative Computed Tomography (pQCT). Results The mean age was 18.4 ± 0.8 years. Weight and prior exercise were positively related to BMD at most skeletal sites and to tibial bone size. Milk intake was positively related to calcaneal BMD, tibial BMC and cortical thickness. Fracture history was an important predictor of spine, hip and heel BMD. Women who had ≥ 10 menstrual cycles in the year prior to BMD measurement had higher BMD at all sites as well as a greater tibial mineral content and cortical thickness than women who had oligomenorrhea/amenorrhea (≤ 9 cycles in the prior year; all p < 0.05). Oral Contraceptive (OC) users had significantly lower BMD in the spine (p < 0.02) and calcaneus (p = 0.04), smaller tibial periosteal circumference and lower tibial mineral content (p < 0.02) than non-OC users. Conclusion In a population of fit, college-aged women, OC use and oligomenorrhea were associated with reduced BMD and bone size. Weight, as well as prior exercise and milk intake was positively related to bone density and size at some skeletal sites. Understanding these relationships would help improve skeletal health in young women.
Collapse
Affiliation(s)
- Jamie A Ruffing
- Clinical Research and Regional Bone Centers, Helen Hayes Hospital, West Haverstraw, NY, USA
| | - Jeri W Nieves
- Clinical Research and Regional Bone Centers, Helen Hayes Hospital, West Haverstraw, NY, USA
- Departments of Medicine and Epidemiology, College of Physicians and Surgeons of Columbia University, New York, USA
| | - Marsha Zion
- Clinical Research and Regional Bone Centers, Helen Hayes Hospital, West Haverstraw, NY, USA
| | - Susan Tendy
- United States Military Academy, West Point, NY, USA
| | - Patricia Garrett
- Clinical Research and Regional Bone Centers, Helen Hayes Hospital, West Haverstraw, NY, USA
| | - Robert Lindsay
- Clinical Research and Regional Bone Centers, Helen Hayes Hospital, West Haverstraw, NY, USA
- Departments of Medicine and Epidemiology, College of Physicians and Surgeons of Columbia University, New York, USA
| | - Felicia Cosman
- Clinical Research and Regional Bone Centers, Helen Hayes Hospital, West Haverstraw, NY, USA
- Departments of Medicine and Epidemiology, College of Physicians and Surgeons of Columbia University, New York, USA
| |
Collapse
|
34
|
Saxon LK, Robling AG, Castillo AB, Mohan S, Turner CH. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta. Am J Physiol Endocrinol Metab 2007; 293:E484-91. [PMID: 17535856 DOI: 10.1152/ajpendo.00189.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical loading caused by physical activity can stimulate bone formation and strengthen the skeleton. Estrogen receptors (ERs) play some role in the signaling cascade that is initiated in bone cells after a mechanical load is applied. We hypothesized that one of the ERs, ER-beta, influences the responsiveness of bone to mechanical loads. To test our hypothesis, 16-wk-old male and female mice with null mutations in ER-beta (ER-beta(-/-)) had their right forelimbs subjected to short daily loading bouts. The loading technique used has been shown to increase bone formation in the ulna. Each loading bout consisted of 60 compressive loads within 30 s applied daily for 3 consecutive days. Bone formation was measured by first giving standard fluorochrome bone labels 1 and 6 days after loading and using quantitative histomorphometry to assess bone sections from the midshaft of the ulna. The left nonloaded ulna served as an internal control for the effects of loading. Mechanical loading increased bone formation rate at the periosteal bone surface of the mid-ulna in both ER-beta(-/-) and wild-type (WT) mice. The ulnar responsiveness to loading was similar in male ER-beta(-/-) vs. WT mice, but for female mice bone formation was stimulated more effectively in ER-beta(-/-) mice (P < 0.001). We conclude that estrogen signaling through ER-beta suppresses the mechanical loading response on the periosteal surface of long bones.
Collapse
Affiliation(s)
- L K Saxon
- Department of Orthopaedic Surgery, Indiana University-Purdue University, Indianapolis, USA
| | | | | | | | | |
Collapse
|
35
|
Lorentzon M, Eriksson AL, Nilsson S, Mellström D, Ohlsson C. Association between physical activity and BMD in young men is modulated by catechol-O-methyltransferase (COMT) genotype: the GOOD study. J Bone Miner Res 2007; 22:1165-72. [PMID: 17451372 DOI: 10.1359/jbmr.070416] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED In this large population-based study in young men, we show that the COMT val158met polymorphism modulates the association between physical activity, aBMD (DXA), and trabecular vBMD (pQCT). INTRODUCTION Peak BMD is an important predictor of future risk of osteoporosis and is largely determined by genetic factors but also by environmental factors, among which physical activity (PA) is a strong contributor. Estrogens are believed to influence the mechanical strain signal generated by bones subjected to mechanical loading. Catechol-O-methyltransferase (COMT) is involved in the degradation of estrogens. A functional polymorphism in the COMT gene (val158met), results in a 60-75% difference in enzyme activity between the val (high activity = H) and met (low activity = L) variants. The aim of this study was to determine if the COMT val158met polymorphism modulates the association between PA and BMD in young men. MATERIALS AND METHODS The Gothenburg Osteoporosis and Obesity Determinants (GOOD) study consists of 1068 men (age, 18.9 +/- 0.6 yr). Areal BMD (aBMD) was measured by DXA, whereas cortical and trabecular volumetric BMD (vBMD) were measured by pQCT. Study subjects were genotyped and classified as COMT(LL), COMT(HL), or COMT(HH). The amount (h/wk) of PA was determined through questionnaires. RESULTS Using a linear regression model (including age, height, weight, smoking, and calcium intake as covariates), significant interactions between the COMT genotype and PA were seen for aBMD at all sites and for trabecular vBMD in both the radius and the tibia. The difference in adjusted aBMD and trabecular vBMD between high (>or=4 h/wk) and low PA (<4 h/wk) was greater in COMT(LL) subjects than in subjects homozygous for the COMT(HH) (total body aBMD: COMT(LL) 4.2% versus COMT(HH) 1.5%, p = 0.02; lumbar spine aBMD: COMT(LL) 7.8% versus COMT(HH) 3.9%, p = 0.04; tibia trabecular vBMD: COMT(LL) 7.1% versus COMT(HH) 1.0%, p < 0.01). The COMT polymorphism was associated with aBMD, at all sites and with trabecular vBMD in the low-PA subjects, but not in their high-PA counterparts. CONCLUSIONS We show that the COMT val158met polymorphism modulates the association between PA, aBMD, and trabecular vBMD, suggesting that this polymorphism is of importance for BMD in subjects with a low level of PA.
Collapse
Affiliation(s)
- Mattias Lorentzon
- Center for Bone Research at the Sahlgrenska Academy (CBS), Department of Internal Medicine, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Kitamura I, Ando F, Koda M, Okura T, Shimokata H. Effects of the interaction between lean tissue mass and estrogen receptor alpha gene polymorphism on bone mineral density in middle-aged and elderly Japanese. Bone 2007; 40:1623-9. [PMID: 17409042 DOI: 10.1016/j.bone.2007.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/29/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Because both genetic and environmental factors influence bone mass, it is important to examine the effect of gene-environment interactions on bone mineral density (BMD) for the prevention of osteoporosis at an individual level. Estrogen receptor alpha (ER alpha) plays an important role in increasing BMD via mechanical strain and muscle mass is a reflection of the forces the muscle applies to the bone. The aim of this study is to investigate the effect of the interaction between lean tissue mass (LTM) and the ER alpha polymorphisms T-->C (PvuII) [dbSNP: rs2234693] and A-->G (XbaI) [dbSNP: rs9340799] on BMD in middle-aged and elderly individuals. Subjects were 2209 community-dwelling Japanese men and women, ages 40 to 79 years. ER alpha polymorphisms in the first intron, T-->C and A-->G were identified and lumbar spine and femoral neck BMD and LTM were measured by dual-energy X-ray absorptiometry. Both T-->C and A-->G polymorphisms were divided into two genotype groups (TT vs. TC/CC; AA vs. AG/GG). In postmenopausal women, the effect of LTM on femoral neck BMD was significantly larger for those with the TC/CC genotype than for those with the TT genotype for the T-->C polymorphism, and larger for those with the AG/GG genotype than for those with the AA genotype for the A-->G polymorphism. This gene-LTM interaction was observed at the femoral neck, but not at the lumbar spine. For men and premenopausal women, no gene-LTM interaction was found. In conclusion, there was an interaction between LTM and the ER alpha T-->C and A-->G polymorphisms with respect to their effect on femoral neck BMD in postmenopausal women and those with the TC/CC and AG/GG genotypes had larger effects of LTM than those with TT and AA genotypes.
Collapse
Affiliation(s)
- Itsuko Kitamura
- Department of Epidemiology, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka-cho, Obu, Aichi, 474-8522, Japan.
| | | | | | | | | |
Collapse
|
37
|
Costenbader KH, Feskanich D, Stampfer MJ, Karlson EW. Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. ACTA ACUST UNITED AC 2007; 56:1251-62. [PMID: 17393454 DOI: 10.1002/art.22510] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) occurs predominantly in women, and hormones may play a role in its etiology. This study was carried out to examine associations between female reproductive and menopausal factors and the development of SLE. METHODS A cohort of 238,308 women was prospectively examined. Subjects were older women (ages 30-55 years at start) and younger women (ages 25-42 years at start) from the Nurses' Health Study (NHS) and NHSII cohorts. Incident SLE diagnosed between 1976 and 2003 was confirmed by medical record review. The relative risk (RR) of SLE was estimated separately in each cohort using Cox proportional hazards models, and then pooled using meta-analysis random effects models. RESULTS Two hundred sixty-two incident cases of SLE were confirmed among the women. In multivariable models adjusted for reproductive and other risk factors, age<or=10 years at menarche (pooled RR 2.1, 95% confidence interval [95% CI] 1.4-3.2), oral contraceptive use (pooled RR 1.5, 95% CI 1.1-2.1), and use of postmenopausal hormones (RR 1.9, 95% CI 1.2-3.1) significantly increased the risk of SLE. An elevation of SLE risk was observed among postmenopausal women primarily after surgical menopause (RR 2.3, 95% CI 1.2-4.5), and also among women with earlier age at natural menopause (P for trend<0.05). Menstrual irregularity was associated with an increased risk of SLE among women in the younger (NHSII) cohort. Age at first birth, parity, and total duration of breastfeeding were not associated with SLE. CONCLUSION Early age at menarche, oral contraceptive use, early age at menopause, surgical menopause, and postmenopausal use of hormones were each associated with an increased risk of SLE. These associations may point to the mechanisms underlying the pathogenesis of SLE.
Collapse
Affiliation(s)
- Karen H Costenbader
- Robert B. Brigham Arthritis and Musculoskeletal Diseases Clinical Research Center, Brigham and Women's Hospital, and Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
38
|
Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, Lanyon LE. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem 2007; 282:20715-27. [PMID: 17491024 DOI: 10.1074/jbc.m703224200] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Wnt/beta-catenin pathway has been implicated in bone cell response to their mechanical environment. This response is the origin of the mechanism by which bone cells adjust bone architecture to maintain bone strength. Osteoporosis is the most widespread failure of this mechanism. The degree of osteoporotic bone loss in men and women is related to bio-available estrogen. Here we report that in osteoblastic ROS 17/2.8 cells and primary osteoblast cultures, a single short period of dynamic mechanical strain, as well as the glycogen synthase kinase-3beta (GSK-3beta) inhibitor LiCl, increased nuclear accumulation of activated beta-catenin and stimulated TCF/LEF reporter activity. This effect was blocked by the estrogen receptor (ER) modulators ICI 182,780 and tamoxifen and was absent in primary osteoblast cultures from mice lacking ERalpha. Microarray expression data for 25,000 genes from total RNA extracted from tibiae of wild-type mice within 24 h of being loaded in vivo showed differential gene regulation between loaded and contralateral non-loaded bones of 10 genes established to be involved in the Wnt pathway. Only 2 genes were involved in loaded tibiae from mice lacking ERalpha (ERalpha(-/-)). Together these data suggest that Wnt/beta-catenin signaling contributes to bone cell early responses to mechanical strain and that its effectiveness requires ERalpha. Reduced effectiveness of bone cell responses to bone loading, associated with estrogen-related decline in ERalpha, may contribute to the failure to maintain structurally appropriate bone mass in osteoporosis in both men and women.
Collapse
Affiliation(s)
- Victoria J Armstrong
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Ruff C, Holt B, Trinkaus E. Who's afraid of the big bad Wolff?: "Wolff's law" and bone functional adaptation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 129:484-98. [PMID: 16425178 DOI: 10.1002/ajpa.20371] [Citation(s) in RCA: 524] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
"Wolff's law" is a concept that has sometimes been misrepresented, and frequently misunderstood, in the anthropological literature. Although it was originally formulated in a strict mathematical sense that has since been discredited, the more general concept of "bone functional adaptation" to mechanical loading (a designation that should probably replace "Wolff's law") is supported by much experimental and observational data. Objections raised to earlier studies of bone functional adaptation have largely been addressed by more recent and better-controlled studies. While the bone morphological response to mechanical strains is reduced in adults relative to juveniles, claims that adult morphology reflects only juvenile loadings are greatly exaggerated. Similarly, while there are important genetic influences on bone development and on the nature of bone's response to mechanical loading, variations in loadings themselves are equally if not more important in determining variations in morphology, especially in comparisons between closely related individuals or species. The correspondence between bone strain patterns and bone structure is variable, depending on skeletal location and the general mechanical environment (e.g., distal vs. proximal limb elements, cursorial vs. noncursorial animals), so that mechanical/behavioral inferences based on structure alone should be limited to corresponding skeletal regions and animals with similar basic mechanical designs. Within such comparisons, traditional geometric parameters (such as second moments of area and section moduli) still give the best available estimates of in vivo mechanical competence. Thus, when employed with appropriate caution, these features may be used to reconstruct mechanical loadings and behavioral differences within and between past populations.
Collapse
Affiliation(s)
- Christopher Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
40
|
Cepollaro C, Lauretani F, Gozzini A, Masi L, Falchetti A, Del Monte F, Carbonell-Sala S, Tanini A, Corsi AM, Bandinelli S, Ferrucci L, Brandi ML. Relationship of volumetric bone mineral density and structural parameters with ERalpha gene polymorphisms. Calcif Tissue Int 2007; 80:307-15. [PMID: 17505773 PMCID: PMC2646089 DOI: 10.1007/s00223-007-9008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 01/30/2007] [Indexed: 11/28/2022]
Abstract
Bone mineral density (BMD) contributes to bone strength, and methods for clinical assessment of bone quality characteristics beyond what can be gathered by BMD are awaited. Peripheral quantitative computed tomography (pQCT) allows for separate assessments of cortical and trabecular bone, providing information on bone geometry. Previous studies examining the relationship between estrogen receptor alpha (ERalpha) gene polymorphisms and BMD have been performed in large populations. However, only limited information is available on the possible segregation of ERalpha gene polymorphisms with bone structural properties. The aim of our study was to evaluate the association of XbaI and PvuII ERalpha gene polymorphisms with QCT parameters. We studied 900 subjects (541 women, 449 men) participating to the InCHIANTI study. By tibial pQCT we evaluated trabecular volumetric BMD, cortical volumetric BMD, cortical bone area, and cortical thickness (CtTh). Subjects were genotyped for ERalpha gene PvuII and XbaI polymorphisms. Analysis of variance was used for statistical analysis. Male subjects with PP and XX genotypes had higher geometric parameters, and female subjects with XX and PP genotypes showed higher densitometric parameters than other genotypes; however, the differences did not reach statistical significance. After adjustment for potential confounders, we found a significant (P = 0.002) CtTh difference across PvuII polymorphism in male subjects, with higher CtTh values in PP genotypes with respect to Pp and pp genotypes. These results show a relationship between the presence of the P allele and higher values of CtTh in male subjects, indicating for ERalpha a role in the control of tibial bone geometry.
Collapse
Affiliation(s)
- C Cepollaro
- Department of Internal Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tobias JH, Steer CD, Vilarino-Güell C, Brown MA. Estrogen receptor alpha regulates area-adjusted bone mineral content in late pubertal girls. J Clin Endocrinol Metab 2007; 92:641-7. [PMID: 17105837 DOI: 10.1210/jc.2006-1555] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Whether the action of estrogen in skeletal development depends on estrogen receptor alpha as encoded by the ESR1 gene is unknown. OBJECTIVES The aim of this study was to establish whether the gain in area-adjusted bone mineral content (ABMC) in girls occurs in late puberty and to examine whether the magnitude of this gain is related to ESR1 polymorphisms. DESIGN We conducted a cross-sectional analysis. SETTING The study involved the Avon Longitudinal Study of Parents and Children (ALSPAC), a population-based prospective study. PARTICIPANTS Participants included 3097 11-yr-olds with DNA samples, dual x-ray absorptiometry measurements, and pubertal stage information. OUTCOMES Outcome measures included separate prespecified analyses in boys and girls of the relationship between ABMC derived from total body dual x-ray absorptiometry scans and Tanner stage and of the interaction between ABMC, Tanner stage, and ESR1 polymorphisms. RESULTS Total body less head and spinal ABMC were higher in girls in Tanner stages 4 and 5, compared with those in Tanner stages 1, 2, and 3. In contrast, height increased throughout puberty. No differences were observed in ABMC according to Tanner stage in boys. For rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms, differences in spinal ABMC in late puberty were 2-fold greater in girls who were homozygous for the C and G alleles, respectively (P = 0.001). For rs7757956, the difference in total body less head ABMC in late puberty was 50% less in individuals homozygous or heterozygous for the A allele (P = 0.006). CONCLUSIONS Gains in ABMC in late pubertal girls are strongly associated with ESR1 polymorphisms, suggesting that estrogen contributes to this process via an estrogen receptor alpha-dependent pathway.
Collapse
Affiliation(s)
- J H Tobias
- Clinical Science at South Bristol, University of Bristol, Bristol, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
43
|
Suuriniemi M, Kovanen V, Mahonen A, Alén M, Wang Q, Lyytikäinen A, Cheng S. COL1A1 Sp1 polymorphism associates with bone density in early puberty. Bone 2006; 39:591-7. [PMID: 16580273 DOI: 10.1016/j.bone.2006.02.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/15/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
Optimal acquisition of bone mass in puberty is a key determinant of the lifetime risk of osteoporosis and has a strong genetic basis. We investigated the relationship between the COL1A1 Sp1 polymorphism and BMD in early puberty, and how the genotypes relate to bone size and geometry as well as bone turnover and material properties in 247 10- to 13-year-old girls. Bone properties were measured using DXA, pQCT, and ultrasound. Also, serum P1NP, OC, B-ALP, and TRACP 5b were assessed. Our results showed that girls with the TT genotype had significantly lower BMC and BMD of the total body, lumbar spine, and proximal femur, as well as BUA at the calcaneus, than those with the GT and GG genotype. They also had significantly lower B-ALP, as well as P1NP/TRACP 5b and (OC + B-ALP)/TRACP 5b, compared to the others. These findings indicate that the COL1A1 polymorphism is associated with low bone properties in early puberty and suggest a possible physiological effect on collagen metabolism and bone turnover. This information may contribute to the identification of children at risk for suboptimal acquisition of peak bone mass and may ultimately be of value in the planning of early preventive strategies for osteoporosis.
Collapse
Affiliation(s)
- Miia Suuriniemi
- Department of Cell Biology, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | | | |
Collapse
|
44
|
Zaman G, Jessop HL, Muzylak M, De Souza RL, Pitsillides AA, Price JS, Lanyon LL. Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res 2006; 21:1297-306. [PMID: 16869728 DOI: 10.1359/jbmr.060504] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED The role of mechanical strain and estrogen status in regulating ERalpha levels in bone cells was studied in female rats. OVX is associated with decreased ERalpha protein expression/osteocyte, whereas habitual strain and artificial loading has only a small but positive effect, except on the ulna's medial surface, where artificial loading stimulates reversal of resorption to formation. INTRODUCTION Osteoporosis is the most widespread failure of bones' ability to match their architectural strength to their habitual load bearing. In men and women, the severity of bone loss is associated with bioavailability of estrogen. This association could result from the estrogen receptor (ER) involvement in bone cells' adaptive response to loading. MATERIALS AND METHODS In vivo semiquantitative analysis of the amount of ERalpha protein per osteocyte was performed in immuno-cytochemically stained sections from control and loaded rat ulna, as well as tibias of ovariectomy (OVX) and sham-operated female rats. In vitro, the effect of exogenous estrogen (10(-8) M) and mechanical strain (3400 microepsilon, 1 Hz, 600 cycles) on the expression of ERalpha mRNA levels was assessed in ROS 17/2.8 cells in monolayers using real-time PCR and ER promoter activity. ERalpha translocation in response to exogenous estrogen and mechanical strain was assessed in both ROS 17/2.8 and MLO-Y4 cells. RESULTS More than 90 percent of tibial osteocytes express ERalpha, the level/osteocyte being higher in cortical than cancellous bone. OVX is associated with decreased ERalpha protein expression/osteocyte, whereas in the ulna habitual strain and that caused by artificial loading had only a small but positive effect, except on the medial surface, where loading stimulates reversal of resorption to formation. In unstimulated osteocytes and osteoblasts in situ, and osteocyte-like and osteoblast-like cells in vitro, ERalpha is predominantly cytoplasmic. In vitro, both strain and estrogen stimulate transient ERalpha translocation to the nucleus and transient changes in ERalpha mRNA. Strain but not estrogen also induces discrete membrane localization of ERalpha. CONCLUSIONS Bone cells' responses to both strain and estrogen involve ERalpha, but only estrogen regulates its cellular concentration. This is consistent with the hypothesis that bone loss associated with estrogen deficiency is a consequence of reduction in ERalpha number/activity associated with lower estrogen concentration reducing the effectiveness of bone cells' anabolic response to strain.
Collapse
Affiliation(s)
- Gul Zaman
- Department of Basic Sciences, The Royal Veterinary College, University of London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ng MYM, Sham PC, Paterson AD, Chan V, Kung AWC. Effect of environmental factors and gender on the heritability of bone mineral density and bone size. Ann Hum Genet 2006; 70:428-38. [PMID: 16759177 DOI: 10.1111/j.1469-1809.2005.00242.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bone mineral density (BMD), a risk factor for osteoporosis, is believed to be under genetic control. The effect of environmental factors and gender on the heritability of BMD and bone size is ill-defined. In this study, heritability estimates (h2) were determined in 3,320 southern Chinese subjects from 1,019 families using the variance components model. The h2 for age, weight and height-adjusted BMD was 0.63-0.71 for females, and 0.74-0.79 for males; and for bone size, 0.44-0.64 for females and 0.32-0.86 for males. Adjustment for lifestyle factors including calcium and phytoestrogen intake, exercise, smoking and alcohol consumption altered the h2 differently in males and females. The proportion of variance in BMD and bone size explained by all covariates varied between skeletal sites, but was consistently greater in females than males. A significant gender difference was observed in the genetic variance of BMD and bone size at the hip but not the spine. In conclusion, a gender difference was observed in the degree of heritability of BMD and bone size at specific skeletal sites. Environmental influences contributed variably at different sites in the two sexes.
Collapse
Affiliation(s)
- M Y M Ng
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | |
Collapse
|
46
|
Abstract
The main function of bone is to provide the mechanical integrity for locomotion and protection; accordingly, bone mass and architecture are adjusted to control the strains produced by mechanical load and muscular activity. Age-related patterns involve peak bone mass during growth, a plateau in adulthood, and bone loss during aging. The decline in bone mass and structural integrity results in increased risk of fractures, particularly in post-menopausal women. Athletes competing in strength and power events, such as weight-lifting and jumping, have superior bone mass and structure compared with their untrained counterparts in all age groups. Exercise seems to be most effective during rapid growth, the average gain in bone mineral content (BMC) and density (BMD) in controlled trials being of the order of 2-5% per year. The net gain of BMD after exercise interventions among older people is modest, at a level of 1-3% per year, but it is not clear whether positive effects can be maintained over a longer time. Although aerobic exercise is important in maintaining overall health, the resistance type of muscle training may be more applicable to the basic rules of bone adaptation and site-specific effects of exercise, have more favorable effects in maintaining or improving bone mass and architecture, and be safe and feasible for older people. It has been suggested that there is an opportunity for resistance training, for improved effects on BMD in postmenopausal women in bones which have less daily loading. In addition to BMC and BMD, bone geometry and mass distribution may also change as a result of training and other treatment, such as hormonal replacement therapy, thereby further improving bone strength and reducing fracture risk. Appropriate training regimens may reduce the risk of falls and the severity of fall-related injuries, and also constitute potential therapy to improve functional ability and the quality of life in osteoporotic patients. However, further research is needed on dose-response relationships between exercise and bone strength, the feasibility of high-load, high-speed and impact-type of physical training, and the risks and benefits of intensive exercisein elderly individuals.
Collapse
Affiliation(s)
- Harri Suominen
- Department of Health Sciences, University of Jyväskylä, Finland.
| |
Collapse
|
47
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 704] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cusack S, Mølgaard C, Michaelsen KF, Jakobsen J, Lamberg-Allardt CJE, Cashman KD. Vitamin D and estrogen receptor-alpha genotype and indices of bone mass and bone turnover in Danish girls. J Bone Miner Metab 2006; 24:329-36. [PMID: 16816928 DOI: 10.1007/s00774-006-0691-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Peak bone mass is a major determinant of osteoporosis risk in later life. It is under strong genetic control; however, little is known about the identity of the genes involved. In the present study, we investigated the relationship between polymorphisms in the genes encoding the vitamin D receptor (VDR) (FokI, TaqI) and estrogen receptor-alpha (ERalpha) (PvuII, XbaI), and bone mineral density (BMD), bone mineral content (BMC), and markers of bone turnover in 224 Danish girls aged 11-12 years. BMD and BMC were measured by dual-energy X-ray absorptiometry. Serum osteocalcin, 25(OH)D, and parathyroid hormone (PTH) were measured by ELISA assays and urinary pyridinium cross-links by HPLC. Physical activity, dietary calcium, and Tanner stage were assessed by questionnaire. In general, there were no significant differences in anthropometrical variables, physical activity, dietary calcium, serum 25(OH)D, or PTH among genotype groups. BMD or BMC of lumbar spine or whole body (adjusted for body and bone size and pubertal status) were not associated with VDR or ERalpha genotypes or the combination of these genotypes. This lack of association remained even after adjustment for dietary and environmental factors. VDR genotypes had no effect on bone turnover markers. XX and PP ERalpha genotypes were associated (P < 0.05) with reduced levels of urinary pyridinium cross-links, whereas serum osteocalcin was similar among genotypes. These findings suggest that the rate of bone resorption was influenced by ERalpha genotypes, even though these biochemical differences were not evident in bone mass indices.
Collapse
Affiliation(s)
- Siobhan Cusack
- Department of Food and Nutritional Sciences, University College, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
49
|
Ng MYM, Sham PC, Paterson AD, Chan V, Kung AWC. Effect of Environmental Factors and Gender on the Heritability of Bone Mineral Density and Bone Size. Ann Hum Genet 2005. [DOI: 10.1111/j.1529-8817.2005.00242.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
|