1
|
Kim DY, Ko SH. Common Regulators of Lipid Metabolism and Bone Marrow Adiposity in Postmenopausal Women. Pharmaceuticals (Basel) 2023; 16:322. [PMID: 37259464 PMCID: PMC9967016 DOI: 10.3390/ph16020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 09/13/2024] Open
Abstract
A variety of metabolic disorders are associated with a decrease in estradiol (E2) during natural or surgical menopause. Postmenopausal women are prone to excessive fat accumulation in skeletal muscle and adipose tissue due to the loss of E2 via abnormalities in lipid metabolism and serum lipid levels. In skeletal muscle and adipose tissue, genes related to energy metabolism and fatty acid oxidation, such as those encoding peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and estrogen-related receptor alpha (ERRα), are downregulated, leading to increased fat synthesis and lipid metabolite accumulation. The same genes regulate lipid metabolism abnormalities in the bone marrow. In this review, abnormalities in lipid metabolism caused by E2 deficiency were investigated, with a focus on genes able to simultaneously regulate not only skeletal muscle and adipose tissue but also bone metabolism (e.g., genes encoding PGC-1α and ERRα). In addition, the mechanisms through which mesenchymal stem cells lead to adipocyte differentiation in the bone marrow as well as metabolic processes related to bone marrow adiposity, bone loss, and osteoporosis were evaluated, focusing on the loss of E2 and lipid metabolic alterations. The work reviewed here suggests that genes underlying lipid metabolism and bone marrow adiposity are candidate therapeutic targets for bone loss and osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Dae-Yong Kim
- CEO, N- BIOTEK, Inc., 402-803, Technopark, 655, Pyeongcheon-ro, Bucheon-si 14502, Gyeonggi-do, Republic of Korea
| | - Seong-Hee Ko
- Regenerative Medicine Research Team, N- BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Feng C, Xu Z, Tang X, Cao H, Zhang G, Tan J. Estrogen-Related Receptor α: A Significant Regulator and Promising Target in Bone Homeostasis and Bone Metastasis. Molecules 2022; 27:3976. [PMID: 35807221 PMCID: PMC9268386 DOI: 10.3390/molecules27133976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023] Open
Abstract
Bone homeostasis is maintained with the balance between bone formation and bone resorption, which is involved in the functional performance of osteoblast and osteoclast. Disruption of this equilibrium usually causes bone disorders including osteoporosis, osteoarthritis, and osteosclerosis. In addition, aberrant activity of bone also contributes to the bone metastasis that frequently occurs in the late stage of aggressive cancers. Orphan nuclear receptor estrogen-related receptor (ERRα) has been demonstrated to control the bone cell fate and the progression of tumor cells in bone through crosstalk with various molecules and signaling pathways. However, the defined function of this receptor in bone is inconsistent and controversial. Therefore, we summarized the latest research and conducted an overview to reveal the regulatory effect of ERRα on bone homeostasis and bone metastasis, this review may broaden the present understanding of the cellular and molecular model of ERRα and highlight its potential implication in clinical therapy.
Collapse
Affiliation(s)
- Chun Feng
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Zhaowei Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Xiaojie Tang
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Haifei Cao
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Jiangwei Tan
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| |
Collapse
|
3
|
Shoukry A, Shalaby SM, Etewa RL, Ahmed HS, Abdelrahman HM. Association of estrogen receptor β and estrogen-related receptor α gene polymorphisms with bone mineral density in postmenopausal women. Mol Cell Biochem 2015; 405:23-31. [PMID: 25903400 DOI: 10.1007/s11010-015-2391-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
Abstract
The aim of the study was to investigate the possible association of AluI and RsaI polymorphisms of estrogen receptor β (ER-β) gene and 23-bp nucleotide repeat polymorphism of estrogen-related receptor α (ERRα) gene with bone mineral density (BMD) in postmenopausal Egyptian women. Two-hundred postmenopausal osteoporotic women as cases and 180 healthy age-matched postmenopausal women as controls were genotyped by PCR fragment length polymorphism for AluI, allele-specific PCR for RsaI, and by sizing of PCR products on agarose gels for ERRα repeats. sRANKL levels were estimated by ELISA. BMD measurements for spine and femoral neck were performed by dual energy X-ray absorptiometry. A significant difference between women with osteoporosis and controls regarding allele and genotype distributions of AluI G/A (OR 2.37, 95 % CI 1.77-3.18 and p < 0.001 for A allele) and ERRα polymorphisms (for the two repeats allele OR 2.08, 95 % CI 1.09-4.00, and p = 0.02). Osteoporotic women with the AluI AA + GA genotype or with the EERα 2,2 genotype had significantly lower BMD than did women with the other genotypes. Moreover, there was a significant increase of the mean values of sRANKL in carriers of AluI A, RsaI A alleles and in patients having 2,2 genotypes of ERRα (p < 0.001, p < 0.001, p = 0.02, respectively). We demonstrated an association of ER-β AluI G/A and ERRα 23-repeats polymorphisms with BMD in postmenopausal Egyptian women. A possible effect of ER-β and ERRα polymorphisms on the levels of sRANKL was estimated.
Collapse
Affiliation(s)
- Amira Shoukry
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | | | | |
Collapse
|
4
|
Abstract
The nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ is a crucial cellular and metabolic switch that regulates many physiologic and disease processes. Emerging evidence reveals that PPARγ is also a key modulator of skeletal remodeling. Long-term use of rosiglitazone, a synthetic PPARγ agonist and a drug to treat insulin resistance, increases fracture rates among patients with diabetes. Recent studies have revealed that PPARγ activation not only suppresses osteoblastogenesis, but also activates osteoclastogenesis, thereby decreasing bone formation while sustaining or increasing bone resorption. The pro-osteoclastogenic effect of rosiglitazone is mediated by a transcriptional network comprised of PPARγ, PPAR-gamma coactivator 1β and estrogen-related receptor α, which promotes both osteoclast differentiation and mitochondrial activation. Therefore, PPARγ plays dual roles in bone homeostasis by regulating both mesenchymal and hematopoietic lineages.
Collapse
Affiliation(s)
- Yihong Wan
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Bonnelye E, Saltel F, Chabadel A, Zirngibl RA, Aubin JE, Jurdic P. Involvement of the orphan nuclear estrogen receptor-related receptor α in osteoclast adhesion and transmigration. J Mol Endocrinol 2010; 45:365-77. [PMID: 20841427 PMCID: PMC2990392 DOI: 10.1677/jme-10-0024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/23/2010] [Accepted: 09/14/2010] [Indexed: 12/13/2022]
Abstract
The orphan nuclear receptor, estrogen receptor-related receptor α (ERRα) is expressed in osteoblasts and osteoclasts (OCs) and has been proposed to be a modulator of estrogen signaling. To determine the role of ERRα in OC biology, we knocked down ERRα activity by transient transfection of an siRNA directed against ERRα in the RAW264.7 monocyte-macrophage cell line that differentiates into OCs in the presence of receptor activator of nuclear factor κB-ligands and macrophage colony-stimulating factor. In parallel, stable RAW cell lines expressing a dominant-negative form of ERRα and green fluorescent protein (RAW-GFP-ERRαΔAF2) were used. Expression of OC markers was assessed by real-time PCR, and adhesion and transmigration tests were performed. Actin cytoskeletal organization was visualized using confocal microscopy. We found that RAW264.7 cells expressing siRNA directed against ERRα and RAW-GFP-ERRαΔAF2 OCs displayed abnormal spreading, and decreased osteopontin and β3 integrin subunit expression compared with the corresponding control cells. Decreased adhesion and the absence of podosome belts concomitant with abnormal localization of c-src were also observed in RAW-GFP-ERRαΔAF2-derived OCs. In addition, RAW-GFP-ERRαΔAF2-derived OCs failed to transmigrate through osteoblast cell layers. Our data show that the impairment of ERRα function does not alter OC precursor proliferation and differentiation but does alter the adhesion/spreading and migration capacities of mature OCs.
Collapse
Affiliation(s)
- Edith Bonnelye
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| | | | | | | | | | | |
Collapse
|
6
|
Gallet M, Vanacker JM. ERR receptors as potential targets in osteoporosis. Trends Endocrinol Metab 2010; 21:637-41. [PMID: 20674386 DOI: 10.1016/j.tem.2010.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 01/12/2023]
Abstract
The bone fragility and increased fracture risk associated with osteoporosis in post-menopausal women is a major public health concern. Current treatments for osteoporosis relying on hormone replacement therapies are suspected to have an association with increased breast cancer risk, highlighting the need for identifying new potential targets in bone. Recent data suggest that the estrogen-related receptor (ERR)α, an orphan nuclear receptor, represses osteoblast differentiation, and that its deletion in knockout mouse models results in increased mineral density. Furthermore, modulation of ERRα activity reduces proliferation and tumorigenesis of breast cancer cells. These results indicated that inhibition of ERRα might provide a treatment for osteoporosis without displaying adverse effects in breast cancer. This review focuses on the role of the ERR receptors, and in particular ERRα, in the differentiation of bone precursor cells and its consequences on bone homeostasis, and discusses the possible grounds for the discrepancies reported in the literature.
Collapse
Affiliation(s)
- Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | | |
Collapse
|
7
|
Wei W, Wang X, Yang M, Smith LC, Dechow PC, Sonoda J, Evans RM, Wan Y. PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 2010; 11:503-16. [PMID: 20519122 PMCID: PMC3521515 DOI: 10.1016/j.cmet.2010.04.015] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/25/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Long-term usage of rosiglitazone, a synthetic PPARgamma agonist, increases fracture rates among diabetic patients. PPARgamma suppresses osteoblastogenesis while activating osteoclastogenesis, suggesting that rosiglitazone decreases bone formation while sustaining or increasing bone resorption. Using mouse models with genetically altered PPARgamma, PGC1beta, or ERRalpha, here we show that PGC1beta is required for the resorption-enhancing effects of rosiglitazone. PPARgamma activation indirectly induces PGC1beta expression by downregulating beta-catenin and derepressing c-jun. PGC1beta, in turn, functions as a PPARgamma coactivator to stimulate osteoclast differentiation. Complementarily, PPARgamma also induces ERRalpha expression, which coordinates with PGC1beta to enhance mitochondrial biogenesis and osteoclast function. ERRalpha knockout mice exhibit osteoclast defects, revealing ERRalpha as an important regulator of osteoclastogenesis. Strikingly, PGC1beta deletion in osteoclasts confers complete resistance to rosiglitazone-induced bone loss. These findings identify PGC1beta as an essential mediator for the PPARgamma stimulation of osteoclastogenesis by targeting both PPARgamma itself and ERRalpha, thus activating two distinct transcriptional programs.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xueqian Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marie Yang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Leslie C. Smith
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University Health Sciences Center, Dallas, TX 75246
| | - Paul C. Dechow
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University Health Sciences Center, Dallas, TX 75246
| | | | | | - Yihong Wan
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
8
|
Rajalin AM, Pollock H, Aarnisalo P. ERRalpha regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2010; 396:477-82. [PMID: 20417614 DOI: 10.1016/j.bbrc.2010.04.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/20/2010] [Indexed: 01/21/2023]
Abstract
The orphan nuclear receptor estrogen-related receptor-alpha (ERRalpha) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERRalpha in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERRalpha deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERRalpha deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERRalpha in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERRalpha deficient MSCs and enhanced upon ERRalpha overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERRalpha. Under adipogenic conditions, ERRalpha deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERRalpha in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERRalpha may play different roles in bone under different physiological conditions.
Collapse
Affiliation(s)
- Ann-Marie Rajalin
- Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
9
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
10
|
Teyssier C, Gallet M, Rabier B, Monfoulet L, Dine J, Macari C, Espallergues J, Horard B, Giguère V, Cohen-Solal M, Chassande O, Vanacker JM. Absence of ERRalpha in female mice confers resistance to bone loss induced by age or estrogen-deficiency. PLoS One 2009; 4:e7942. [PMID: 19936213 PMCID: PMC2776272 DOI: 10.1371/journal.pone.0007942] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/13/2009] [Indexed: 01/20/2023] Open
Abstract
Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRα may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. Methods/Principal Findings In this report, we have determined the in vivo effect of ERRα on bone, using knock-out mice. Relative to wild type animals, female ERRαKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRαKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRαKO bone marrow, we also show that ERRα acts as an inhibitor of osteoblast differentiation. Conclusion/Significance Down-regulating ERRα could thus be beneficial against osteoporosis.
Collapse
Affiliation(s)
- Catherine Teyssier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte Rabier
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Laurent Monfoulet
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Julien Dine
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Claire Macari
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Julie Espallergues
- Institut National de la Santé et de la Recherche Médicale U710, Université de Montpellier II, Montpellier, France
| | - Béatrice Horard
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Villeurbanne, France
| | - Vincent Giguère
- The Rosalind and Morris Goodman Cancer Centre, Montréal, Canada
| | - Martine Cohen-Solal
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Olivier Chassande
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
11
|
Delhon I, Gutzwiller S, Morvan F, Rangwala S, Wyder L, Evans G, Studer A, Kneissel M, Fournier B. Absence of estrogen receptor-related-alpha increases osteoblastic differentiation and cancellous bone mineral density. Endocrinology 2009; 150:4463-72. [PMID: 19608650 DOI: 10.1210/en.2009-0121] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nuclear orphan receptor human estrogen receptor-related receptor (ERR)-alpha is implicated in bone metabolism. We studied the effect of ERRalpha silencing in human mesenchymal stem cells (hMSCs) during osteoblastogenesis. We found that ERRalpha silencing led to an increase of bone sialoprotein and a decrease of osteopontin mRNA levels, suggesting enhanced osteoblastic differentiation. This was confirmed by an increased ability of hMSCs to deposit calcium. Concomitantly, knockdown of ERRalpha inhibited adipogenesis, resulting in a decrease in adipocyte number and adipocyte marker gene expression. In line with a negative role of ERRalpha in bone metabolism, we found that adult female and male ERRalpha-deficient mice displayed a moderate increase in femoral cancellous bone volume and density. Osteoblast surface was increased and marrow fat volume decreased in these animals. Furthermore, ERRalpha-deficient osteoblasts displayed increased differentiation properties in vitro in line with our observations in hMSCs. In summary, we identified a role for ERRalpha in bone mass regulation by affecting osteoblastic differentiation.
Collapse
Affiliation(s)
- I Delhon
- Novartis Institutes for Biomedical Research, Musculoskeletal Diseases, 4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xiong Q, Jiao Y, Hasty KA, Canale ST, Stuart JM, Beamer WG, Deng HW, Baylink D, Gu W. Quantitative trait loci, genes, and polymorphisms that regulate bone mineral density in mouse. Genomics 2009; 93:401-14. [PMID: 19150398 DOI: 10.1016/j.ygeno.2008.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
This is an in silico analysis of data available from genome-wide scans. Through analysis of QTL, genes and polymorphisms that regulate BMD, we identified 82 BMD QTL, 191 BMD-associated (BMDA) genes, and 83 genes containing known BMD-associated polymorphisms (BMDAP). The catalogue of all BMDA/BMDAP genes and relevant literatures are provided. In total, there are substantially more BMDA/BMDAP genes in regions of the genome where QTL have been identified than in non-QTL regions. Among 191 BMDA genes and 83 BMDAP genes, 133 and 58 are localized in QTL regions, respectively. The difference was still noticeable for the chromosome distribution of these genes between QTL and non-QTL regions. These results have allowed us to generate an integrative profile of QTL, genes, polymorphisms that determine BMD. These data could facilitate more rapid and comprehensive identification of causal genes underlying the determination of BMD in mouse and provide new insights into how BMD is regulated in humans.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giroux S, Elfassihi L, Cole DEC, Rousseau F. Replication of associations between LRP5 and ESRRA variants and bone density in premenopausal women. Osteoporos Int 2008; 19:1769-75. [PMID: 18418639 DOI: 10.1007/s00198-008-0617-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
UNLABELLED Replication is a critical step to validate positive genetic associations. In this study, we tested two previously reported positive associations. The low density lipoprotein receptor-related protein 5 (LRP5) Val667Met and lumbar spine bone density are replicated. This result is in line with results from large consortiums such as Genomos. However, the estrogen-related receptor alpha (ESRRA) repeat in the promoter is not replicated although the polymorphism studied was functional and could have been a causative variant. INTRODUCTION We sought to validate associations previously reported between LRP5 V667M polymorphism and lumbar spine (LS, p = 0.013) and femoral neck (FN, p = 0.0002) bone mineral density (BMD), and between ESRRA 23 base pair repeat polymorphism and LS BMD (p = 0.0036) in a sample of premenopausal Caucasian women using an independent sample. METHODS For the replication sample, we recruited 673 premenopausal women from the Toronto metropolitan area. All women were Caucasian and had BMD measured. LRP5 V667M was genotyped by allele-specific PCR and ESRRA repeats by sizing of PCR products on agarose gels. RESULTS We reproduced the same association as we reported previously between LRP5 V667M and LS BMD (p = 0.015) but not with FN BMD (p = 0.254). The combined data from the two populations indicate an effect size of 0.28SD for LS BMD (p = 0.00048) and an effect size of 0.26 SD for FN BMD (p = 0.00037). In contrast, the association we reported earlier between ESRRA repeats and LS BMD was not replicated in the sample from Toronto (p = 0.645). CONCLUSIONS The association between LRP5 V667M and LS BMD is confirmed but not that between ESRRA repeats and LS BMD. This result indicates that it is imperative to validate any positive association in an independent sample.
Collapse
Affiliation(s)
- S Giroux
- Centre de Recherche de l'Hôpital, St-François d'Assise, Centre Hospitalier Universitaire de Québec, Quebec, Canada.
| | | | | | | |
Collapse
|
14
|
Bonnelye E, Laurin N, Jurdic P, Hart DA, Aubin JE. Estrogen receptor-related receptor-alpha (ERR-alpha) is dysregulated in inflammatory arthritis. Rheumatology (Oxford) 2008; 47:1785-91. [PMID: 18927192 DOI: 10.1093/rheumatology/ken368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
OBJECTIVES Subchondral bone loss is a characteristic feature of inflammatory arthritis. Recently, estrogen receptor-related receptor-alpha (ERR-alpha), an orphan nuclear receptor, has been found to be involved in activation of macrophages. We hypothesized that ERR-alpha which is expressed and also functional in articular chondrocytes, osteoblasts and osteoclasts, may be involved in rodent models of inflammatory arthritis. METHODS Erosive arthritis was induced in DBA/1 mice by injection of type II collagen in Freund's complete adjuvant. RNA was isolated from the bone and joints and expression of ERR-alpha and cartilage (GDF5 and Col2a1) and bone [bone sialoprotein (BSP) and osteocalcin (OCN)] markers was analysed by semi-quantitative PCR. RESULTS We report for the first time that the expression of ERR-alpha is dysregulated in bones and joints in a mouse model of inflammatory arthritis. Specifically, we show that ERR-alpha expression is down-regulated early in bone and later in joints of mice with type II CIA. Concomitantly, temporal changes were observed in GDF-5 and Col2a1 expression in joints following both initial injection and booster injection of type II collagen. Similarly, down-regulation of ERR-alpha mRNA expression in subchondral bone in mice with induced joint inflammation was also paralleled by down-regulation of markers of bone formation (BSP, OCN). CONCLUSIONS These data suggest that dysregulation of ERR-alpha expression may precede and contribute to the destruction of cartilage and bone accompanying inflammatory arthritis.
Collapse
Affiliation(s)
- E Bonnelye
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Room 6233, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
15
|
Sinotte M, Rousseau F, Ayotte P, Dewailly E, Diorio C, Giguère Y, Bérubé S, Brisson J. Vitamin D receptor polymorphisms (FokI, BsmI) and breast cancer risk: association replication in two case-control studies within French Canadian population. Endocr Relat Cancer 2008; 15:975-83. [PMID: 18719092 PMCID: PMC2629179 DOI: 10.1677/erc-08-0056] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vitamin D has been associated with reduced breast cancer risk. We studied the association of two vitamin D receptor (VDR) gene single nucleotide polymorphisms restriction enzyme detecting SNP of VDR (FokI and BsmI) with breast cancer risk in two independent case-control studies carried out in the same population. The modifying effect of family history of breast cancer on this relationship was also evaluated. The first and second studies included respectively 718 (255 cases/463 controls) and 1596 (622 cases/974 controls) women recruited in Quebec City, Canada. FokI and BsmI genotypes were assessed. Relative risks of breast cancer were estimated by multivariate logistic regression. Compared with homozygotes for the common F allele (FF genotype), FokI ff homozygotes had a higher breast cancer risk (study 1: odds ratio (OR)=1.22, 95% confidence interval (CI)=0.76-1.95; study 2: OR=1.44, 95% CI=1.05-1.99; and combined studies: OR=1.33, 95% CI=1.03-1.73). Significant interactions were observed between FokI and family history of breast cancer in the two studies as well as in the combined analysis (P interaction=0.031, 0.050 and 0.0059 respectively). Among women without family history, odds ratios were 1.00, 1.27 (95% CI=1.02-1.58) and 1.57 (95% CI=1.18-2.10) respectively for FF, Ff and ff carriers (P(trend)=0.0013). BsmI Bb+bb genotypes were associated with a weak non-significant increased risk in the two studies (combined OR=1.22, 95% CI=0.95-1.57) without interaction with family history. Results support the idea that vitamin D, through its signalling pathway, can affect breast cancer risk. They also suggest that variability in observed associations between VDR FokI and breast cancer from different studies may partly be explained by the proportion of study subjects with a family history of breast cancer.
Collapse
Affiliation(s)
- Marc Sinotte
- Unité de Recherche en Santé des Populations, Centre Hospitalier Affilié Universitaire de Québec1050 Chemin Sainte-Foy, Québec, QuébecCanadaG1S 4L8
- Département de Médecine Sociale et PréventiveUniversité LavalQuébecCanadaG1V 0A6
| | - François Rousseau
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche de l'Hôpital St-François-d'Assise du CHUQUniversité LavalQuébecCanadaG1V 0A6
| | - Pierre Ayotte
- Département de Médecine Sociale et PréventiveUniversité LavalQuébecCanadaG1V 0A6
- Unité de Recherche en Santé PubliqueCentre de Recherche du Centre Hospitalier Universitaire de Québec (CHUL)QuébecCanada
| | - Eric Dewailly
- Département de Médecine Sociale et PréventiveUniversité LavalQuébecCanadaG1V 0A6
- Unité de Recherche en Santé PubliqueCentre de Recherche du Centre Hospitalier Universitaire de Québec (CHUL)QuébecCanada
| | - Caroline Diorio
- Unité de Recherche en Santé des Populations, Centre Hospitalier Affilié Universitaire de Québec1050 Chemin Sainte-Foy, Québec, QuébecCanadaG1S 4L8
- Département de Médecine Sociale et PréventiveUniversité LavalQuébecCanadaG1V 0A6
- Centre des Maladies du Sein Deschênes-FabiaCentre Hospitalier Affilié Universitaire de Québec1050 Chemin Sainte-Foy, Québec, QuébecCanadaG1S 4L8
- Breast Cancer Functional Genomics Group and McGill Centre for BioinformaticsMcGill UniversityMontréalCanada
| | - Yves Giguère
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche de l'Hôpital St-François-d'Assise du CHUQUniversité LavalQuébecCanadaG1V 0A6
| | - Sylvie Bérubé
- Unité de Recherche en Santé des Populations, Centre Hospitalier Affilié Universitaire de Québec1050 Chemin Sainte-Foy, Québec, QuébecCanadaG1S 4L8
- Centre des Maladies du Sein Deschênes-FabiaCentre Hospitalier Affilié Universitaire de Québec1050 Chemin Sainte-Foy, Québec, QuébecCanadaG1S 4L8
| | - Jacques Brisson
- Unité de Recherche en Santé des Populations, Centre Hospitalier Affilié Universitaire de Québec1050 Chemin Sainte-Foy, Québec, QuébecCanadaG1S 4L8
- Département de Médecine Sociale et PréventiveUniversité LavalQuébecCanadaG1V 0A6
- Centre des Maladies du Sein Deschênes-FabiaCentre Hospitalier Affilié Universitaire de Québec1050 Chemin Sainte-Foy, Québec, QuébecCanadaG1S 4L8
- (Correspondence should be addressed to J Brisson; E-mail: )
| |
Collapse
|
16
|
Abstract
Transcriptional control of cellular energy metabolic pathways is achieved by the coordinated action of numerous transcription factors and associated coregulators. Several members of the nuclear receptor superfamily have been shown to play important roles in this process because they can translate hormonal, nutrient, and metabolite signals into specific gene expression networks to satisfy energy demands in response to distinct physiological cues. Estrogen-related receptor (ERR) alpha, ERRbeta, and ERRgamma are nuclear receptors that have yet to be associated with a natural ligand and are thus considered as orphan receptors. However, the transcriptional activity of the ERRs is exquisitely sensitive to the presence of coregulatory proteins known to be essential for the control of energy homeostasis, and for all intents and purposes, these coregulators function as protein ligands for the ERRs. In particular, functional genomics and biochemical studies have shown that ERRalpha and ERRgamma operate as the primary conduits for the activity of members of the family of PGC-1 coactivators. As transcription factors, the ERRs control vast gene networks involved in all aspects of energy homeostasis, including fat and glucose metabolism as well as mitochondrial biogenesis and function. Phenotypic analyses of knockout mouse models have shown that all three ERRs are indispensable for proper development and/or survival of the organism when subjected to a variety of physiological challenges. The focus of this review is on the recent and rapid advances in understanding the functions of the ERRs in regulating bioenergetic pathways, with an emphasis on their roles in the specification of energetic properties required for cell- and tissue-specific functions.
Collapse
Affiliation(s)
- Vincent Giguère
- The Rosalind and Morris Goodman Cancer Centre, Cancer Pavilion, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3.
| |
Collapse
|
17
|
Zhang F, Xiao P, Yang F, Shen H, Xiong DH, Deng HY, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Deng HW. A whole genome linkage scan for QTLs underlying peak bone mineral density. Osteoporos Int 2008; 19:303-10. [PMID: 17882466 DOI: 10.1007/s00198-007-0468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/31/2007] [Indexed: 01/28/2023]
Abstract
UNLABELLED We conducted a whole genome linkage scan for quantitative trait loci (QTLs) underlying peak bone mineral density (PBMD). Our efforts identified several potential genomic regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation. INTRODUCTION Peak bone mineral density (PBMD) is an important clinical risk predictor of osteoporosis and explains a large part of bone mineral density (BMD) variation. METHODS To detect susceptive quantitative trait loci (QTLs) for PBMD variation including consideration of epistatic and sex-specific effects, we conducted a whole genome linkage scan (WGLS) for PBMD using 2,200 Caucasians from 207 pedigrees, aged 20-50 years. All the individuals were genotyped with 410 microsatellite markers. In addition to WGLS in the total combined sample of males and females, we conducted epistatic interaction analyses, and sex-specific subgroup linkage analyses. RESULTS We identified several potential genomic regions that met the criteria for suggestive linkage. The most impressing region is 12p12 for hip PBMD (LOD = 2.79) in the total sample. Epistatic interaction analyses found a significant epistatic interaction between 12p12 and 22q13 (p = 0.0021) for hip PBMD. Additionally, we detected suggestive linkage evidence at 15q26 (LOD = 2.93), 2p13 (LOD = 2.64), and Xq27 (LOD = 2.64). Sex-specific analyses suggested the presence of sex-specific QTLs for PBMD variation. CONCLUSIONS Our efforts identified several potential regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation.
Collapse
Affiliation(s)
- F Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
19
|
Tremblay AM, Giguère V. The NR3B subgroup: an ovERRview. NUCLEAR RECEPTOR SIGNALING 2007; 5:e009. [PMID: 18174917 PMCID: PMC2121319 DOI: 10.1621/nrs.05009] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 10/05/2007] [Indexed: 12/25/2022]
Abstract
Members of the NR3B group of the nuclear receptor superfamily, known as the estrogen-related receptors (ERRs), were the first orphan receptors to be identified two decades ago. Despite the fact that a natural ligand has yet to be associated with the ERRs, considerable knowledge about their mode of action and biological functions has emerged through extensive biochemical, genetic and functional genomics studies. This review describes our current understanding of how the ERRs work as transcription factors and as such, how they control diverse developmental and physiological programs.
Collapse
Affiliation(s)
- Annie M Tremblay
- Department of Biochemistry, McGill University and Molecular Oncology Group, McGill University Health Centre, Montréal, Québec, Canada
| | | |
Collapse
|
20
|
|
21
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2006; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 2006; 27:299-402. [PMID: 16914190 DOI: 10.1016/j.mam.2006.07.001] [Citation(s) in RCA: 369] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) controls many aspects of human physiology, including development, reproduction and homeostasis, through regulation of the transcriptional activity of its cognate receptors (ERs). The crystal structures of ERs with agonists and antagonists and the use of transgenic animals have revealed much about how hormone binding influences ER conformation(s) and how this conformation(s), in turn, influences the interaction of ERs with co-activators or co-repressors and hence determines ER binding to DNA and cellular outcomes. This information has helped to shed light on the connection between E2 and the development or progression of numerous diseases. Current therapeutic strategy in the treatment of E2-related pathologies relies on the modulation of ER trancriptional activity by anti-estrogens; however, data accumulated during the last five years reveal that ER activities are not only restricted to the nucleus. ERs are very mobile proteins continuously shuttling between protein targets located within various cellular compartments (e.g., membrane, nucleus). This allows E2 to generate different and synergic signal transduction pathways (i.e., non-genomic and genomic) which provide plasticity for cell response to E2. Understanding the structural basis and the molecular mechanisms by which ER transduce E2 signals in target cells will allow to create new pharmacologic therapies aimed at the treatment of a variety of human diseases affecting the cardiovascular system, the reproductive system, the skeletal system, the nervous system, the mammary gland, and many others.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | |
Collapse
|
23
|
Larsen LH, Rose CS, Sparsø T, Overgaard J, Torekov SS, Grarup N, Jensen DP, Albrechtsen A, Andersen G, Ek J, Glümer C, Borch-Johnsen K, Jørgensen T, Hansen T, Pedersen O. Genetic analysis of the estrogen-related receptor α and studies of association with obesity and type 2 diabetes. Int J Obes (Lond) 2006; 31:365-70. [PMID: 16755280 DOI: 10.1038/sj.ijo.0803408] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The estrogen-related receptor alpha (ERRalpha or NR3B1) is a transcription factor from the nuclear receptor super-family, group III. The gene encoding ERRalpha (ESRRA) is located on chromosome 11q13, a region showing genetic linkage to body mass index and fat percentage. Through interaction with the peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), ERRalpha regulates key enzymes involved in the beta-oxidation of fatty acids. RESULTS By screening 48 overweight or obese subjects for variants in the exons, exon-intron boundaries and 1000 base pairs (bp) of the promoter region of ESRRA using bi-directional nucleotide sequencing, we identified seven variants. Four rare variants had minor allele frequencies (MAF) below 1%: Pro369Pro, Gly406Asp, 3'UTR+418G>A, 3'UTR+505C>A. Two single-nucleotide polymorphisms, Pro116Pro and IVS6+65C>T (MAF 15%), were in complete linkage disequilibrium (LD) (r (2)=1). We also confirmed the presence of a reported 23 bp microsatellite repeat (ESRRA23). The Pro116Pro and ESRRA23 variants were not associated with obesity, type 2 diabetes or related phenotypes in a large population-based study of 6365 Danish whites. The two variants were examined for interactions with variants in the peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -beta; however, no evidence of epistatic effects between the variants was demonstrated. CONCLUSION The ESRRA23 and Pro116Pro variants of the gene encoding ERRalpha are not associated with obesity, type 2 diabetes or related quantitative traits in the examined Danish whites.
Collapse
Affiliation(s)
- L H Larsen
- Steno Diabetes Center, Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Osteoporosis is a disorder in which loss of bone strength leads to fragility fractures. This review examines the fundamental pathogenetic mechanisms underlying this disorder, which include: (a) failure to achieve a skeleton of optimal strength during growth and development; (b) excessive bone resorption resulting in loss of bone mass and disruption of architecture; and (c) failure to replace lost bone due to defects in bone formation. Estrogen deficiency is known to play a critical role in the development of osteoporosis, while calcium and vitamin D deficiencies and secondary hyperparathyroidism also contribute. There are multiple mechanisms underlying the regulation of bone remodeling, and these involve not only the osteoblastic and osteoclastic cell lineages but also other marrow cells, in addition to the interaction of systemic hormones, local cytokines, growth factors, and transcription factors. Polymorphisms of a large number of genes have been associated with differences in bone mass and fragility. It is now possible to diagnose osteoporosis, assess fracture risk, and reduce that risk with antiresorptive or other available therapies. However, new and more effective approaches are likely to emerge from a better understanding of the regulators of bone cell function.
Collapse
Affiliation(s)
- Lawrence G Raisz
- University of Connecticut Health Center, Musculoskeletal Institute, Farmington, Connecticut 06032, USA.
| |
Collapse
|