1
|
Xie Q, Du X, Liang J, Shen Y, Ling Y, Huang Z, Ke Z, Li T, Song B, Wu T, Wang Y, Tao H. FABP4 inhibition suppresses bone resorption and protects against postmenopausal osteoporosis in ovariectomized mice. Nat Commun 2025; 16:4437. [PMID: 40360512 PMCID: PMC12075751 DOI: 10.1038/s41467-025-59719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a condition in women caused by estrogen deficiency, characterized by reduced bone mass and increased fracture risk. Fatty acid-binding protein 4 (FABP4), a lipid-binding protein involved in metabolism and inflammation, has emerged as a key regulator in metabolic disorders and bone resorption; however, its direct role in PMOP remains unclear. Here, we show that serum FABP4 levels in PMOP patients negatively correlate with bone mineral density, a trend also observed in ovariectomized mice. FABP4 promotes osteoclast formation and bone resorption without affecting osteoblast differentiation. The FABP4 inhibitor BMS309403 suppresses osteoclast differentiation by modulating calcium signaling and inhibiting the Ca2+-Calcineurin-NFATc1 pathway. Oral BMS309403 increases bone mineral density in ovariectomized mice, though less effectively than alendronate. Notably, bone-targeted delivery of BMS309403 achieves comparable efficacy to alendronate. In this work, we demonstrate that FABP4 is a critical mediator in PMOP and that its inhibition offers a promising therapeutic strategy.
Collapse
Affiliation(s)
- Qian Xie
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xiangfu Du
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianhui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanni Shen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yufan Ling
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhengji Huang
- Department of orthopedics, Shenzhen University General Hospital, Shenzhen, China
| | - Zekai Ke
- Department of orthopedics, Shenzhen University General Hospital, Shenzhen, China
| | - Tai Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bing Song
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tailin Wu
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Huiren Tao
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Cronin JT, Curtis KB, Richards BW, Hibbard JN, Skedros JG. Acromion and Clavicle Stress Fractures After Reverse Total Shoulder Arthroplasty Reflect Failure to Address Osteoporosis: A Case Report and Literature Review. Cureus 2025; 17:e79993. [PMID: 40041247 PMCID: PMC11876088 DOI: 10.7759/cureus.79993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/06/2025] Open
Abstract
The exponential increase in the rate of reverse total shoulder arthroplasty (RTSA) has been accompanied by a rise in complication rates of this procedure. Of these, peri-prosthetic stress fractures can be particularly problematic due to their potential to cause significant impairment of shoulder function. Despite the association between these stress fractures and osteopenia/osteoporosis, pre-operative bone density assessment is not standard practice for elective RTSA. We report the case of a 68-year-old female patient who, at eleven weeks after elective RTSA (for rotator cuff-tear arthropathy), experienced a non-traumatic stress (insufficiency) fracture of the acromion process of the ipsilateral scapula. Thirteen weeks later, new-onset pain occurred with minimal shoulder use, and a midshaft clavicle stress fracture was detected. She was then diagnosed and treated for osteoporosis, vitamin D deficiency, and hypothyroidism. An ultrasound-based bone-growth stimulator was used to treat both fractures, but only the acromion fracture healed. The clavicle fracture became a 100% displaced chronic non-union. However, the patient felt that surgical fixation of the clavicle fracture would not provide a significant benefit. At 1.5 years after the RTSA, she was moderately satisfied with her shoulder function and highly satisfied with pain reduction, and no additional surgery was required. This is the first reported case describing a patient with acromion and clavicle stress fractures occurring in association with ipsilateral RTSA. We also review the literature of cases with clavicle stress fractures in association with RTSA and highlight key findings: (i) the prevalence of osteoporosis in the population undergoing shoulder arthroplasty is high and (ii) performing shoulder arthroplasty on patients with poor bone quality presents multiple challenges that are underappreciated. This case underscores the importance of pre-operative bone density/health screening to mitigate stress fracture risk after RTSA.
Collapse
Affiliation(s)
- John T Cronin
- Shoulder & Elbow, Utah Orthopaedic Specialists, Salt Lake City, USA
| | - Kevin B Curtis
- Shoulder & Elbow, Utah Orthopaedic Specialists, Salt Lake City, USA
| | - Brett W Richards
- Shoulder & Elbow, Utah Orthopaedic Specialists, Salt Lake City, USA
| | - Julia N Hibbard
- Shoulder & Elbow, Utah Orthopaedic Specialists, Salt Lake City, USA
| | - John G Skedros
- Shoulder & Elbow, Utah Orthopaedic Specialists, Salt Lake City, USA
| |
Collapse
|
3
|
Kuroda Y, Yoda M, Kawaai K, Tatenuma M, Mizoguchi T, Ito S, Kasahara M, Wu Y, Takano H, Momose A, Matsuo K. Developing long bones respond to surrounding tissues by trans-pairing of periosteal osteoclasts and endocortical osteoblasts. Development 2024; 151:dev202194. [PMID: 39119717 PMCID: PMC11423808 DOI: 10.1242/dev.202194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Motoharu Tatenuma
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | - Shinichirou Ito
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
- JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Martin TJ, Seeman E. Bone Remodeling and Modeling: Cellular Targets for Antiresorptive and Anabolic Treatments, Including Approaches Through the Parathyroid Hormone (PTH)/PTH-Related Protein Pathway. Neurospine 2023; 20:1097-1109. [PMID: 38171279 PMCID: PMC10762382 DOI: 10.14245/ns.2346966.483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bone is continuously in a state of building and renewal, though the process of remodeling that takes place at many sites asynchronously throughout the skeleton, with bone formation and resorption equal at these sites (bone multicellular units). Remodeling takes place on bone surfaces, both on trabeculae and in the cortex, and serves the purposes of replacing old bone or that damaged by microfractures throughout the skeleton. The bone loss and consequent osteoporotic fractures that result from excess resorption over formation have mainly been prevented or treated by antiresorptive drugs that inhibit osteoclast formation and/or activity. Virtually all of the evidence leading to acceptance of antiresorptive drugs as treatment has depended upon their prevention of vertebral fractures. In recent decades, new prospects came of anabolic treatments that partly restore bone volume and microstructure restore bone that has been lost. The first of these was parathyroid hormone (PTH), shown by daily injection to increase markers of bone formation and prevent fractures. This field of interest enlarged with the discovery of PTH-related protein (PTHrP), so closely related in structure and action to PTH. The structural relationship between PTH and PTHrP is important in assessing their physiological and pharmacological roles, with the N-terminal domains of the 2 having virtually equal actions on target cells. Abaloparatide, a peptide analogue based on the structures of PTHrP and PTH, has been approved in some countries as a therapy for osteoporosis. Treatment through the PTH receptor activation pathway, and probably with any anabolic therapy, needs to be followed by antiresorptive treatment in order to maintain bone that has been restored. No matter how effective anabolic therapies for the skeleton become, it seems highly likely that there will be a continuing need for antiresorptive drugs.
Collapse
Affiliation(s)
- Thomas John Martin
- Department of Medicine and St. Vincent’s Institute of Medical Research, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Department of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
5
|
Sano H, Whitmarsh T, Skingle L, Shimakura T, Yamamoto N, Compston JE, Takahashi HE, Poole KES. Buds of new bone formation within the Femoral Head of Hip Fracture Patients Coincide with Zones of Low Osteocyte Sclerostin. J Bone Miner Res 2023; 38:1603-1611. [PMID: 37548352 DOI: 10.1002/jbmr.4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/19/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Romosozumab treatment reduces the rate of hip fractures and increases hip bone density, increasing bone formation by inhibiting sclerostin protein. We studied the normal pattern of bone formation and osteocyte expression in the human proximal femur because it is relevant to both antisclerostin treatment effects and fracture. Having visualized and quantified buds of new bone formation in trabeculae, we hypothesized that they would coincide with areas of (a) higher mechanical stress and (b) low sclerostin expression by osteocytes. In patients with hip fracture, we visualized each bud of active modeling-based formation (forming minimodeling structure [FMiS]) in trabecular cores taken from different parts of the femoral head. Trabecular bone structure was also measured with high-resolution imaging. More buds of new bone formation (by volume) were present in the higher stress superomedial zone (FMiS density, N.FMiS/T.Ar) than lower stress superolateral (p < 0.05), and inferomedial (p < 0.001) regions. There were fewer sclerostin expressing osteocytes close to or within FMiS. FMiS density correlated with greater amount, thickness, number, and connectivity of trabeculae (bone volume BV/TV, r = 0.65, p < 0.0001; bone surface BS/TV, r = 0.47, p < 0.01; trabecular thickness Tb.Th, r = 0.55, p < 0.001; trabecular number Tb.N, r = 0.47, p < 0.01; and connectivity density Conn.D, r = 0.40, p < 0.05) and lower trabecular separation (Tb.Sp, r = -0.56, p < 0.001). These results demonstrate modeling-based bone formation in femoral trabeculae from patients with hip fracture as a potential therapeutic target to enhance bone structure. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hiroshige Sano
- Department of Medicine, University of Cambridge, Cambridge, UK
- Niigata Bone Science Institute, Niigata, Japan
- Uchino Orthopedic Clinic, Niigata, Japan
| | | | - Linda Skingle
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
6
|
Lee SY, Seo MS, Yoo JI. Effectiveness of Weekly Teriparatide Injection in Postmenopausal Patients with Hip Fractures. Clin Orthop Surg 2023; 15:552-559. [PMID: 37529188 PMCID: PMC10375812 DOI: 10.4055/cios22280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 08/03/2023] Open
Abstract
Background Teriparatide is an effective anabolic agent used in the treatment of severe osteoporosis. In addition, it is also used to promote fracture healing. The purpose of this double-blind randomized controlled trial was to evaluate the influence of weekly teriparatide administration on bone formation in hip fracture patients. Methods The control group (n = 41) was composed of patients treated with normal saline other than teriparatide, and the teriparatide group (n = 51) consisted of patients who received weekly teriparatide. Bone turnover markers, C-terminal telopeptide (CTx) and osteocalcin (OC), were assessed through blood tests at the initial hospital visit and 3-month, 6-month, and 1-year follow-ups. Dual-energy X-ray absorptiometry was performed 5 days postoperatively and at 1-year postoperative follow-up. The degree of fracture union was evaluated by comparing the radiographic union scoring system for hips using Radiographic Union Score for Hip (RUSH) scores between the two groups at 3 months, 6 months, and 1 year after surgery. Results Evaluation of the rate of change in bone mineral density over 1 year showed that the lumber bone mineral density increased by more than 7% in the experimental group. The control group did not show a difference between the CTx and OC at 6 months, but the difference between the CTx and OC values was large at 6 months in the experimental group. The mean RUSH score was significantly different between the control group and the experimental group: 12.105 and 15.476, respectively (p = 0.004), at 3 months and 18.571 and 22.389, respectively, at 6 months (p = 0.006). Conclusions Weekly use of teriparatide improved fracture healing, bone formation, and clinical outcomes at 1 year after hip fracture surgery by the anabolic window effect.
Collapse
Affiliation(s)
- Sang Yeob Lee
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Min-Seok Seo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|
7
|
Hannachi M, Ouerghi N, Abassi W, Ouergui I, kammoun I, Bouassida A. Effects of high- vs. moderate-intensity intermittent training on parathyroid hormone concentration in overweight/obese females. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Wang W, Azar T, Tseng WJ, Pei S, Zhou Y, Jiang X, Dyment N, Liu XS. Distinct Responses of Modeling- and Remodeling-Based Bone Formation to the Discontinuation of Intermittent Parathyroid Hormone Treatment in Ovariectomized Rats. J Bone Miner Res 2022; 37:2215-2225. [PMID: 36093591 PMCID: PMC9712255 DOI: 10.1002/jbmr.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
Anabolic agents, such as intermittent parathyroid hormone (PTH), exert their treatment efficacy through activation of two distinct bone formation processes, namely, remodeling-based bone formation (RBF, bone formation coupled with prior bone resorption) and modeling-based bone formation (MBF, bone formation without prior activation of bone resorption). However, if not followed by an antiresorptive agent, treatment benefit was quickly lost upon withdrawal from anabolic agents. By using in vivo micro-computed tomography imaging and multiplex cryohistology with sequential immunofluorescence staining, we investigated the temporal response of newly formed bone tissue from MBF and RBF and the preexisting bone tissue to withdrawal from PTH treatment and the associated cellular activity in an ovariectomized (OVX) rat model. We first demonstrated continued mineral apposition at both RBF and MBF sites following PTH discontinuation, resulting in an extended anabolic effect after 1-week withdrawal from PTH. It was further discovered that MBF sites had a greater contribution than RBF sites to the extended anabolic effect upon early withdrawal from PTH, evidenced by a higher percentage of alkaline phosphatase-positive (ALP+) surfaces and far greater bone formation activity at MBF versus RBF sites. Furthermore, significant bone loss occurred after 3 weeks of discontinuation from PTH, resulting from marked loss of newly formed bone tissue from RBF and preexisting bone tissue prior to treatment. In contrast, MBF surfaces had a delayed increase of tartrate-resistant acid phosphatase activity following PTH discontinuation. As a result, newly formed bone tissue from MBF had greater resistance to PTH discontinuation-induced bone loss than those from RBF and preexisting bone. Understanding various responses of two distinct bone formation types and preexisting bone to anabolic treatment discontinuation is critical to inform the design of follow-up treatment or cyclic treatment strategies to maximize treatment benefit of anabolic agents. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathaniel Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Lewiecki EM, Bilezikian JP, Binkley N, Bouxsein ML, Bukata SV, Dempster DW, Drake MT, McClung MR, Miller PD, Rosenthal E, Tosi LL. Proceedings of the 2022 Santa Fe Bone Symposium: Current Concepts in the Care of Patients with Osteoporosis and Metabolic Bone Diseases. J Clin Densitom 2022; 25:649-667. [PMID: 36280582 DOI: 10.1016/j.jocd.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The 22nd Annual Santa Fe Bone Symposium (SFBS) was a hybrid meeting held August 5-6, 2022, with in-person and virtual attendees. Altogether, over 400 individuals registered, a majority of whom attended in-person, representing many states in the USA plus 7 other countries. The SFBS included 10 plenary presentations, 2 faculty panel discussions, satellite symposia, Bone Health & Osteoporosis Foundation Fracture Liaison Service Boot Camp, and a Project ECHO workshop, with lively interactive discussions for all events. Topics of interest included fracture prevention at different stages of life; how to treat and when to change therapy; skeletal health in cancer patients; advanced imaging to assess bone strength; the state of healthcare in the USA; osteosarcopenia; vitamin D update; perioperative bone health care; new guidelines for managing primary hyperparathyroidism; new concepts on bone modeling and remodeling; and an overview on the care of rare bone diseases, including hypophosphatasia, X-linked hypophosphatemia, tumor induced osteomalacia, osteogenesis imperfecta, fibrodysplasia ossificans progressiva, and osteopetrosis. The SFBS was preceded by the Santa Fe Fellows Workshop on Osteoporosis and Metabolic Bone Diseases, a collaboration of the Endocrine Fellows Foundation and the Osteoporosis Foundation of New Mexico. From the Workshop, 4 participating fellows were selected to give oral presentations at the bone symposium. These proceedings represent the clinical highlights of 2022 SFBS presentations and the discussions that followed, all with the aim of optimizing skeletal health and minimizing the consequences of fragile bones.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA.
| | - John P Bilezikian
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Neil Binkley
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | - David W Dempster
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | - Michael R McClung
- Oregon Osteoporosis Center, Portland, OR, USA; Mary MacKillop Center for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Paul D Miller
- University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | |
Collapse
|
10
|
Paschalis EP, Gamsjaeger S, Klaushofer K, Shane E, Cohen A, Stepan J, Pavo I, Eriksen EF, Taylor KA, Dempster DW. Treatment of postmenopausal osteoporosis patients with teriparatide for 24 months reverts forming bone quality indices to premenopausal healthy control values. Bone 2022; 162:116478. [PMID: 35779845 DOI: 10.1016/j.bone.2022.116478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Postmenopausal osteoporosis (PMOP) therapies are frequently evaluated by bone mineral density (BMD) gains against patients receiving placebo (calcium and vitamin D supplementation, a mild bone turnover-suppressing intervention), which is not equivalent to either healthy or treatment-naive PMOP. The aim of the present observational study was to assess the effects of TPTD treatment in PMOP (20 μg, once daily) at 6 (TPTD 6m; n = 28, age 65 ± 7.3 years), and 24 (TPTD 24m; n = 32, age 67.4 ± 6.15 years) months on bone quality indices at actively forming trabecular surfaces (with fluorescent double labels). Data from the TPTD-treated PMOP patients were compared with those in healthy adult premenopausal women (HC; n = 62, age 40.5 ± 10.6 years), and PMOP receiving placebo (PMOP-PLC; n = 94, age 70.6 ± 4.5 years). Iliac crest biopsies were analyzed by Raman microspectroscopy at three distinct tissue ages: mid-distance between the second label and the bone surface, mid-distance between the two labels, and 1 μm behind the first label. Mineral to matrix ratio (MM), mineral maturity/crystallinity (MMC), tissue water (TW), glycosaminoglycan (GAGs), and pyridinoline (Pyd) content were determined. Outcomes were compared by ANCOVA with subject age and tissue age as covariates, and health status as a fixed factor, followed by Sidak's post-hoc testing (significance assigned to p < 0.05). Both TPTD groups increased MM compared to PMOP-PLC. While TPTD 6m had values similar to HC, TPTD 24m had higher values compared to either HC or TPTD 6m. Both TPTD groups had lower MMC values compared to PMOP-PLC and similar to HC. TPTD 6m patients had higher TW content compared to HC, while TPTD 24m had values similar to HC and lower than either PMOP-PLC or TPTD 6m. Both TPTD groups had lower GAG content compared to HC group, while TPTD 6m had higher values compared to PMOP-PLC. Finally, TPTD 6m patients had higher Pyd content compared to HC and lower compared to PMOP-PLC, while TPTD 24m had lower values compared to PMOP-PLC and TPTD 6m, and similar to HC group. The results of the present study indicate that effects of TPTD on forming trabecular bone quality indices depend on treatment duration. At the recommended length of 24 m, TPTD restores bone mineral and organic matrix quality indices (MMC, TW, Pyd content) to premenopausal healthy (HC) levels.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Adi Cohen
- Early Onset Osteoporosis Center, Metabolic Bone Diseases Program, Division of Endocrinology, Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | - Jan Stepan
- Institute of Rheumatology, Faculty of Medicine 1, Charles University, Prague, Czech Republic
| | - Imre Pavo
- Eli Lilly and Company USA, LLC, Indianapolis, IN, USA
| | - Erik F Eriksen
- Department of Endocrinology, Pilestredet Park Specialist Center, Oslo, Norway; The Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - David W Dempster
- Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Koide M, Yamashita T, Nakamura K, Yasuda H, Udagawa N, Kobayashi Y. Evidence for the major contribution of remodeling-based bone formation in sclerostin-deficient mice. Bone 2022; 160:116401. [PMID: 35381389 DOI: 10.1016/j.bone.2022.116401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/02/2022]
Abstract
Bone formation by osteoblasts is achieved through remodeling-based bone formation (RBBF) and modeling-based bone formation (MBBF). The former is when bone formation occurs after osteoclastic bone resorption to maintain bone mass and calcium homeostasis. The latter is when new bone matrices are added on the quiescent bone surfaces. Administration of anti-sclerostin neutralizing antibody promotes MBBF in ovariectomized rats and postmenopausal women. However, it remains to be elucidated which mode of bone formation mainly occurs in Sost-deficient mice under physiological conditions. Here, we show that two-thirds of bone formation involves RBBF in 12-week-old Sost-deficient mice (C57BL/6 background). Micro-computed tomography and histomorphometric analyses showed that the trabecular bone mass in Sost-KO mice was higher than that in Sost+/- mice. In contrast, the osteoclast number remained unchanged in Sost-KO mice, but the bone resorption marker TRAP5b in serum was slightly higher in those mice. Treatment with anti-RANKL antibody increased the trabecular bone mass of Sost+/- or Sost-KO mice. Bone formation markers such as osteoid surfaces, the mineral apposition rate, and bone formation rate were almost completely suppressed in Sost+/- mice treated with anti-RANKL antibody compared with vehicle-treated Sost+/- mice. In Sost-KO mice, treatment with anti-RANKL antibody suppressed those parameters by more than half. These findings indicate that RBBF accounts for most of the bone formation in Sost+/- mice, whereas approximately two-thirds of bone formation is estimated to be remodeling-based in 12-week-old Sost-deficient mice. Furthermore, anti-RANKL antibody may be useful for detecting MBBF on trabecular bone.
Collapse
Affiliation(s)
- Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Keigo Nakamura
- Department of Operative Dentistry, Endodontology and Periodontology, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Hisataka Yasuda
- Bioindustry Division, Oriental Yeast Co., Ltd., 3-6-10 Azusawa, Itabashi-ku, Tokyo 174-8505, Japan
| | - Nobuyuki Udagawa
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan; Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
12
|
Agarwal S, Shane E, Lang T, Shiau S, Kamanda-Kosseh M, Bucovsky M, Lappe JM, Stubby J, Recker RR, Hu Y, Wang Z, Edward Guo X, Cohen A. Spine Volumetric BMD and Strength in Premenopausal Idiopathic Osteoporosis: Effect of Teriparatide Followed by Denosumab. J Clin Endocrinol Metab 2022; 107:e2690-e2701. [PMID: 35428889 PMCID: PMC9391607 DOI: 10.1210/clinem/dgac232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Premenopausal women with idiopathic osteoporosis (PreMenIOP) have marked deficits in bone density, microstructure, and strength. OBJECTIVE To define effects of treatment with teriparatide followed by denosumab on lumbar spine (LS) volumetric bone mineral density (vBMD) and stiffness by finite element analysis assessed on central quantitative computed tomography (cQCT) scans. DESIGN, SETTINGS, AND PARTICIPANTS Ancillary analysis of baseline, post-teriparatide, and post-denosumab cQCT scans from a randomized trial of 41 women allocated to teriparatide (20 mcg daily; n = 28) or placebo (n = 11). After 6 months, those on teriparatide continued for 18 months, and those on placebo switched to teriparatide for 24 months. After completing teriparatide, 33 enrolled in a Phase 2B extension with denosumab (60 mg every 6 months) for 12 months. MAIN OUTCOME MEASURES Primary outcomes were percentage change from baseline in LS trabecular vBMD and stiffness after teriparatide and between end of teriparatide and completing denosumab. Percentage change from baseline in LS trabecular vBMD and stiffness after sequential teriparatide and denosumab were secondary outcomes. FINDINGS There were large increases (all Ps < 0.001) in trabecular vBMD (25%), other vBMD parameters, and stiffness (21%) after teriparatide. Statistically significant increases in trabecular vBMD (10%; P < 0.001) and other vBMD parameters (P = 0.03-0.001) were seen after denosumab, while stiffness increased by 7% (P = 0.068). Sequential teriparatide and denosumab led to highly significant (all Ps < 0.001) increases LS trabecular vBMD (43%), other vBMD parameters (15-31%), and stiffness (21%). CONCLUSIONS The large and statistically significant increases in volumetric density and stiffness after sequential treatment with teriparatide followed by denosumab are encouraging and support use of this regimen in PreMenIOP.
Collapse
Affiliation(s)
- Sanchita Agarwal
- Correspondence: Sanchita Agarwal, MS, Columbia University, Vagelos College of Physicians & Surgeons, Department of Medicine, Division of Endocrinology, 180 Fort Washington Ave, HP9-910, New York, NY 10032, USA.
| | - Elizabeth Shane
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Thomas Lang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Stephanie Shiau
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Mafo Kamanda-Kosseh
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Mariana Bucovsky
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Joan M Lappe
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - Julie Stubby
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - Robert R Recker
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - Yizhong Hu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zexi Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Adi Cohen
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| |
Collapse
|
13
|
Rooney AM, Dempster DW, Nieves JW, Zhou H, Bostrom MPG, Cosman F. Effects of teriparatide and loading modality on modeling-based and remodeling-based bone formation in the human femoral neck. Bone 2022; 157:116342. [PMID: 35092891 PMCID: PMC8941636 DOI: 10.1016/j.bone.2022.116342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
Abstract
PURPOSE We have previously shown that a brief course of teriparatide (TPTD) stimulates bone formation in the cancellous and endocortical envelopes of the human femoral neck, and the regions of tension and compression respond differently. The purpose of the present study was to determine how much of the new bone was formed by modeling-based formation (MBF) or remodeling-based formation (RBF). METHODS We performed a double-blind trial of TPTD vs. placebo (PBO) in patients about to undergo a total hip replacement (THR) for osteoarthritis. Participants were randomized to receive daily TPTD 20 μg or PBO for an average of 6.1 weeks (range 4.1-11.8 weeks) prior to THR. After an average of 3 weeks of study drug, double tetracycline labels were administered per standard protocol. During the THR an intact sample of the mid-femoral neck (FN) was procured; this was fixed, embedded, and sectioned transversely. Histomorphometric analysis was performed in the cancellous, endocortical, and periosteal envelopes. Additionally, separate analyses were performed in the tensile and compressive regions of the endocortical and periosteal envelopes. Sites of new bone formation were identified by the presence of tetracycline labels and designated as MBF if the underlying cement line was smooth and as RBF if it was scalloped. New bone formation on smooth cement lines adjacent to scalloped reversal lines was designated as overflow RBF (oRBF). The referent for all indices was bone surface (BS). RESULTS In the cancellous and endocortical envelopes, the proportion of mineralizing surface engaged in RBF and oRBF was higher in the TPTD-treated than the PBO-treated subjects. There was also a trend toward higher MBF in TPTD vs. PBO in both envelopes. In linear mixed-effects models, TPTD was predicted to increase formation differently on the tensile and compressive surfaces depending on patient-specific anatomy, including body weight, FN angle, offset, and cortical width and porosity. Eroded surface was not different between groups in either envelope and no significant differences were observed in any parameter in the periosteal envelope. CONCLUSION We conclude that the predominant early effect of TPTD in the human femoral neck is to stimulate RBF and oRBF with a trend toward an increase in MBF in the endocortical and cancellous envelopes.
Collapse
Affiliation(s)
- Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, NY 14853, USA.
| | - David W Dempster
- Regional Bone Center, Helen Hayes Hospital, 55 N Route 9W, West Haverstraw, NY 10993, USA; Department of Pathology, Columbia University, 630 West 168th St., New York, NY 10025, USA
| | - Jeri W Nieves
- Regional Bone Center, Helen Hayes Hospital, 55 N Route 9W, West Haverstraw, NY 10993, USA; Department of Epidemiology, Columbia University, 722 West 168th St., New York, NY 10032, USA; Research Division, Hospital for Special Surgery, 515 East 71st St., New York, NY 10021, USA.
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, 55 N Route 9W, West Haverstraw, NY 10993, USA
| | - Mathias P G Bostrom
- Research Division, Hospital for Special Surgery, 515 East 71st St., New York, NY 10021, USA.
| | - Felicia Cosman
- Department of Medicine, Columbia University, 622 West 168th St., New York, NY 10032, USA.
| |
Collapse
|
14
|
Eriksen EF, Chapurlat R, Boyce RW, Shi Y, Brown JP, Horlait S, Betah D, Libanati C, Chavassieux P. Modeling-Based Bone Formation After 2 Months of Romosozumab Treatment: Results From the FRAME Clinical Trial. J Bone Miner Res 2022; 37:36-40. [PMID: 34633116 DOI: 10.1002/jbmr.4457] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/20/2021] [Accepted: 10/03/2021] [Indexed: 11/11/2022]
Abstract
The bone-forming agent romosozumab is a monoclonal antibody that inhibits sclerostin, leading to increased bone formation and decreased resorption. The highest levels of bone formation markers in human patients are observed in the first 2 months of treatment. Histomorphometric analysis of bone biopsies from the phase 3 FRAME trial (NCT01575834) showed an early significant increase in bone formation with concomitant decreased resorption. Preclinical studies demonstrated that most new bone formation after romosozumab treatment was modeling-based bone formation (MBBF). Here we analyzed bone biopsies from FRAME to assess the effect of 2 months of romosozumab versus placebo on the surface extent of MBBF and remodeling-based bone formation (RBBF). In FRAME, postmenopausal women aged ≥55 years with osteoporosis were randomized 1:1 to 210 mg romosozumab or placebo sc every month for 12 months, followed by 60 mg denosumab sc every 6 months for 12 months. Participants in the bone biopsy substudy received quadruple tetracycline labeling and underwent transiliac biopsies at month 2. A total of 29 biopsies were suitable for histomorphometry. Using fluorescence microscopy, bone formation at cancellous, endocortical, and periosteal envelopes was classified based on the appearance of underlying cement lines as modeling (smooth) or remodeling (scalloped). Data were compared using the Wilcoxon rank-sum test, without multiplicity adjustment. After 2 months, the median percentage of MBBF referent to the total bone surface was significantly increased with romosozumab versus placebo on cancellous (18.0% versus 3.8%; p = 0.005) and endocortical (36.7% versus 3.0%; p = 0.001), but not on periosteal (5.0% versus 2.0%; p = 0.37) surfaces, with no significant difference in the surface extent of RBBF on all three bone surfaces. These data show that stimulation of bone formation in the first 2 months of romosozumab treatment in postmenopausal women with osteoporosis is predominately due to increased MBBF on endocortical and cancellous surfaces. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Erik F Eriksen
- Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.,Spesialistsenteret Pilestredet Park, Oslo, Norway
| | - Roland Chapurlat
- INSERM UMR 1033, Université de Lyon, Hospices Civils de Lyon, Lyon, France
| | | | | | - Jacques P Brown
- CHU de Québec Research Centre and Laval University, Quebec City, Canada
| | | | | | | | | |
Collapse
|
15
|
John Martin T. Aspects of intercellular communication in bone and implications in therapy. Bone 2021; 153:116148. [PMID: 34389478 DOI: 10.1016/j.bone.2021.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/18/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022]
Abstract
Communication processes among the cells of bone are essential for the structure and function of the organ. After it was proposed that communication from the osteoblast lineage to hemopoietic cells initiated osteoclastogenesis, the molecular controls were identified to be the tumour necrosis factor ligand and receptor families. This was followed by revelation of very many signalling processes among the cells of bone that regulate the three phases of bone remodelling, the resorption, reversal and formation phases. In many instances the ways in which these mechanisms operate can determine how drugs act on bone, whether they be inhibitors of resorption or promoters of formation.
Collapse
Affiliation(s)
- T John Martin
- St Vincent's Institute of Medical Research, The University of Melbourne Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
16
|
Robinson ST, Shyu PT, Guo XE. Mechanical loading and parathyroid hormone effects and synergism in bone vary by site and modeling/remodeling regime. Bone 2021; 153:116171. [PMID: 34492358 PMCID: PMC8499476 DOI: 10.1016/j.bone.2021.116171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/01/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023]
Abstract
Intermittent injections of parathyroid hormone (PTH) and mechanical loading are both known to effect a net increase in bone mass. Fundamentally, bone metabolism can be divided into modeling (uncoupled formation or resorption) and remodeling (subsequent formation biologically coupled to resorption in space and time). Methods to delineate the bone response between these regimes are scant but have garnered recent attention and acceptance, and will be critical tools to properly assess short- and long-term efficacy of osteoporosis treatments. To this end, we employ a time-lapse micro-computed tomography strategy to quantify and localize modeling and remodeling volumes over 4 weeks of concurrent PTH treatment and mechanical loading. Modeled and remodeled volumes are probed for differences with respect to treatment, loading, and interactions thereof in trabecular and cortical bone compartments, which were further separated by plate/rod microarchitecture and periosteal/endosteal surfaces, respectively. Loading effects are further considered independently with regard to localized strain environments. Our findings indicate that in trabecular bone, PTH and loading stimulate anabolic modeling additively, and remodeling synergistically. PTH tends to lead to bone accumulation indiscriminate of trabecular microarchitecture, whereas loading tends to more strongly affect plates than rods. The cortical surfaces responded uniquely to PTH and loading, with synergistic effects on the periosteal surface for anabolic modeling, and on the endosteal surface for catabolic modeling. The increase in catabolic modeling due to loading, which is enhanced by PTH, is concentrated to areas of the endosteal surface under low strain and to our knowledge has not previously been reported. Taken together, the effects of PTH, loading, and their interactions, are shown to be dependent on the specific bone compartment and metabolic regime; this may explain some discrepancies in previously-reported findings.
Collapse
Affiliation(s)
- Samuel T Robinson
- Bone Bioengineering Laboratory, 351 Engineering Terrace, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | - Peter T Shyu
- Bone Bioengineering Laboratory, 351 Engineering Terrace, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | - X Edward Guo
- Bone Bioengineering Laboratory, 351 Engineering Terrace, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
17
|
Yamamoto T, Hasegawa T, Fraitas PHLD, Hongo H, Zhao S, Yamamoto T, Nasoori A, Abe M, Maruoka H, Kubota K, Morimoto Y, Haraguchi M, Shimizu T, Takahata M, Iwasaki N, Li M, Amizuka N. Histochemical characteristics on minimodeling-based bone formation induced by anabolic drugs for osteoporotic treatment. Biomed Res 2021; 42:161-171. [PMID: 34544992 DOI: 10.2220/biomedres.42.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modeling, the changes of bone size and shape, often takes place at the developmental stages, whereas bone remodeling-replacing old bone with new bone-predominantly occurs in adults. Unlike bone remodeling, bone formation induced by modeling i.e., minimodeling (microscopic modeling in cancellous bone) is independent of osteoclastic bone resorption. Although recently-developed drugs for osteoporotic treatment could induce minimodeling-based bone formation in addition to remodeling-based bone formation, few reports have demonstrated the histological aspects of minimodeling-based bone formation. After administration of eldecalcitol or romosozumab, unlike teriparatide treatment, mature osteoblasts formed new bone by minimodeling, without developing thick preosteoblastic layers. The histological characteristics of minimodeling-based bone formation is quite different from remodeling, as it is not related to osteoclastic bone resorption, resulting in convex-shaped new bone and smooth cement lines called arrest lines. In this review, we will show histological properties of minimodeling-based bone formation by osteoporotic drugs.
Collapse
Affiliation(s)
- Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University.,Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | | | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Shen Zhao
- National Clinical Research Center of Stomatology, Department of Endodontics, School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University
| | - Tsuneyuki Yamamoto
- Oral Functional Anatomy, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Alireza Nasoori
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Haruhi Maruoka
- Orthodontics, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Keisuke Kubota
- Oral Functional Prosthodontics, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Yasuhito Morimoto
- Periodontology and Endodontology, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Mai Haraguchi
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, and Faculty of Dental Medicine, Hokkaido University
| |
Collapse
|
18
|
Martin TJ, Sims NA, Seeman E. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev 2021; 42:383-406. [PMID: 33564837 DOI: 10.1210/endrev/bnab005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone (PTH) and the paracrine factor, PTH-related protein (PTHrP), have preserved in evolution sufficient identities in their amino-terminal domains to share equivalent actions upon a common G protein-coupled receptor, PTH1R, that predominantly uses the cyclic adenosine monophosphate-protein kinase A signaling pathway. Such a relationship between a hormone and local factor poses questions about how their common receptor mediates pharmacological and physiological actions of the two. Mouse genetic studies show that PTHrP is essential for endochondral bone lengthening in the fetus and is essential for bone remodeling. In contrast, the main postnatal function of PTH is hormonal control of calcium homeostasis, with no evidence that PTHrP contributes. Pharmacologically, amino-terminal PTH and PTHrP peptides (teriparatide and abaloparatide) promote bone formation when administered by intermittent (daily) injection. This anabolic effect is remodeling-based with a lesser contribution from modeling. The apparent lesser potency of PTHrP than PTH peptides as skeletal anabolic agents could be explained by lesser bioavailability to PTH1R. By contrast, prolongation of PTH1R stimulation by excessive dosing or infusion, converts the response to a predominantly resorptive one by stimulating osteoclast formation. Physiologically, locally generated PTHrP is better equipped than the circulating hormone to regulate bone remodeling, which occurs asynchronously at widely distributed sites throughout the skeleton where it is needed to replace old or damaged bone. While it remains possible that PTH, circulating within a narrow concentration range, could contribute in some way to remodeling and modeling, its main physiological role is in regulating calcium homeostasis.
Collapse
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Ego Seeman
- The University of Melbourne, Department of Medicine at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
19
|
Wang W, Tseng WJ, Zhao H, Azar T, Pei S, Jiang X, Dyment N, Liu XS. Activation, development, and attenuation of modeling- and remodeling-based bone formation in adult rats. Biomaterials 2021; 276:121015. [PMID: 34273687 DOI: 10.1016/j.biomaterials.2021.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Activation of modeling-based bone formation (MBF - bone formation without prior activation of bone resorption), has been identified as an important mechanism by which anabolic agents, such as intermittent parathyroid hormone (PTH), rapidly elicit new bone formation. Using a novel cryohistology imaging platform, coupled with sequential multicolor fluorochrome injections, we demonstrated that MBF and remodeling-based bone formation (RBF) in the adult rat tibia model have similar contributions to trabecular bone homeostasis. PTH treatment resulted in a 2.4-4.9 fold greater bone formation rate over bone surface (BFR/BS) by RBF and a 4.3-8.5 fold greater BFR/BS by MBF in male, intact female, and ovariectomized female rats. Moreover, regardless of bone formation type, once a formation site is activated by PTH, mineral deposition continues throughout the entire treatment duration. Furthermore, by tracking the sequence of multicolor fluorochrome labels, we discovered that MBF, a highly efficient but often overlooked regenerative mechanism, is activated more rapidly but attenuated faster than RBF in response to PTH. This suggests that MBF and RBF contribute differently to PTH's anabolic effect in rats: MBF has a greater contribution to the acute elevation in bone mass at the early stage of treatment while RBF contributes to the sustained treatment effect.
Collapse
Affiliation(s)
- Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathaniel Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
20
|
Kim K, Won YY, Lee SW, Seo KD. The Effect of Teriparatide on the Hip: A Literature Review. Hip Pelvis 2021; 33:45-52. [PMID: 34141690 PMCID: PMC8190496 DOI: 10.5371/hp.2021.33.2.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/04/2022] Open
Abstract
Teriparatide (TPTD) is a bone-forming agent used to treat postmenopausal osteoporosis. Since hip fractures are related to higher morbidity and mortality rates than other fractures, efficacious osteoporosis drugs for the hip are critical. We reviewed research articles reporting the efficacy of TPTD in terms of bone mineral density (BMD), fractures prevention, changes in the outer diameter, cortical thickness and porosity, post-operative periprosthetic BMD loss, and healing of typical and atypical fractures of the hip. Data meta-analyses indicated that TPTD not only increased the BMD of the proximal femur but also decreased the risk of hip fractures. Even though TPTD increases the cortical bone porosity of the proximal femur, the bone strength does not decrease as the majority of the porosity is located at the endocortex; further, it increases the outer diameter and thickens the cortical bone. TPTD stimulates bone remodeling and facilitates callus maturity and fracture healing. There have been many reports on improving the effect of TPTD on the healing of atypical fractures; therefore it is advisable to use TPTD considering the increase benefit compared to the risk.
Collapse
Affiliation(s)
- Kwangkyoun Kim
- Department of Orthopaedic Surgery, Konyang University College of Medicine, Daejeon, Korea
| | - Ye-Yeon Won
- Department of Orthopedic Surgery, Ajou University College of Medicine, Suwon, Korea
| | - Seok-Won Lee
- Department of Orthopaedic Surgery, Konyang University College of Medicine, Daejeon, Korea
| | - Kyung-Deok Seo
- Department of Orthopaedic Surgery, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
21
|
Cosman F, Dempster DW. Anabolic Agents for Postmenopausal Osteoporosis: How Do You Choose? Curr Osteoporos Rep 2021; 19:189-205. [PMID: 33635520 DOI: 10.1007/s11914-021-00663-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW There are now three anabolic agents available for the treatment of postmenopausal women at high risk for fracture. The purpose of this review is to supply a rationale to aid in determining which agent should be used in which clinical settings. RECENT FINDINGS Studies over the last decade have shown that anabolic agents produce faster and larger effects against fracture than antiresorptive agents. Furthermore, trials evaluating anabolic antiresorptive treatment sequences have shown that anabolic first treatment strategies produce the greatest benefits to bone density, particularly in the hip region. However, there are no head-to-head evaluations of the three anabolic therapies with fracture outcomes or bone density, and these studies are not likely to occur. How to decide which agent to use at which time in a woman's life is unknown. We review the most significant clinical trials of anabolic agents which have assessed fracture, areal or volumetric bone density, microarchitecture, and/or bone strength, as well as information gleaned from histomorphometry studies to provide a rationale for consideration of one agent vs another in various clinical settings. There is no definitive answer to this question; all three agents increase bone strength and reduce fracture risk rapidly. Since the postmenopausal lifespan could be as long as 40-50 years, it is likely that very high-risk women will utilize different anabolic agents at different points in their lives.
Collapse
Affiliation(s)
- Felicia Cosman
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, New York, NY, 10032-3784, USA.
- Endocrinology, College of Physicians and Surgeons of Columbia University, New York, NY, USA.
| | - David W Dempster
- Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, New York, NY, 10032-3784, USA
| |
Collapse
|
22
|
Dempster DW, Zhou H, Rao SD, Recknor C, Miller PD, Leder BZ, Annett M, Ominsky MS, Mitlak BH. Early Effects of Abaloparatide on Bone Formation and Resorption Indices in Postmenopausal Women With Osteoporosis. J Bone Miner Res 2021; 36:644-653. [PMID: 33434314 PMCID: PMC8248188 DOI: 10.1002/jbmr.4243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
Anabolic osteoporosis drugs improve bone mineral density by increasing bone formation. The objective of this study was to evaluate the early effects of abaloparatide on indices of bone formation and to assess the effect of abaloparatide on modeling-based formation (MBF), remodeling-based formation (RBF), and overflow MBF (oMBF) in transiliac bone biopsies. In this open-label, single-arm study, 23 postmenopausal women with osteoporosis were treated with 80 μg abaloparatide daily. Subjects received double fluorochrome labels before treatment and before biopsy collection at 3 months. Change in dynamic histomorphometry indices in four bone envelopes were assessed. Median mineralizing surface per unit of bone surface (MS/BS) increased to 24.7%, 48.7%, 21.4%, and 16.3% of total surface after 3 months of abaloparatide treatment, representing 5.5-, 5.2-, 2.8-, and 12.9-fold changes, on cancellous, endocortical, intracortical, and periosteal surfaces (p < .001 versus baseline for all). Mineral apposition rate (MAR) was significantly increased only on intracortical surfaces. Bone formation rate (BFR/BS) was significantly increased on all four bone envelopes. Significant increases versus baseline were observed in MBF on cancellous, endocortical, and periosteal surfaces, for oMBF on cancellous and endocortical surfaces, and for RBF on cancellous, endocortical, and intracortical surfaces. Overall, modeling-based formation (MBF + oMBF) accounted for 37% and 23% of the increase in bone-forming surface on the endocortical and cancellous surfaces, respectively. Changes from baseline in serum biomarkers of bone turnover at either month 1 or month 3 were generally good surrogates for changes in histomorphometric endpoints. In conclusion, treatment with abaloparatide for 3 months stimulated bone formation on cancellous, endocortical, intracortical, and periosteal envelopes in transiliac bone biopsies obtained from postmenopausal women with osteoporosis. These increases reflected stimulation of both remodeling- and modeling-based bone formation, further elucidating the mechanisms by which abaloparatide improves bone mass and lowers fracture risk. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Hua Zhou
- Regional Bone CenterHelen Hayes HospitalWest HaverstrawNYUSA
| | - Sudhaker D Rao
- Bone & Mineral Research LaboratoryHenry Ford Health SystemDetroitMIUSA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the human microbiome. The gut microbiome is the richest microbiome and is now known to regulate postnatal skeletal development and the activity of the major endocrine regulators of bone. Parathyroid hormone (PTH) is one of the bone-regulating hormone that requires elements of the gut microbiome to exert both its bone catabolic and its bone anabolic effects. How the gut microbiome regulates the skeletal response to PTH is object of intense research. Involved mechanisms include absorption and diffusion of bacterial metabolites, such as short-chain fatty acids, and trafficking of immune cells from the gut to the bone marrow. This review will focus on how the gut microbiome communicates and regulates bone marrow cells in order to modulate the skeletal effects of PTH.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
- Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Zhang C, Song C. Combination Therapy of PTH and Antiresorptive Drugs on Osteoporosis: A Review of Treatment Alternatives. Front Pharmacol 2021; 11:607017. [PMID: 33584284 PMCID: PMC7874063 DOI: 10.3389/fphar.2020.607017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Antiresorptive drugs have been widely used for osteoporosis. Intermittent parathyroid hormone (PTH), an anabolic agent, increases osteoblast production rate and inhibits apoptosis of osteoblasts, thus increasing skeletal mass besides improving bone microarchitecture and strength. Combination therapy for osteoporosis produced great interests and controversies. Therefore, we performed a systematic literature search from PubMed, EMBASE, Scopus, Web of Science, CINDHL, and the Cochrane Database of Systematic Reviews using the search terms PTH or teriparatide combined with bisphosphonate, alendronate, ibandronate, risedronate, raloxifene, denosumab, and zoledronic acid with the limit osteoporosis. At last, 36 related articles were included for further analysis. Findings from previous studies revealed that combination therapy in different conditions of naive or previous bisphosphonate treatment might have different outcomes. The use of combination therapy, however, may be an alternative option among osteoporotic patients with a history of bisphosphonate use. Combined teriparatide with denosumab appear to show the most substantial and clinically relevant skeletal benefits to osteoporotic patients. Additional research is necessary to define optimal methods of developing sequential and/or cyclical combinations of PTH and antiresorptive agents.
Collapse
Affiliation(s)
- Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
25
|
Ramchand SK, David NL, Lee H, Bruce M, Bouxsein ML, Leder BZ, Tsai JN. Effects of Combination Denosumab and High-Dose Teriparatide Administration on Bone Microarchitecture and Estimated Strength: The DATA-HD HR-pQCT Study. J Bone Miner Res 2021; 36:41-51. [PMID: 32790196 DOI: 10.1002/jbmr.4161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 11/11/2022]
Abstract
In postmenopausal women at high risk of fracture, we previously reported that combined denosumab and high-dose (HD; 40 μg) teriparatide increased spine and hip bone mineral density (BMD) more than combination with standard-dose teriparatide (SD; 20 μg). To assess the effects of these combinations on bone microarchitecture and estimated bone strength, we performed high-resolution peripheral quantitative computed tomography (HR-pQCT) at the distal radius and distal tibia in these women, who were randomized to receive either teriparatide 20 μg (n = 39) or 40 μg (n = 37) during months 0 to 9 overlapped with denosumab 60 mg s.c. given at months 3 and 9, for a 15-month study duration. The 69 women who completed at least one study visit after baseline are included in this analysis. Over 15 months, increases in total BMD were higher in the HD-group than the SD-group at the distal tibia (5.3% versus 3.4%, p = 0.01) with a similar trend at the distal radius (2.6% versus 1.0%, p = 0.06). At 15 months, cortical porosity remained similar to baseline, with absolute differences of -0.1% and -0.7% at the distal tibia and -0.4% and -0.1% at the distal radius in the HD-group and SD-group, respectively; p = NS for all comparisons. Tibial cortical tissue mineral density increased similarly in both treatment groups (1.3% [p < 0.0001 versus baseline] and 1.5% [p < 0.0001 versus baseline] in the HD-group and SD-group, respectively; p = 0.75 for overall group difference). Improvements in trabecular microarchitecture at the distal tibia and estimated strength by micro-finite element analysis at both sites were numerically greater in the HD-group compared with SD-group but not significantly so. Together, these findings suggest that short-term treatment combining denosumab with either high- or standard-dose teriparatide improves HR-pQCT measures of bone density, microstructure, and estimated strength, with greater gains in total bone density observed in the HD-group, which may be of benefit in postmenopausal women with severe osteoporosis. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA.,Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Melbourne, Australia
| | - Natalie L David
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Bruce
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Mary L Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin Z Leder
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Joy N Tsai
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
26
|
Estell EG, Rosen CJ. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol 2021; 17:31-46. [PMID: 33149262 DOI: 10.1038/s41574-020-00426-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Over the past three decades, the mainstay of treatment for osteoporosis has been antiresorptive agents (such as bisphosphonates), which have been effective with continued administration in lowering fracture risk. However, the clinical landscape has changed as adherence to these medications has declined due to perceived adverse effects. As a result, decreases in hip fracture rates that followed the introduction of bisphosphonates have now levelled off, which is coincident with a decline in the use of the antiresorptive agents. In the past two decades, two types of anabolic agents (including three new drugs), which represent a novel approach to improving bone quality by increasing bone formation, have been approved. These therapies are expected to lead to a new clinical paradigm in which anabolic agents will be used either alone or in combination with antiresorptive agents to build new bone and reduce fracture risk. This Review examines the mechanisms of action for these anabolic agents by detailing their receptor-activating properties for key cell types in the bone and marrow niches. Using these advances in bone biology as context, the comparative effectiveness of these anabolic agents is discussed in relation to other therapeutic options for osteoporosis to better guide their clinical application in the future.
Collapse
Affiliation(s)
- Eben G Estell
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | | |
Collapse
|
27
|
Dempster DW, Chines A, Bostrom MP, Nieves JW, Zhou H, Chen L, Pannacciulli N, Wagman RB, Cosman F. Modeling-Based Bone Formation in the Human Femoral Neck in Subjects Treated With Denosumab. J Bone Miner Res 2020; 35:1282-1288. [PMID: 32163613 PMCID: PMC9328280 DOI: 10.1002/jbmr.4006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Denosumab is associated with continued gains in hip and spine BMD with up to 10 years of treatment in postmenopausal women with osteoporosis. Despite potent inhibition of bone remodeling, findings in nonhuman primates suggest modeling-based bone formation (MBBF) may persist during denosumab treatment. This study assessed whether MBBF in the femoral neck (FN) is preserved in the context of inhibited remodeling in subjects receiving denosumab. This open-label study enrolled postmenopausal women with osteoporosis who had received two or more doses of denosumab (60 mg subcutaneously every 6 months [Q6M]) per standard of care and were planning elective total hip replacement (THR) owing to osteoarthritis of the hip. Transverse sections of the FN were obtained after THR and analyzed histomorphometrically. MBBF, based on fluorochrome labeling and presence of smooth cement lines, was evaluated in cancellous, endocortical, and periosteal envelopes of the FN. Histomorphometric parameters were used to assess MBBF and remodeling-based bone formation (RBBF) in denosumab-treated subjects (n = 4; mean age = 73.5 years; range, 70 to 78 years) and historical female controls (n = 11; mean age = 67.8 years; range, 62 to 80 years) obtained from the placebo group of a prior study and not treated with denosumab. All analyses were descriptive. All subjects in both groups exhibited MBBF in the periosteal envelope; in cancellous and endocortical envelopes, all denosumab-treated subjects and 81.8% of controls showed evidence of MBBF. Compared with controls, denosumab-treated subjects showed 9.4-fold and 2.0-fold higher mean values of MBBF in cancellous and endocortical envelopes, respectively, whereas RBBF mean values were 5.0-fold and 5.3-fold lower. In the periosteal envelope, MBBF and RBBF rates were similar between subjects and controls. These results demonstrate the occurrence of MBBF in the human FN and suggest that denosumab preserves MBBF while inhibiting remodeling, which may contribute to the observed continued gains in BMD over time after remodeling is maximally inhibited. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David W Dempster
- Columbia UniversityNew YorkNYUSA
- Helen Hayes HospitalWest HaverstrawNYUSA
| | | | | | - Jeri W Nieves
- Columbia UniversityNew YorkNYUSA
- Helen Hayes HospitalWest HaverstrawNYUSA
| | - Hua Zhou
- Helen Hayes HospitalWest HaverstrawNYUSA
| | | | | | | | | |
Collapse
|
28
|
Ramchand SK, David NL, Leder BZ, Tsai JN. Bone Mineral Density Response With Denosumab in Combination With Standard or High-Dose Teriparatide: The DATA-HD RCT. J Clin Endocrinol Metab 2020; 105:dgz163. [PMID: 31674641 PMCID: PMC7112977 DOI: 10.1210/clinem/dgz163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/27/2019] [Indexed: 01/22/2023]
Abstract
CONTEXT In the Denosumab and High-Dose Teriparatide Administration (DATA-HD) study, we reported that 15 months of combined high-dose (HD) teriparatide and denosumab increased mean areal bone mineral density (aBMD) at the hip and spine more than combined denosumab and standard-dose (SD) teriparatide. OBJECTIVE In the current analysis, we compare the individual rates of aBMD response between the treatment groups. DESIGN Single-site, open-label, randomized controlled trial in which postmenopausal women received either teriparatide 20-μg daily (SD) or 40-μg daily (HD) given months 0 through 9, overlapped with denosumab 60 mg, given months 3 through 15 (15 months' total duration). The proportion of participants in the SD and HD groups experiencing total hip, femoral neck, and lumbar spine aBMD gains of >3%, >6%, and >9% were compared. PARTICIPANTS Postmenopausal women with osteoporosis completing all study visits (n = 60). MAIN OUTCOME MEASURE(S) aBMD (dual x-ray absorptiometry). RESULTS At the end of the 15-month treatment period, a higher proportion of women in the HD group had aBMD increases >3% (83% vs. 58%, P = .037) and >6% (45% vs. 19%, P = .034) at the total hip, and >3% at the femoral neck (86% vs. 63%, P = .044). At the lumbar spine, >3% response rates were similar, whereas the >6% and >9% response rates were greater in the HD group (100% vs. 79%, P = .012 and 93% vs. 59%, P = .003, respectively). CONCLUSION Compared with the SD regimen, more women treated with the HD regimen achieved clinically meaningful and rapid gains in hip and spine aBMD. These results suggest that this approach may provide unique benefits in the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA
- Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Victoria, Australia
| | - Natalie L David
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Benjamin Z Leder
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Joy N Tsai
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA
| |
Collapse
|
29
|
Seeman E, Martin TJ. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat Rev Rheumatol 2020; 15:225-236. [PMID: 30755735 DOI: 10.1038/s41584-019-0172-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone volume, microstructure and its material composition are maintained by bone remodelling, a cellular activity carried out by bone multicellular units (BMUs). BMUs are focally transient teams of osteoclasts and osteoblasts that respectively resorb a volume of old bone and then deposit an equal volume of new bone at the same location. Around the time of menopause, bone remodelling becomes unbalanced and rapid, and an increased number of BMUs deposit less bone than they resorb, resulting in bone loss, a reduction in bone volume and microstructural deterioration. Cortices become porous and thin, and trabeculae become thin, perforated and disconnected, causing bone fragility. Antiresorptive agents reduce fracture risk by reducing the rate of bone remodelling so that fewer BMUs are available to remodel bone. Bone fragility is not abolished by these drugs because existing microstructural deterioration is not reversed, unsuppressed remodelling continues producing microstructural deterioration and unremodelled bone that becomes more mineralized can become brittle. Anabolic agents reduce fracture risk by stimulating new bone formation, which partly restores bone volume and microstructure. To guide fracture prevention, this Review provides an overview of the structural basis of bone fragility, the mechanisms of remodelling and how anabolic and antiresorptive agents target remodelling defects.
Collapse
Affiliation(s)
- Ego Seeman
- Departments of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia. .,Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - T J Martin
- Department of Medicine and St Vincent's Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Cosman F, McMahon D, Dempster D, Nieves JW. Standard Versus Cyclic Teriparatide and Denosumab Treatment for Osteoporosis: A Randomized Trial. J Bone Miner Res 2020; 35:219-225. [PMID: 31419313 DOI: 10.1002/jbmr.3850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 11/07/2022]
Abstract
In the absence of an intervening antiresorptive agent, cyclic administration of teriparatide does not increase bone mineral density (BMD) more than standard daily therapy. Because denosumab is a potent antiresorptive agent with a rapid off-effect, we hypothesized that it might be the optimal agent to help maximize bone gains with cyclic teriparatide. In this 3-year protocol, 70 postmenopausal women with osteoporosis were randomized to 18 months of teriparatide followed by 18 months of denosumab (standard) or three separate 12-month cycles of 6 months of teriparatide followed by 6 months of denosumab (cyclic). BMD (dual-energy X-ray absorptiometry [DXA]) measurements of lumbar spine (LS), total hip (TH), femoral neck (FN), and 1/3 radius (RAD) were performed every 6 months and total body bone mineral (TBBM) at 18 and 36 months. Baseline descriptive characteristics did not differ between groups except for a minimal difference in LS BMD but not T-score (mean age 65 years, mean LS T-score - 2.7). In the standard group, BMD increments at 36 months were: LS 16%, TH 4%, FN 3%, and TBBM 4.8% (all p < 0.001 versus baseline). In the cyclic group, 36-month BMD increments were similar: LS 12%, TH 4%, FN 4%, and TBBM 4.1% (all p < 0.001 versus baseline). At 36 months, the LS BMD increase with standard was slightly larger than with cyclic (p = 0.04), but at 18 months, in the cyclic group, there was no decline in RAD or TBBM (p = 0.007 and < 0.001, respectively, versus standard). Although the cyclic regimen did not improve BMD compared with standard at 36 months, there appeared to be a benefit at 18 months, especially in the highly cortical skeletal sites. This could be clinically relevant in patients at high imminent risk of fracture, particularly at nonvertebral sites. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Felicia Cosman
- Department of Medicine, Columbia University, New York, NY, USA
| | - Donald McMahon
- Clinical Research Center, Helen Hayes Hospital, West Haverstraw, NY, USA
| | - David Dempster
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jeri W Nieves
- Clinical Research Center, Helen Hayes Hospital, West Haverstraw, NY, USA
- Department of Epidemiology, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Ramchand SK, Seeman E. Reduced Bone Modeling and Unbalanced Bone Remodeling: Targets for Antiresorptive and Anabolic Therapy. Handb Exp Pharmacol 2020; 262:423-450. [PMID: 32232792 DOI: 10.1007/164_2020_354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone loss during advancing age is the net result of reduced modeling-based bone formation upon the outer (periosteal) envelope and unbalanced remodeling by basic multicellular units (BMUs) upon the three (intracortical, endocortical, and trabecular) components of the inner (endosteal) bone envelope. Each BMU deposits less bone than resorbed, reducing total bone volume and deteriorating the microstructure of the diminished residual bone volume.Antiresorptive agents like bisphosphonates reduce, but do not abolish, the rate of bone remodeling - fewer BMUs remodel, "turn over," the volume of bone. Residual unbalanced remodeling continues to slowly reduce total bone volume and deteriorate bone microstructure. By contrast, denosumab virtually abolishes remodeling so the decrease in bone volume and the deterioration in microstructure cease. The less remodeled matrix remains, leaving more time to complete the slow process of secondary mineralization which reduces the heterogeneity of matrix mineralization and allows it to become glycosylated, changes that may make the smaller and microstructurally deteriorated bone volume more brittle. Neither class of antiresorptive restores bone volume or its microstructure, despite increases in bone mineral density misleadingly suggesting otherwise. Nevertheless, these agents reduce vertebral and hip fractures by 50-60% but only reduce nonvertebral fractures by 20-30%.Restoring bone volume, microstructure, and material composition, "curing" bone fragility, may be partly achieved using anabolic therapy. Teriparatide, and probably abaloparatide, produce mainly remodeling-based bone formation by acting on BMUs existing in their resorption, reversal, or formation phase at the time of treatment and by promoting bone formation in newly initiated BMUs. Romosozumab produces modeling-based bone formation almost exclusively and decreases the surface extent of bone resorption. All three anabolic agents reduce vertebral fracture risk relative to untreated controls; parathyroid hormone 1-34 and romosozumab reduce vertebral fracture risk more greatly than risedronate or alendronate, respectively. Evidence for nonvertebral or hip fracture risk reduction relative to untreated or antiresorptive-treated controls is lacking or inconsistent. Only one study suggests sequential romosozumab followed by alendronate reduces vertebral, nonvertebral, and hip fracture risk compared to continuous alendronate alone. Whether combined antiresorptive and anabolic therapy result in superior fracture risk reduction than monotherapy is untested.
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA.
- Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ego Seeman
- Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia
| |
Collapse
|
32
|
Rastogi A, Hajela A, Prakash M, Khandelwal N, Kumar R, Bhattacharya A, Mittal BR, Bhansali A, Armstrong DG. Teriparatide (recombinant human parathyroid hormone [1-34]) increases foot bone remodeling in diabetic chronic Charcot neuroarthropathy: a randomized double-blind placebo-controlled study. J Diabetes 2019; 11:703-710. [PMID: 30632290 DOI: 10.1111/1753-0407.12902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Currently, there is no consensus regarding the medical treatment of chronic Charcot neuroarthropathy (CN) of foot, except for effective off-loading. Because tarsal bones are predominantly trabecular, teriparatide may improve the macroarchitecture of foot bones in chronic CN. METHODS People with diabetes and chronic CN were randomized to receive either 20 μg teriparatide or placebo subcutaneous daily for 12 months. Thirty-eight patients were screened and data were analyzed for 20. The maximum standardized uptake (SUVmax ) value of 18 F-FDG PET/CT the region of interest, bone turnover markers and foot bone mineral density BMD were determined. The primary outcome measure was change in SUVmax g/ml. RESULTS Mid-foot was the most common region involved. After 12 months, SUVmax increased from 30.6 ± 14.7 to 37.7 ± 18.0 (P = 0.044) in the teriparatide group, but decreased from 27.6 ± 12.2 to 22.9 ± 10.4 with placebo (P = 0.148). The estimated treatment difference (ETD) was 11.9 ± 4.3 (95% CI 2.9, 20.8; P = 0.012). Similarly, P1NP increased with teriparatide (19.8 ± 5.5; P = 0.006) but decreased with placebo (-5.1 ± 3.8 ng/mL; P = 0.219); ETD was 24.8 ± 6.6 (95% CI 10.8, 38.8; P < 0.001) and CTX increased in both the teriparatide and placebo groups. Foot BMD increased by 0.06 ± 0.04 g/cm2 (P = 0.192) with teriparatide, but decreased by -0.06 ± 0.08 g/cm2 with placebo (P = 0.488; intergroup comparison, P = 0.096). CONCLUSION Teriparatide increases foot bone remodeling by an osteoanabolic action in people with CN.
Collapse
Affiliation(s)
- Ashu Rastogi
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhishek Hajela
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mahesh Prakash
- Department of Radiodiagnosis, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Niranjan Khandelwal
- Department of Radiodiagnosis, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajender Kumar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anish Bhattacharya
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant R Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine, Los Angeles, California
| |
Collapse
|
33
|
Hasegawa T, Miyamoto Y, Yamamoto T, Amizuka N. [Anabolic action of teriparatide to osteoporotic patients]. Nihon Yakurigaku Zasshi 2019; 153:16-21. [PMID: 30643087 DOI: 10.1254/fpj.153.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intermittent administration of human parathyroid hormone (PTH) [1-34], or teriparatide, has been used for osteoporotic treatment, which is available for daily and weekly administration for the osteoporotic patients in Japan, increasing bone mass and reduce bone fracture risk. In general, continuous PTH infusion shows catabolic effects in bone, while the intermittent administration of PTH results in anabolic action in osteoporotic patients. Intermittent PTH administration promotes preosteoblastic proliferation, as well as stimulates osteoblastic bone formation dependent on cell coupling with osteoclasts. Dosing frequency of PTH administration may affect resultant bone mass, and therefore, we have examined the anabolic effects of the high and low frequency of PTH administration using a mouse model. As a consequence, the high frequency of PTH administration accelerated the preosteoblastic proliferation with forming thick preosteoblastic network, osteoclastogenesis inside the preosteoblastic network, as well as osteoblastic bone formation. In contrast, the low frequency of PTH administration promoted osteoblastic bone formation, but, did not stimulate preosteoblastic proliferation and osteoclastogenesis. In addition, the high or low frequency of PTH administration demonstrated bone formation by manners of accelerated bone remodeling or bone remodeling/mini-modeling, respectively. Thus, the different dosing frequency of PTH administration may induce the different cellular mechanism of anabolic effects in bone.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University
| | - Yukina Miyamoto
- International University of Health and Welfare, Atami Hospital
| | | | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University
| |
Collapse
|
34
|
Ferretti M, Cavani F, Roli L, Checchi M, Magarò MS, Bertacchini J, Palumbo C. Interaction among Calcium Diet Content, PTH (1-34) Treatment and Balance of Bone Homeostasis in Rat Model: The Trabecular Bone as Keystone. Int J Mol Sci 2019; 20:ijms20030753. [PMID: 30754633 PMCID: PMC6387065 DOI: 10.3390/ijms20030753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The present study is the second step (concerning normal diet restoration) of the our previous study (concerning the calcium-free diet) to determine whether normal diet restoration, with/without concomitant PTH (1-34) administration, can influence amounts and deposition sites of the total bone mass. Histomorphometric evaluations and immunohistochemical analysis for Sclerostin expression were conducted on the vertebral bodies and femurs in the rat model. The final goals are (i) to define timing and manners of bone mass changes when calcium is restored to the diet, (ii) to analyze the different involvement of the two bony architectures having different metabolism (i.e., trabecular versus cortical bone), and (iii) to verify the eventual role of PTH (1-34) administration. Results evidenced the greater involvement of the trabecular bone with respect to the cortical bone, in response to different levels of calcium content in the diet, and the effect of PTH, mostly in the recovery of trabecular bony architecture. The main findings emerged from the present study are (i) the importance of the interplay between mineral homeostasis and skeletal homeostasis in modulating and guiding bone's response to dietary/metabolic alterations and (ii) the evidence that the more involved bony architecture is the trabecular bone, the most susceptible to the dynamical balance of the two homeostases.
Collapse
Affiliation(s)
- Marzia Ferretti
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Francesco Cavani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, 41126 Modena, Italy.
| | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Maria Sara Magarò
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Jessika Bertacchini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
35
|
Vrahnas C, Buenzli PR, Pearson TA, Pennypacker BL, Tobin MJ, Bambery KR, Duong LT, Sims NA. Differing Effects of Parathyroid Hormone, Alendronate, and Odanacatib on Bone Formation and on the Mineralization Process in Intracortical and Endocortical Bone of Ovariectomized Rabbits. Calcif Tissue Int 2018; 103:625-637. [PMID: 30019315 DOI: 10.1007/s00223-018-0455-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 02/02/2023]
Abstract
Bone is formed by deposition of a collagen-containing matrix (osteoid) that hardens over time as mineral crystals accrue and are modified; this continues until bone remodeling renews that site. Pharmacological agents for osteoporosis differ in their effects on bone remodeling, and we hypothesized that they may differently modify bone mineral accrual. We, therefore, assessed newly formed bone in mature ovariectomized rabbits treated with the anti-resorptive bisphosphonate alendronate (ALN-100µ g/kg/2×/week), the anabolic parathyroid hormone (PTH (1-34)-15µ g/kg/5×/week), or the experimental anti-resorptive odanacatib (ODN 7.5 µM/day), which suppresses bone resorption without suppressing bone formation. Treatments were administered for 10 months commencing 6 months after ovariectomy (OVX). Strength testing, histomorphometry, and synchrotron Fourier-transform infrared microspectroscopy were used to measure bone strength, bone formation, and mineral accrual, respectively, in newly formed endocortical and intracortical bone. In Sham and OVX endocortical and intracortical bone, three modifications occurred as the bone matrix aged: mineral accrual (increase in mineral:matrix ratio), carbonate substitution (increase in carbonate:mineral ratio), and collagen molecular compaction (decrease in amide I:II ratio). ALN suppressed bone formation but mineral accrued normally at those sites where bone formation occurred. PTH stimulated bone formation on endocortical, periosteal, and intracortical bone surfaces, but mineral accrual and carbonate substitution were suppressed, particularly in intracortical bone. ODN treatment did not suppress bone formation, but newly deposited endocortical bone matured more slowly with ODN, and ODN-treated intracortical bone had less carbonate substitution than controls. In conclusion, these agents differ in their effects on the bone matrix. While ALN suppresses bone formation, it does not modify bone mineral accrual in endocortical or intracortical bone. While ODN does not suppress bone formation, it slows matrix maturation. PTH stimulates modelling-based bone formation not only on endocortical and trabecular surfaces, but may also do so in intracortical bone; at this site, new bone deposited contains less mineral than normal.
Collapse
Affiliation(s)
- Christina Vrahnas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Thomas A Pearson
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Mark J Tobin
- The Australian Synchrotron, Clayton, VIC, Australia
| | - Keith R Bambery
- The Australian Synchrotron, Clayton, VIC, Australia
- Australian Nuclear Science and Technology Organisation, The Australian Synchrotron, Lucas Heights, NSW, Australia
| | - Le T Duong
- MRL, Merck & Co., Inc., West Point, PA, USA
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
36
|
Tsuchie H, Miyakoshi N, Iba K, Kasukawa Y, Nozaka K, Dohke T, Kosukegawa I, Aizawa T, Maekawa S, Abe H, Takeshima M, Tomite T, Segawa T, Ouchi K, Kinoshita H, Suzuki M, Yamashita T, Shimada Y. The effects of teriparatide on acceleration of bone healing following atypical femoral fracture: comparison between daily and weekly administration. Osteoporos Int 2018; 29:2659-2665. [PMID: 30105400 DOI: 10.1007/s00198-018-4658-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
UNLABELLED We compared the effectiveness of promoting bone healing between two teriparatide preparations for atypical femoral fracture (AFF). A total of 45 AFFs were included in this study, and we compared the duration of bone union. Teriparatide administered by daily injection enhanced bone union more than weekly administration in complete AFFs. INTRODUCTION The efficacy of teriparatide for atypical femoral fracture (AFF) has been recently reported. Although two different teriparatide preparations can be used to treat osteoporosis in Japan, daily or weekly injection, all previous reports on the effectiveness of teriparatide for AFF only examined daily injection formulations. Therefore, we compared the promotion of bone healing between the two teriparatide preparations for AFF. METHODS A total of 45 consecutive AFFs in 43 Japanese patients were included in this study. They received either a daily 20-μg teriparatide injection (daily group; n = 32) or a once-a-week 56.5-μg teriparatide injection (weekly group; n = 13). We compared the clinical background and duration of bone union between these two groups. RESULTS When all patents were included, the fracture healing time was not significantly different between the two groups. Only patients with complete AFFs had significantly fewer daily bisphosphonate or denosumab injections than the weekly group (P < 0.05). The fracture healing time in the daily group (6.1 ± 4.1 months) was significantly shorter than that in the weekly group (10.1 ± 4.2 months) (P < 0.05). Even if the influence of bisphosphonate or denosumab usage was excluded, a similar significant difference was observed in the fracture healing time (P < 0.05). There was no significant difference between the two groups among patients with incomplete AFFs. CONCLUSIONS Daily teriparatide injections enhance bone union more than weekly injections in complete AFF patients.
Collapse
Affiliation(s)
- H Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - N Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - K Iba
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, S-1 W-16, Cyuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Y Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - K Nozaka
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - T Dohke
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, S-1 W-16, Cyuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - I Kosukegawa
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, S-1 W-16, Cyuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - T Aizawa
- Department of Orthopedic Surgery, Northern Akita Municipal Hospital, 16-29 Shimosugi aza Kamishimizusawa, Kitaakita, 018-4221, Japan
| | - S Maekawa
- Department of Orthopedic Surgery, Ogachi Central Hospital, 25 Yamada aza Isamigaoka, Yuzawa, 012-0055, Japan
| | - H Abe
- Department of Orthopedic Surgery, Ugo Municipal Hospital, 44-5 Otomichi, Nishomonai, Ugo, 012-1131, Japan
| | - M Takeshima
- Department of Orthopedic Surgery, Honjyo Daiichi Hospital, 111 Iwabuchishita, Yurihonjyo, 015-8567, Japan
| | - T Tomite
- Department of Orthopedic Surgery, Japanese Red Cross Akita Hospital, 222-1 Saruta aza Inawashirosawa, Kamikitate, Akita, 010-1495, Japan
| | - T Segawa
- Department of Orthopedic Surgery, Akita City Hospital, 4-30 Matsuokamachi, Kawamoto, Akita, 010-0933, Japan
| | - K Ouchi
- Department of Orthopedic Surgery, Yokote Municipal Hospital, 5-31 Negishimachi, Yokote, 013-8602, Japan
| | - H Kinoshita
- Department of Orthopedic Surgery, Akita Kousei Medical Center, 1-1-1 Iijima, Nishifukuro, Akita, 011-0948, Japan
| | - M Suzuki
- Department of Orthopedic Surgery, Yuri Kumiai General Hospital, Kawaguchi aza Yaushiro, Yurihonjyo, 015-8511, Japan
| | - T Yamashita
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, S-1 W-16, Cyuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Y Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
37
|
Hasegawa T, Yamamoto T, Sakai S, Miyamoto Y, Hongo H, Qiu Z, Abe M, Takeda S, Oda K, de Freitas PHL, Li M, Endo K, Amizuka N. Histological Effects of the Combined Administration of Eldecalcitol and a Parathyroid Hormone in the Metaphyseal Trabeculae of Ovariectomized Rats. J Histochem Cytochem 2018; 67:169-184. [PMID: 30311820 DOI: 10.1369/0022155418806865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intermittent administration of human parathyroid hormone (1-34) (hPTH(1-34)) promotes anabolic action in bone by stimulating bone remodeling, while eldecalcitol, an analog of active vitamin D3, suppresses osteoclastic bone resorption, and forms new bone by minimodeling. We have examined the biological effects of combined administration of eldecalcitol and hPTH(1-34) on 9-week-old Wistar rats that underwent an ovariectomy (OVX) or Sham operation. They were divided into a Sham group, OVX with vehicle (OVX group), OVX with 10 µg/kg/day of hPTH(1-34) (PTH group), OVX with 20 ng/kg/day of eldecalcitol (eldecalcitol group) or OVX with 10 μg/kg/day of hPTH(1-34), and 20 ng/kg/day of eldecalcitol (combined group) for 4 or 8 weeks. As a consequence, the combined group showed a marked increase in bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) than OVX and had the highest bone mineral density (BMD) compared with other groups. OVX and PTH groups exhibited a high osteoblastic surface/bone surface (Ob.S/BS), mineral apposition rate (MAR), and bone formation rate/bone surface (BFR/BS) indices and many TRAP-reactive osteoclasts. Contrastingly, eldecalcitol and combined groups tended to attenuate the indices of osteoclastic surface/bone surface (Oc.S/BS) and Ob.S/BS than that the other groups. The combined group revealed histological profiles of minimodeling- and remodeling-based bone formation. Thus, the combined administration of eldecalcitol and hPTH(1-34) augments their anabolic effects by means of minimodeling and remodeling.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.,Department of Dentistry, Japan Self Defense Force Hanshin Hospital, Kawanishi, Japan
| | | | - Yukina Miyamoto
- Department of Dentistry, International University of Health and Welfare Atami Hospital, Atami, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Zixuan Qiu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| | - Koichi Endo
- Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
38
|
Paggiosi MA, Yang L, Blackwell D, Walsh JS, McCloskey E, Peel N, Eastell R. Teriparatide treatment exerts differential effects on the central and peripheral skeleton: results from the MOAT study. Osteoporos Int 2018. [PMID: 29520607 DOI: 10.1007/s00198-018-4445-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UNLABELLED The central and peripheral skeleton was characterised using imaging techniques during 104 weeks of teriparatide treatment. Teriparatide exerts differential effects on the central and the peripheral skeleton. Overall, we did not observe a change in total body bone mineral. Our conclusions are constrained by the study limitations. INTRODUCTION Teriparatide stimulates bone formation and resorption and therefore can cause bone gain and loss. We simultaneously characterised the central and peripheral skeleton using imaging techniques to better understand the mechanism of action of teriparatide. METHODS Postmenopausal, osteoporotic women (n = 20, 65.4 ± 5.5 years) were recruited into a 104-week study of teriparatide. Imaging techniques included DXA, quantitative computed tomography (QCT), and high-resolution peripheral quantitative computed tomography (HR-pQCT). RESULTS Total lumbar spine areal bone mineral content (aBMC) (+ 11.2%), total lumbar spine areal bone mineral density (aBMD) (+ 8.1%), subregional thoracic spine aBMD (+ 7.5%), lumbar spine aBMC (+ 23.5%), lumbar spine aBMD (+ 11.9%), pelvis aBMC (+ 9.3%), and pelvis aBMD (+ 4.3%) increased. However, skull aBMC (- 5.0%), arms aBMC (- 5.1%), legs aBMC (- 2.9%), and legs aBMD (- 2.5%) decreased. Overall, we did not observe a change in total body bone mineral. Increases in L1-L3 volumetric BMD (vBMD) (+ 28.5%) occurred but there was no change in total proximal femur vBMD. Radius and tibia cortical vBMD (- 3.3 and - 3.4%) and tissue mineral density (- 3.2 and - 3.8%) decreased and there was an increase in porosity (+ 21.2 and + 10.3%). Tibia, but not radius, trabecular inhomogeneity (+ 3.2%), and failure load (+ 0.2%) increased, but cortical thickness (- 3.1%), area (- 2.9%), and pore volume (- 1.6%) decreased. CONCLUSIONS Teriparatide exerts differential effects on the central and the peripheral skeleton. Central trabecular vBMD (L1-L3) is improved, but there is a concomitant decrease in peripheral cortical vBMD and an increase in porosity. Overall, we did not observe a change in total body bone mineral. We acknowledge that our conclusions may be speculative and are constrained by the technical limitations of the imaging techniques used, the lack of a control group, and the small sample size studied.
Collapse
Affiliation(s)
- M A Paggiosi
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK.
| | - L Yang
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - D Blackwell
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - J S Walsh
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - E McCloskey
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - N Peel
- Metabolic Bone Centre (Sorby Wing), Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - R Eastell
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| |
Collapse
|
39
|
Cho CS, Jeong HS, Kim IY, Jung GW, Ku BH, Park DC, Moon SB, Cho HR, Ku SK, Choi JS. Antiosteoporotic effects of 3:1 (g/g) mixed formulation of exopolymers purified fromAureobasidium pullulansSM-2001 andDendropanax morbiferaleaf extracts in ovariectomized rats. J Food Biochem 2018. [DOI: 10.1111/jfbc.12548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chang-Soo Cho
- Hurim Hwangchil Co., Ltd., 907-11, Gyeongseo-dearo, Hoengcheon-myeon; Hadong-gun Gyeongsangnam-do 52320 Republic of Korea
| | - Hye-Seong Jeong
- Hurim Hwangchil Co., Ltd., 907-11, Gyeongseo-dearo, Hoengcheon-myeon; Hadong-gun Gyeongsangnam-do 52320 Republic of Korea
| | - In-Young Kim
- Hurim Hwangchil Co., Ltd., 907-11, Gyeongseo-dearo, Hoengcheon-myeon; Hadong-gun Gyeongsangnam-do 52320 Republic of Korea
| | - Go-Woon Jung
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Bon-Hwa Ku
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Dong-Chan Park
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Seung-Bae Moon
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Hyung-Rae Cho
- Glucan Corp., #305 Marine Bio-Industry Development Center, 7 Hoenggye-gil; Busan 46048 Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine; Daegu Haany University, 1, Hanuidae-ro; Gyeongsan-si Gyeongsangbuk-do 38610 Republic of Korea
| | - Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences; Silla University, 140, Baegyang-daero 700beon-gil; Busan 46958 Republic of Korea
| |
Collapse
|
40
|
Dempster DW, Zhou H, Ruff VA, Melby TE, Alam J, Taylor KA. Longitudinal Effects of Teriparatide or Zoledronic Acid on Bone Modeling- and Remodeling-Based Formation in the SHOTZ Study. J Bone Miner Res 2018; 33:627-633. [PMID: 29194749 DOI: 10.1002/jbmr.3350] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/31/2017] [Accepted: 11/22/2017] [Indexed: 01/22/2023]
Abstract
Previously, we reported on bone histomorphometry, biochemical markers, and bone mineral density distribution after 6 and 24 months of treatment with teriparatide (TPTD) or zoledronic acid (ZOL) in the SHOTZ study. The study included a 12-month primary study period, with treatment (TPTD 20 μg/d by subcutaneous injection or ZOL 5 mg/yr by intravenous infusion) randomized and double-blind until the month 6 biopsy (TPTD, n = 28; ZOL, n = 30 evaluable), then open-label, with an optional 12-month extension receiving the original treatment. A second biopsy (TPTD, n = 10; ZOL, n = 9) was collected from the contralateral side at month 24. Here we present data on remodeling-based bone formation (RBF), modeling-based bone formation (MBF), and overflow modeling-based bone formation (oMBF, modeling overflow adjacent to RBF sites) in the cancellous, endocortical, and periosteal envelopes. RBF was significantly greater after TPTD versus ZOL in all envelopes at 6 and 24 months, except the periosteal envelope at 24 months. MBF was significantly greater with TPTD in all envelopes at 6 months but not at 24 months. oMBF was significantly greater at 6 months in the cancellous and endocortical envelopes with TPTD, with no significant differences at 24 months. At 6 months, total bone formation surface was also significantly greater in each envelope with TPTD treatment (all p < 0.001). For within-group comparisons from 6 to 24 months, no statistically significant changes were observed in RBF, MBF, or oMBF in any envelope for either the TPTD or ZOL treatment groups. Overall, TPTD treatment was associated with greater bone formation than ZOL. Taken together the data support the view that ZOL is a traditional antiremodeling agent, wheareas TPTD is a proremodeling anabolic agent that increases bone formation, especially that associated with bone remodeling, including related overflow modeling, with substantial modeling-based bone formation early in the course of treatment. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David W Dempster
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY, USA
| | | | | | - Jahangir Alam
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
41
|
Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, Miller PD, Rao SD, Kendler DL, Lindsay R, Krege JH, Alam J, Taylor KA, Melby TE, Ruff VA. Remodeling- and Modeling-Based Bone Formation With Teriparatide Versus Denosumab: A Longitudinal Analysis From Baseline to 3 Months in the AVA Study. J Bone Miner Res 2018; 33:298-306. [PMID: 29024120 DOI: 10.1002/jbmr.3309] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 01/22/2023]
Abstract
There has been renewed interest of late in the role of modeling-based formation (MBF) during osteoporosis therapy. Here we describe early effects of an established anabolic (teriparatide) versus antiresorptive (denosumab) agent on remodeling-based formation (RBF), MBF, and overflow MBF (oMBF) in human transiliac bone biopsies. Postmenopausal women with osteoporosis received subcutaneous teriparatide (n = 33, 20 μg/d) or denosumab (n = 36, 60 mg once/6 months), open-label for 6 months at 7 US and Canadian sites. Subjects received double fluorochrome labeling at baseline and before biopsy at 3 months. Sites of bone formation were designated as MBF if the underlying cement line was smooth, RBF if scalloped, and oMBF if formed over smooth cement lines adjacent to scalloped reversal lines. At baseline, mean RBF/bone surface (BS), MBF/BS, and oMBF/BS were similar between the teriparatide and denosumab groups in each bone envelope assessed (cancellous, endocortical, periosteal). All types of formation significantly increased from baseline in the cancellous and endocortical envelopes (differences p < 0.001) with teriparatide (range of changes 2.9- to 21.9-fold), as did MBF in the periosteum (p < 0.001). In contrast, all types of formation were decreased or not significantly changed with denosumab, except MBF/BS in the cancellous envelope, which increased 2.5-fold (difference p = 0.048). These data highlight mechanistic differences between these agents: all 3 types of bone formation increased significantly with teriparatide, whereas formation was predominantly decreased or not significantly changed with denosumab, except for a slight increase in MBF/BS in the cancellous envelope. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David W Dempster
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY, USA
| | - Robert R Recker
- Department of Medicine, Division of Endocrinology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Jacques P Brown
- Rheumatology and Bone Diseases Research Group, CHU de Québec (CHUL), Research Centre and Department of Medicine, Laval University, Quebec City, Canada
| | | | - E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA
| | - Paul D Miller
- Department of Medicine, Colorado Center for Bone Research, Lakewood, CO, USA
| | - Sudhaker D Rao
- Bone & Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
| | - David L Kendler
- Department of Medicine (Endocrinology), University of British Columbia, Vancouver, Canada
| | - Robert Lindsay
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - John H Krege
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jahangir Alam
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kathleen A Taylor
- Musculoskeletal and Men's Health, Lilly USA LLC, Indianapolis, IN, USA
| | | | - Valerie A Ruff
- Musculoskeletal and Men's Health, Lilly USA LLC, Indianapolis, IN, USA
| |
Collapse
|
42
|
Sano H, Kondo N, Shimakura T, Fujisawa J, Kijima Y, Kanai T, Poole KES, Yamamoto N, Takahashi HE, Endo N. Evidence for Ongoing Modeling-Based Bone Formation in Human Femoral Head Trabeculae via Forming Minimodeling Structures: A Study in Patients with Fractures and Arthritis. Front Endocrinol (Lausanne) 2018; 9:88. [PMID: 29615973 PMCID: PMC5868326 DOI: 10.3389/fendo.2018.00088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Bone modeling is a biological process of bone formation that adapts bone size and shape to mechanical loads, especially during childhood and adolescence. Bone modeling in cortical bone can be easily detected using sequential radiographic images, while its assessment in trabecular bone is challenging. Here, we performed histomorphometric analysis in 21 bone specimens from biopsies collected during hip arthroplasty, and we proposed the criteria for histologically identifying an active modeling-based bone formation, which we call a "forming minimodeling structure" (FMiS). Evidence of FMiSs was found in 9 of 20 specimens (45%). In histomorphometric analysis, bone volume was significant higher in specimens displaying FMiSs compared with the specimens without these structures (BV/TV, 31.7 ± 10.2 vs. 23.1 ± 3.9%; p < 0.05). Osteoid parameters were raised in FMiS-containing bone specimens (OV/BV, 2.1 ± 1.6 vs. 0.6 ± 0.3%; p < 0.001, OS/BS, 23.6 ± 15.5 vs. 7.6 ± 4.2%; p < 0.001, and O.Th, 7.4 µm ± 2.0 vs. 5.2 ± 1.0; p < 0.05). Our results showed that the modeling-based bone formation on trabecular bone surfaces occurs even during adulthood. As FMiSs can represent histological evidence of modeling-based bone formation, understanding of this physiology in relation to bone homeostasis is crucial.
Collapse
Affiliation(s)
- Hiroshige Sano
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Niigata Bone Science Institute, Niigata, Japan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Hiroshige Sano,
| | - Naoki Kondo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Junichi Fujisawa
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasufumi Kijima
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanai
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Noriaki Yamamoto
- Niigata Bone Science Institute, Niigata, Japan
- Department of Orthopedic Surgery, Niigata Rehabilitation Hospital, Niigata, Japan
| | - Hideaki E. Takahashi
- Niigata Bone Science Institute, Niigata, Japan
- Department of Orthopedic Surgery, Niigata Rehabilitation Hospital, Niigata, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
43
|
Chen H, Fu T, Ma Y, Wu X, Li X, Li X, Shen J, Wang H. Intermittent administration of parathyroid hormone ameliorated alveolar bone loss in experimental periodontitis in streptozotocin-induced diabetic rats. Arch Oral Biol 2017; 83:76-84. [DOI: 10.1016/j.archoralbio.2017.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 11/29/2022]
|
44
|
Malouf-Sierra J, Tarantino U, García-Hernández PA, Corradini C, Overgaard S, Stepan JJ, Borris L, Lespessailles E, Frihagen F, Papavasiliou K, Petto H, Aspenberg P, Caeiro JR, Marin F. Effect of Teriparatide or Risedronate in Elderly Patients With a Recent Pertrochanteric Hip Fracture: Final Results of a 78-Week Randomized Clinical Trial. J Bone Miner Res 2017; 32:1040-1051. [PMID: 28019683 DOI: 10.1002/jbmr.3067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
We present final results of a study comparing teriparatide 20 μg every day (QD) with risedronate 35 mg once per week (QW) started within 2 weeks after surgery for a pertrochanteric hip fracture. Patients with BMD T-score ≤ -2.0 and 25OHD ≥9.2 ng/mL were randomized to receive 26-week double-dummy treatment plus calcium and vitamin D, followed by 52-week open-label treatment with the same assigned active drug. Primary endpoint was change from baseline in lumbar spine (LS) BMD at 78 weeks. Secondary and exploratory endpoints were change in BMD at the proximal femur, function, hip pain (Charnley score and 100 mm Visual Analog Scale [VAS]), quality of life (Short Form-36), radiology outcomes, and safety. Data were analyzed with mixed models for repeated measures (MMRM) and logistic regression. Totally, 224 patients were randomized; 171 (teriparatide: 86) contributed to the efficacy analyses (mean ± SD age: 77 ± 7.7 years, 77% females). Mean baseline LS, femoral neck (FN), and total hip (TH) T-scores were -2.16, -2.63, and -2.51, respectively. At 78 weeks, BMD increased significantly more with teriparatide compared to risedronate at the LS (+11.08% versus +6.45%; p < 0.001) and FN (+1.96% versus -1.19%; p = 0.003), with no significant between-group difference in TH BMD. Timed up-and-go (TUG) test was significantly faster with teriparatide at 6, 12, 18, and 26 weeks (differences: -3.2 to -5.9 s; p = 0.045 for overall difference). Hip pain during TUG test by 100 mm VAS was significantly lower with teriparatide at 18 weeks (adjusted difference: -11.3 mm, p = 0.033; -10.0 and -9.3 mm at 12 and 26 weeks, respectively; p = 0.079 for overall difference). Other secondary and exploratory outcomes were not different. Teriparatide group showed two new hip fractures versus seven with risedronate (p = 0.171) and more frequent hypercalcemia and hyperuricemia. In conclusion, 78-week treatment with teriparatide showed significantly greater increases in LS and FN BMD, less pain, and a faster TUG test versus risedronate. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | | | - Costantino Corradini
- Department of Biomedical Surgical and Dental Sciences, University of Milan, c/o 1st University Division of Orthopaedy and Traumatology, ASST Gaetano Pini, Milan, Italy
| | - Søren Overgaard
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jan J Stepan
- Institute of Rheumatology and Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lars Borris
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Eric Lespessailles
- Institut de prévention et de recherche sur l'ostéoporose (IPROS), Department of Rheumatology, Centre Hospitalier Régional (CHR) d'Orléans, Orléans, France
- Imagerie Multimodale Multiéchelle et Modélisation du Tissu Osseux (I3MTO), EA 4708, Orléans University, Orléans, France
| | - Frede Frihagen
- Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway
| | - Kyriakos Papavasiliou
- 3rd Orthopaedic Department, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | - Per Aspenberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Santiago de Compostela University Hospital, Health Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Marin
- Eli Lilly Research Centre Ltd, Erl Wood Manor, Surrey, UK
| |
Collapse
|
45
|
Chen YJ, Wang SP, Cheng FC, Hsu PY, Li YF, Wu J, Huang HL, Tsai MT, Hsu JT. Intermittent parathyroid hormone improve bone microarchitecture of the mandible and femoral head in ovariectomized rats. BMC Musculoskelet Disord 2017; 18:171. [PMID: 28438150 PMCID: PMC5404672 DOI: 10.1186/s12891-017-1530-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/16/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intermittent parathyroid hormone (PTH) can be used to treat osteoporosis of the spine and hip. However, whether it can be used to treat osteoporosis of the mandible is unclear. The purpose of this study was to explore the influence of applying intermittent PTH to ovariectomized rats on the trabecular bone microarchitecture of the mandible and femoral head. METHODS Eighteen female rats were divided into three groups: the healthy group, ovariectomized (OVX) group, and OVX + PTH group. The OVX group and OVX + PTH group had an OVX at 8 weeks of age. The OVX + PTH group received intermittent PTH therapy for 12 weeks. The mandibles and femurs of all rats were removed at 20 weeks and were then scanned using microcomputed tomography (micro-CT). RESULTS From the micro-CT analysis, the trabecular bone microarchitecture of the mandible and femoral head are offered as follows: (1) The bone volume fraction and trabecular thickness in the OVX group were lower than those in the healthy group. (2) The bone volume fraction and trabecular thickness in the OVX + PTH group approximated those in the healthy group. CONCLUSION The conclusions of this study regarding the trabecular bone microarchitecture of the mandible and femoral head are offered as follows: (1) The BV/TV and TbTh in the OVX group were lower than those in the healthy group. (2) The BV/TV and TbTh in the OVX + PTH group approximated those in the healthy group, therefore, intermittent PTH displayed high efficacy for treating femoral or mandibular deterioration of bone microstructure resulting from loss of ovarian function. Osteoporosis of the femur or mandible in the rats was ameliorated by intermittent PTH therapy.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung, 433, Taiwan
| | - Shun-Ping Wang
- Department of Orthopaedics, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Fu-Chou Cheng
- Stem Cell Medical Research Center, Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Pei-Yu Hsu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 404, Taiwan
| | - Yu-Fen Li
- Institute of Biostatistics, China Medical University, Taichung, 404, Taiwan
| | - Jay Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 112, Taiwan
| | - Heng-Li Huang
- School of Dentistry, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 413, Taiwan
| | - Ming-Tzu Tsai
- Department of Biomedical Engineering, Hungkuang University, Taichung, 433, Taiwan
| | - Jui-Ting Hsu
- School of Dentistry, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan. .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
46
|
Kamimura M, Nakamura Y, Ikegami S, Uchiyama S, Kato H. Bisphosphonate Pre-Treatment Diminishes the Therapeutic Benefits of Teriparatide in Japanese Osteoporotic Patients. TOHOKU J EXP MED 2017; 239:17-24. [PMID: 27150954 DOI: 10.1620/tjem.239.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteoporosis (OP) is the most common multifactorial metabolic bone disorder worldwide. It remains unclear whether bisphosphonate (BP) pre-treatment affects the anabolic bone metabolism in OP patients treated with teriparatide (TPTD), a recombinant form of parathyroid hormone 1-34. This study is the first to evaluate the clinical outcomes of daily TPTD administration in Japanese OP patients and aimed to clarify how BP pre-treatment influences the efficacy of TPTD. We enrolled 112 patients diagnosed as primary OP who received TPTD. Subjects were classified as OP treatment-naïve patients (TPTD alone group) or patients previously treated with BP (BP pre-treated group). We measured serum bone-specific alkaline phosphatase (BAP) as a bone formation marker, urinary cross-linked N-terminal telopeptide of type I collagen (NTX) as a bone resorption marker, and bone mineral density (BMD) of lumbar vertebrae (L-BMD) and bilateral total hips (H-BMD). In both groups, BAP and NTX increased until 6 months and then decreased thereafter. The percent changes of both markers in BP pre-treated group were more increased than those in TPTD alone group. L-BMD increased significantly in both groups. The percent increase of L-BMD in the TPTD alone group was significantly higher than that in the BP pre-treated group. H-BMD rose significantly in the TPTD alone group, but not in BP pre-treated group. BP pre-treatment appears to diminish the degree of the TPTD-mediated increase in BMD. Thus, it is preferable to administer TPTD ahead of BP treatment in patients with severe OP.
Collapse
Affiliation(s)
- Mikio Kamimura
- Center for Osteoporosis and Spinal Disorders, Kamimura Orthopaedic Clinic
| | | | | | | | | |
Collapse
|
47
|
Ominsky MS, Boyd SK, Varela A, Jolette J, Felx M, Doyle N, Mellal N, Smith SY, Locher K, Buntich S, Pyrah I, Boyce RW. Romosozumab Improves Bone Mass and Strength While Maintaining Bone Quality in Ovariectomized Cynomolgus Monkeys. J Bone Miner Res 2017; 32:788-801. [PMID: 27865001 DOI: 10.1002/jbmr.3036] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 11/11/2022]
Abstract
Romosozumab (Romo), a humanized sclerostin antibody, is a bone-forming agent under development for treatment of osteoporosis. To examine the effects of Romo on bone quality, mature cynomolgus monkeys (cynos) were treated 4 months post- ovariectomy (OVX) with vehicle, 3 mg/kg, or 30 mg/kg Romo for 12 months, or with 30 mg/kg Romo for 6 months followed by vehicle for 6 months (30/0). Serum bone formation markers were increased by Romo during the first 6 months, corresponding to increased cancellous, endocortical, and periosteal bone formation in rib and iliac biopsies at months 3 and 6. Dual-energy X-ray absorptiometry (DXA) bone mineral density (BMD) was increased by 14% to 26% at the lumbar spine and proximal femur at month 12, corresponding to significant increases in bone strength at 3 and 30 mg/kg in lumbar vertebral bodies and cancellous cores, and at 30 mg/kg in the femur diaphysis and neck. Bone mass remained positively correlated with strength at these sites, with no changes in calculated material properties at cortical sites. These bone-quality measures were also maintained in the 30/0 group, despite a gradual loss of accrued bone mass. Normal bone mineralization was confirmed by histomorphometry and ash analyses. At the radial diaphysis, a transient, reversible 2% reduction in cortical BMD was observed with Romo at month 6, despite relative improvements in bone mineral content (BMC). High-resolution pQCT confirmed this decline in cortical BMD at the radial diaphysis and metaphysis in a second set of OVX cynos administered 3 mg/kg Romo for 6 months. Radial diaphyseal strength was maintained and metaphyseal strength improved with Romo as estimated by finite element modeling. Decreased radial cortical BMD was a consequence of increased intracortical remodeling, with no increase in cortical porosity. Romo resulted in marked improvements in bone mass, architecture, and bone strength, while maintaining bone quality in OVX cynos, supporting its bone efficacy and safety profile. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Steven K Boyd
- Department of Radiology and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Aurore Varela
- Charles River Laboratories Preclinical Services, Montreal, Canada
| | | | - Melanie Felx
- Charles River Laboratories Preclinical Services, Montreal, Canada
| | - Nancy Doyle
- Charles River Laboratories Preclinical Services, Montreal, Canada
| | - Nacera Mellal
- Charles River Laboratories Preclinical Services, Montreal, Canada
| | - Susan Y Smith
- Charles River Laboratories Preclinical Services, Montreal, Canada
| | - Kathrin Locher
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Sabina Buntich
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Ian Pyrah
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Rogely W Boyce
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
48
|
Ma YL, Hamang M, Lucchesi J, Bivi N, Zeng Q, Adrian MD, Raines SE, Li J, Kuhstoss SA, Obungu V, Bryant HU, Krishnan V. Time course of disassociation of bone formation signals with bone mass and bone strength in sclerostin antibody treated ovariectomized rats. Bone 2017; 97:20-28. [PMID: 27939957 DOI: 10.1016/j.bone.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone.
Collapse
Affiliation(s)
- Yanfei L Ma
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Matthew Hamang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan Lucchesi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Nicoletta Bivi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Qianqiang Zeng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mary D Adrian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Sarah E Raines
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jiliang Li
- Indiana University-Purdue University, Indianapolis, IN, USA
| | - Stuart A Kuhstoss
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Victor Obungu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Henry U Bryant
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Venkatesh Krishnan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
49
|
Wu J, Cai XH, Qin XX, Liu YX. The effects of sclerostin antibody plus parathyroid hormone (1-34) on bone formation in ovariectomized rats. Z Gerontol Geriatr 2017; 51:550-556. [PMID: 28364259 DOI: 10.1007/s00391-017-1219-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/26/2022]
Abstract
Previous studies have demonstrated the effects of sclerostin antibody (Scl-Ab) and parathyroid hormone (1-34, PTH) on healing in osteoporosis; however, reports about the combined effects of Scl-Ab plus PTH on osteoporosis are limited. This study was designed to investigate the impact of combined treatment with Scl-Ab and PTH on osteoporosis healing in ovariectomized (OVX) rats. After bilateral ovariectomy, 12 weeks were allowed to pass for the establishment of standard conditions for osteoporosis in animal models. The rats then randomly received a vehicle (control), Scl-Ab (25 mg/kg body weight, twice weekly), PTH (60 μg/kg, three times per week) or PTH plus Scl-Ab until death at 12 weeks. The blood and distal femurs of the rats were harvested for evaluation. The results of treatment for osteoporosis were evaluated by serum analysis, histology, microcomputed tomography (micro-CT) and biomechanical tests. Results from this study indicated that PTH + Scl-Ab had stronger effects on the prevention and treatment of osteoporosis than either of the monotherapies in OVX rats. The PTH + Scl-Ab produced the strongest effects on bone volume fraction (BV/TV), bone trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular spacing (Tb.Sp), bone mineral density (BMD) and strength of distal femurs and increased the levels of procollagen type I N‑terminal propeptide (PINP) and osteocalcin. In contrast, monotherapy with PTH or Scl-Ab showed no differences between treated groups in the assessment of the metaphysis of contralateral femurs by histology, serum, biomechanical tests and micro-CT. These results seem to indicate that Scl-Ab plus PTH has an additive effect on osteoporosis in OVX rats.
Collapse
Affiliation(s)
- Jian Wu
- Southern Medical University, 510515, Guangzhou, Guangdong, China.,Department of orthopaedics, XianNing Central hospital, The First Affiliated Hospital of Hubei University of Science and Technology, 437100, XianNing, Hubei, China
| | - Xian-Hua Cai
- Southern Medical University, 510515, Guangzhou, Guangdong, China. .,Department of orthopaedics, Wuhan General Hospital of Guangzhou Military Area Commands affiliated Southern Medical University, 627 Wuluo Road, 437000, Wuhan, Hubei, China.
| | - Xing-Xing Qin
- Department of orthopaedics, XianNing Central hospital, The First Affiliated Hospital of Hubei University of Science and Technology, 437100, XianNing, Hubei, China
| | - Yan-Xi Liu
- Department of orthopaedics, XianNing Central hospital, The First Affiliated Hospital of Hubei University of Science and Technology, 437100, XianNing, Hubei, China
| |
Collapse
|
50
|
Parathyroid Hormone (1-34) Might Not Improve Early Bone Healing after Sinus Augmentation in Healthy Rabbits. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6087676. [PMID: 28280735 PMCID: PMC5322440 DOI: 10.1155/2017/6087676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/06/2017] [Accepted: 01/18/2017] [Indexed: 12/27/2022]
Abstract
Purpose. This study evaluated the effect of administering intermittent parathyroid hormone [PTH (1-34), henceforth PTH] on the early-stage bone healing of maxillary sinus augmentation in healthy rabbits. Materials and Methods. Bovine bone mineral was grafted on the sinuses of 20 female New Zealand white rabbits. The animals were randomly divided into two groups, PTH (n = 10) or saline (n = 10), in which either PTH or saline was injected subcutaneously 5 days a week for 2 weeks. Half of the animals in each group were killed at 2 weeks postoperatively and the other half were killed at 4 weeks postoperatively. The dosage of PTH was 10 μg/kg/day. Radiographic and histomorphometric analyses were performed. Result. The new bone area (NBA) did not differ significantly between the PTH and saline groups. The NBA in the PTH group in the total augmented area and in the demarcated window, center, and Schneiderian membrane regions increased significantly from 2 to 4 weeks. The number of osteoclasts decreased significantly from 2 to 4 weeks in both groups, with no difference between the two groups. Conclusion. Intermittent PTH might not stimulate new bone formation in healthy rabbits during the first 4 weeks of healing.
Collapse
|