1
|
Tekeoğlu İ, Şahin MZ, Kamanlı A, Nas K. The influence of zinc levels on osteoarthritis: A comprehensive review. Nutr Res Rev 2025; 38:282-293. [PMID: 39311401 DOI: 10.1017/s0954422424000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Osteoarthritis (OA), a disease with a multifactorial aetiology and an enigmatic root cause, affects the quality of life of many elderly patients. Even though there are certain medications utilised to reduce the symptomatic effects, a reliable treatment method to reverse the disease is yet to be discovered. Zinc is a cofactor of over 3000 proteins and is the only metal found in all six classes of enzymes. We explored zinc’s effect on the immune system and the bones as OA affects both. We also discussed zinc-dependent enzymes, highlighting their significant role in the disease’s pathogenesis. It is important to note that both excessive and deficient zinc levels can negatively affect bone health and immune function, thereby exacerbating OA. The purpose of this review is to offer a better understanding of zinc’s impact on OA pathogenesis and to provide clarity regarding its beneficial and detrimental outcomes. We searched thoroughly systematic reviews, meta-analysis, review articles, research articles and randomised controlled trials to ensure a comprehensive review. In brief, using zinc supplementation in the treatment of OA may act as a doubled-edged sword, offering potential benefits but also posing risks.
Collapse
Affiliation(s)
- İbrahim Tekeoğlu
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Muhammed Zahid Şahin
- Sakarya University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Ayhan Kamanlı
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Kemal Nas
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| |
Collapse
|
2
|
Grinstein M, Tsai SL, Montoro D, Freedman BR, Dingwall HL, Villaseñor S, Zou K, Sade-Feldman M, Tanaka MJ, Mooney DJ, Capellini TD, Rajagopal J, Galloway JL. A latent Axin2 +/Scx + progenitor pool is the central organizer of tendon healing. NPJ Regen Med 2024; 9:30. [PMID: 39420021 PMCID: PMC11487078 DOI: 10.1038/s41536-024-00370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
A tendon's ordered extracellular matrix (ECM) is essential for transmitting force but is also highly prone to injury. How tendon cells embedded within and surrounding this dense ECM orchestrate healing is not well understood. Here, we identify a specialized quiescent Scx+/Axin2+ population in mouse and human tendons that initiates healing and is a major functional contributor to repair. Axin2+ cells express stem cell markers, expand in vitro, and have multilineage differentiation potential. Following tendon injury, Axin2+-descendants infiltrate the injury site, proliferate, and differentiate into tenocytes. Transplantation assays of Axin2-labeled cells into injured tendons reveal their dual capacity to significantly proliferate and differentiate yet retain their Axin2+ identity. Specific loss of Wnt secretion in Axin2+ or Scx+ cells disrupts their ability to respond to injury, severely compromising healing. Our work highlights an unusual paradigm, wherein specialized Axin2+/Scx+ cells rely on self-regulation to maintain their identity as key organizers of tissue healing.
Collapse
Affiliation(s)
- Mor Grinstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Daniel Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Heather L Dingwall
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Steffany Villaseñor
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Zou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- The Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Miho J Tanaka
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
3
|
Zhang J, Li J, Hou Y, Lin Y, Zhao H, Shi Y, Chen K, Nian C, Tang J, Pan L, Xing Y, Gao H, Yang B, Song Z, Cheng Y, Liu Y, Sun M, Linghu Y, Li J, Huang H, Lai Z, Zhou Z, Li Z, Sun X, Chen Q, Su D, Li W, Peng Z, Liu P, Chen W, Huang H, Chen Y, Xiao B, Ye L, Chen L, Zhou D. Osr2 functions as a biomechanical checkpoint to aggravate CD8 + T cell exhaustion in tumor. Cell 2024; 187:3409-3426.e24. [PMID: 38744281 DOI: 10.1016/j.cell.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Jinjia Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yao Lin
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China; Changping Laboratory, 102206 Beijing, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yiran Shi
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kaiyun Chen
- Fujian State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Pan
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Bingying Yang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zengfang Song
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Liu
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Min Sun
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yueyue Linghu
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zifeng Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic & Organ Transplantation Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic & Organ Transplantation Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongling Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yixin Chen
- Fujian State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China; Changping Laboratory, 102206 Beijing, China.
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
4
|
Yang W, Liu X, He Z, Zhang Y, Tan X, Liu C. odd skipped-related 2 as a novel mark for labeling the proximal convoluted tubule within the zebrafish kidney. Heliyon 2024; 10:e27582. [PMID: 38496848 PMCID: PMC10944271 DOI: 10.1016/j.heliyon.2024.e27582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 03/19/2024] Open
Abstract
The proximal convoluted tubule (PCT) of the kidney is a crucial functional segment responsible for reabsorption, secretion, and the maintenance of electrolyte and water balance within the renal tubule. However, there is a lack of a well-defined endogenous transgenic line for studying PCT morphogenesis. By analyzing single-cell transcriptome data from the adult zebrafish kidney, we have identified the expression of odd-skipped-related 2 (osr2, which encodes an odd-skipped zinc-finger transcription factor) in the PCT. To gain insight into the role of osr2 in PCT morphogenesis, we have generated a transgenic zebrafish line Tg(osr2:EGFP), expressing enhanced green fluorescent protein (EGFP). The EGFP expression pattern closely mirrors that of endogenous Osr2, faithfully recapitulating its native expression profile. During kidney development, we can use EGFP to track PCT development, which is also preserved in adult zebrafish. Additionally, osr2:EGFP-labeled zebrafish PCT fragments displayed short lengths with infrequent overlap, rendering them conducive for nephrons counting. The generation of Tg(osr2:EGFP) transgenic line is accompanied by simultaneous disruption of osr2 activity. Importantly, our findings demonstrate that osr2 inactivation had no discernible impact on the development and regeneration of Tg(osr2:EGFP) zebrafish nephrons. Overall, the establishment of this transgenic zebrafish line offers a valuable tool for both genetic and chemical analysis of PCT.
Collapse
Affiliation(s)
- Wenmin Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Xiaoliang Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Zhongwei He
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Yunfeng Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Xiaoqin Tan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| |
Collapse
|
5
|
Nichols AEC, Wagner NW, Ketonis C, Loiselle AE. Epitenon-derived cells comprise a distinct progenitor population that contributes to both tendon fibrosis and regeneration following acute injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526242. [PMID: 36778469 PMCID: PMC9915485 DOI: 10.1101/2023.01.30.526242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Flexor tendon injuries are common and heal poorly owing to both the deposition of function- limiting peritendinous scar tissue and insufficient healing of the tendon itself. Therapeutic options are limited due to a lack of understanding of the cell populations that contribute to these processes. Here, we identified a bi-fated progenitor cell population that originates from the epitenon and goes on to contribute to both peritendinous fibrosis and regenerative tendon healing following acute tendon injury. Using a combination of genetic lineage tracing and single cell RNA-sequencing (scRNA-seq), we profiled the behavior and contributions of each cell fate to the healing process in a spatio-temporal manner. Branched pseudotime trajectory analysis identified distinct transcription factors responsible for regulation of each fate. Finally, integrated scRNA-seq analysis of mouse healing with human peritendinous scar tissue revealed remarkable transcriptional similarity between mouse epitenon- derived cells and fibroblasts present in human peritendinous scar tissue, which was further validated by immunofluorescent staining for conserved markers. Combined, these results clearly identify the epitenon as the cellular origin of an important progenitor cell population that could be leveraged to improve tendon healing.
Collapse
|
6
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
7
|
Li C, Duan D, Xue Y, Han X, Wang K, Qiao R, Li XL, Li XJ. An association study on imputed whole-genome resequencing from high-throughput sequencing data for body traits in crossbred pigs. Anim Genet 2022; 53:212-219. [PMID: 35026054 DOI: 10.1111/age.13170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Body traits are important economic factors in the pig industry. Genome-wide association studies (GWASs) have been widely applied using high-density genotype data to detect QTL in pigs. The aim of the present study was to detect the genetic variants significantly associated with body traits in crossbred pigs using the Illumina Porcine SNP50 BeadChip and imputed whole-genome sequence data. A set of seven body traits - body length, body height, chest circumference, cannon bone circumference, leg buttock circumference, back fat thickness and loin muscle depth - were measured. Moderate to high heritabilities were obtained for most traits (from 0.14 to 0.46), and significant genetic and phenotypic correlations among them were observed. GWAS identified 714 significantly associated SNPs located at 39 regions on all autosomes for body traits, and a total of seven functionally related candidate genes: PIK3CD, HOXA, PCGF2, CHST11, COL2A1, BMI1 and OSR2. Functional enrichment analysis revealed that candidate genes were enriched in the estrogen signaling pathway, embryonic skeletal system morphogenesis and embryonic skeletal system development. These results aim to uncover the genetic mechanisms underlying body development and marker-assisted selection programs focusing on body traits in pigs.
Collapse
Affiliation(s)
- Cong Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dongdong Duan
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yahui Xue
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuelei Han
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Kejun Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ruimin Qiao
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiu-Ling Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin-Jian Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Metabolic and Transcriptional Changes across Osteogenic Differentiation of Mesenchymal Stromal Cells. Bioengineering (Basel) 2021; 8:bioengineering8120208. [PMID: 34940360 PMCID: PMC8698318 DOI: 10.3390/bioengineering8120208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent post-natal stem cells with applications in tissue engineering and regenerative medicine. MSCs can differentiate into osteoblasts, chondrocytes, or adipocytes, with functional differences in cells during osteogenesis accompanied by metabolic changes. The temporal dynamics of these metabolic shifts have not yet been fully characterized and are suspected to be important for therapeutic applications such as osteogenesis optimization. Here, our goal was to characterize the metabolic shifts that occur during osteogenesis. We profiled five key extracellular metabolites longitudinally (glucose, lactate, glutamine, glutamate, and ammonia) from MSCs from four donors to classify osteogenic differentiation into three metabolic stages, defined by changes in the uptake and secretion rates of the metabolites in cell culture media. We used a combination of untargeted metabolomic analysis, targeted analysis of 13C-glucose labelled intracellular data, and RNA-sequencing data to reconstruct a gene regulatory network and further characterize cellular metabolism. The metabolic stages identified in this proof-of-concept study provide a framework for more detailed investigations aimed at identifying biomarkers of osteogenic differentiation and small molecule interventions to optimize MSC differentiation for clinical applications.
Collapse
|
9
|
Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int J Mol Sci 2020; 21:ijms21041236. [PMID: 32059605 PMCID: PMC7072862 DOI: 10.3390/ijms21041236] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient that plays critical roles in numerous physiological processes, including bone homeostasis. The majority of zinc in the human body is stored in bone. Zinc is not only a component of bone but also an essential cofactor of many proteins involved in microstructural stability and bone remodeling. There are two types of membrane zinc transporter proteins identified in mammals: the Zrt- and Irt-like protein (ZIP) family and the zinc transporter (ZnT) family. They regulate the influx and efflux of zinc, accounting for the transport of zinc through cellular and intracellular membranes to maintain zinc homeostasis in the cytoplasm and in intracellular compartments, respectively. Abnormal function of certain zinc transporters is associated with an imbalance of bone homeostasis, which may contribute to human bone diseases. Here, we summarize the regulatory roles of zinc transporters in different cell types and the mechanisms underlying related pathological changes involved in bone diseases. We also present perspectives for further studies on bone homeostasis-regulating zinc transporters.
Collapse
|
10
|
Ikegame M, Hattori A, Tabata MJ, Kitamura K, Tabuchi Y, Furusawa Y, Maruyama Y, Yamamoto T, Sekiguchi T, Matsuoka R, Hanmoto T, Ikari T, Endo M, Omori K, Nakano M, Yashima S, Ejiri S, Taya T, Nakashima H, Shimizu N, Nakamura M, Kondo T, Hayakawa K, Takasaki I, Kaminishi A, Akatsuka R, Sasayama Y, Nishiuchi T, Nara M, Iseki H, Chowdhury VS, Wada S, Ijiri K, Takeuchi T, Suzuki T, Ando H, Matsuda K, Somei M, Mishima H, Mikuni‐Takagaki Y, Funahashi H, Takahashi A, Watanabe Y, Maeda M, Uchida H, Hayashi A, Kambegawa A, Seki A, Yano S, Shimazu T, Suzuki H, Hirayama J, Suzuki N. Melatonin is a potential drug for the prevention of bone loss during space flight. J Pineal Res 2019; 67:e12594. [PMID: 31286565 PMCID: PMC6771646 DOI: 10.1111/jpi.12594] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.
Collapse
Affiliation(s)
- Mika Ikegame
- Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Atsuhiko Hattori
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Makoto J. Tabata
- Graduate School of Tokyo Medical and Dental UniversityBunkyo‐kuJapan
| | - Kei‐ichiro Kitamura
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKodatsunoJapan
| | | | - Yukihiro Furusawa
- Department of Liberal Arts and SciencesToyama Prefectural UniversityToyamaJapan
| | - Yusuke Maruyama
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Tatsuki Yamamoto
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Toshio Sekiguchi
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Risa Matsuoka
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Taizo Hanmoto
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Takahiro Ikari
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Masato Endo
- Department of Marine BiosciencesTokyo University of Marine Science and TechnologyMinato‐kuJapan
| | | | - Masaki Nakano
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Sayaka Yashima
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Sadakazu Ejiri
- Division of Oral Structure, Function and DevelopmentAsahi University School of DentistryMizuhoJapan
| | | | - Hiroshi Nakashima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKodatsunoJapan
| | - Nobuaki Shimizu
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Masahisa Nakamura
- Faculty of Education and Integrated Arts and SciencesWaseda UniversityShinjuku‐kuJapan
| | - Takashi Kondo
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Kazuichi Hayakawa
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNomiJapan
| | - Ichiro Takasaki
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| | - Atsushi Kaminishi
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Ryosuke Akatsuka
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Yuichi Sasayama
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Takumi Nishiuchi
- Institute for Gene Research, Advanced Science Research CenterKanazawa UniversityKanazawaJapan
| | - Masayuki Nara
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Hachiro Iseki
- Graduate School of Tokyo Medical and Dental UniversityBunkyo‐kuJapan
| | | | | | - Kenichi Ijiri
- Radioisotope CenterUniversity of TokyoBunkyo‐kuJapan
| | - Toshio Takeuchi
- Department of Marine BiosciencesTokyo University of Marine Science and TechnologyMinato‐kuJapan
| | - Tohru Suzuki
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Hironori Ando
- Marine Biological Station, Sado Center for Ecological SustainabilityNiigata UniversitySadoJapan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| | - Masanori Somei
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Hiroyuki Mishima
- Department of Dental EngineeringTsurumi University School of Dental MedicineYokohamaJapan
| | | | - Hisayuki Funahashi
- Department of Physical Therapy, Faculty of Makuhari Human CareTohto UniversityMihama‐kuJapan
| | | | - Yoshinari Watanabe
- Organization of Frontier Science and InnovationKanazawa UniversityKanazawaJapan
| | | | | | | | | | | | | | | | | | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health SciencesKomatsu UniversityKomatsuJapan
| | - Nobuo Suzuki
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| |
Collapse
|
11
|
Agrawal Singh S, Lerdrup M, Gomes ALR, van de Werken HJG, Vilstrup Johansen J, Andersson R, Sandelin A, Helin K, Hansen K. PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells. eLife 2019; 8:e40364. [PMID: 30672466 PMCID: PMC6344081 DOI: 10.7554/elife.40364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
The PLZF transcription factor is essential for osteogenic differentiation of hMSCs; however, its regulation and molecular function during this process is not fully understood. Here, we revealed that the ZBTB16 locus encoding PLZF, is repressed by Polycomb (PcG) and H3K27me3 in naive hMSCs. At the pre-osteoblast stage of differentiation, the locus lost PcG binding and H3K27me3, gained JMJD3 recruitment, and H3K27ac resulting in high expression of PLZF. Subsequently, PLZF was recruited to osteogenic enhancers, influencing H3K27 acetylation and expression of nearby genes important for osteogenic function. Furthermore, we identified a latent enhancer within the ZBTB16/PLZF locus itself that became active, gained PLZF, p300 and Mediator binding and looped to the promoter of the nicotinamide N-methyltransferase (NNMT) gene. The increased expression of NNMT correlated with a decline in SAM levels, which is dependent on PLZF and is required for osteogenic differentiation.
Collapse
Affiliation(s)
- Shuchi Agrawal Singh
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of HematologyCambridge Institute for Medical Research and Welcome Trust/MRC Stem Cell Institute, University of CambridgeCambridgeUnited Kingdom
- Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mads Lerdrup
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ana-Luisa R Gomes
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Harmen JG van de Werken
- Department of Cell BiologyUniversity Medical CenterRotterdamNetherlands
- Cancer Computational Biology Center, University Medical CenterRotterdamNetherlands
- Department of UrologyUniversity Medical CenterRotterdamNetherlands
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Biology, The Bioinformatics CentreUniversity of CopenhagenCopenhagenDenmark
| | - Robin Andersson
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Biology, The Bioinformatics CentreUniversity of CopenhagenCopenhagenDenmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Biology, The Bioinformatics CentreUniversity of CopenhagenCopenhagenDenmark
| | - Kristian Helin
- The Novo Nordisk Center for Stem Cell Biology, Faculty of Health and Medical Sciences University of CopenhagenCopenhagenDenmark
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Klaus Hansen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
12
|
Kawai S, Yamauchi M, Amano A. Zinc-finger transcription factor Odd-skipped related 1 regulates cranial bone formation. J Bone Miner Metab 2018; 36:640-647. [PMID: 29234951 DOI: 10.1007/s00774-017-0885-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/15/2017] [Indexed: 11/25/2022]
Abstract
Knowledge of the molecular mechanisms of bone formation has been advanced by novel findings related to genetic control. Odd-skipped related 1 (Osr1) is known to play important roles in embryonic, heart, and urogenital development. To elucidate the in vivo function of Osr1 in bone formation, we generated transgenic mice overexpressing full-length Osr1 under control of its 2.8-kb promoter, which were smaller than their wild-type littermates. Notably, abnormalities in the skull of Osr1 transgenic mice were revealed by analysis of X-ray, skeletal preparation, and morphological findings, including round skull and cranial dysraphism. Furthermore, primary calvarial cells obtained from these mice showed increased proliferation and expression of chondrocyte markers, while expression of osteoblast markers was decreased. BMP2 reduced Osr1 expression and Osr1 knockdown by siRNA-induced alkaline phosphatase and osteocalcin expression in mesenchymal and osteoblastic cells. Together, our results suggest that Osr1 plays a coordinating role in appropriate skull closure and cranial bone formation by negative regulation.
Collapse
Affiliation(s)
- Shinji Kawai
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masashi Yamauchi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
13
|
Fu X, Xu J, Chaturvedi P, Liu H, Jiang R, Lan Y. Identification of Osr2 Transcriptional Target Genes in Palate Development. J Dent Res 2017; 96:1451-1458. [PMID: 28731788 DOI: 10.1177/0022034517719749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have identified the odd-skipped related 2 (Osr2) transcription factor as a key intrinsic regulator of palatal shelf growth and morphogenesis. However, little is known about the molecular program acting downstream of Osr2 in the regulation of palatogenesis. In this study, we isolated palatal mesenchyme cells from embryonic day 12.5 (E12.5) and E13.5 Osr2RFP/+ and Osr2RFP/- mutant mouse embryos and performed whole transcriptome RNA sequencing analyses. Differential expression analysis of the RNA sequencing datasets revealed that expression of 70 genes was upregulated and expression of 61 genes was downregulated by >1.5-fold at both E12.5 and E13.5 in the Osr2RFP/- palatal mesenchyme cells, in comparison with Osr2RFP/+ littermates. Gene ontology analysis revealed enrichment of signaling molecules and transcription factors crucial for skeletal development and osteoblast differentiation among those significantly upregulated in the Osr2 mutant palatal mesenchyme. Using quantitative real-time polymerase chain reaction (RT-PCR)and in situ hybridization assays, we validated that the Osr2-/- embryos exhibit significantly increased and expanded expression of many osteogenic pathway genes, including Bmp3, Bmp5, Bmp7, Mef2c, Sox6, and Sp7 in the developing palatal mesenchyme. Furthermore, we demonstrate that expression of Sema3a, Sema3d, and Sema3e, is ectopically activated in the developing palatal mesenchyme in Osr2-/- embryos. Through chromatin immunoprecipitation, followed by RT-PCR analysis, we demonstrate that endogenous Osr2 protein binds to the promoter regions of the Sema3a and Sema3d genes in the embryonic palatal mesenchyme. Moreover, Osr2 expression repressed the transcription from the Sema3a and Sema3d promoters in cotransfected cells. Since the Sema3 subfamily of signaling molecules plays diverse roles in the regulation of cell proliferation, migration, and differentiation, these data reveal a novel role for Osr2 in regulation of palatal morphogenesis through preventing aberrant activation of Sema3 signaling. Together, these data indicate that Osr2 controls multiple molecular pathways, including BMP and Sema3 signaling, in palate development.
Collapse
Affiliation(s)
- X Fu
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Xu
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - P Chaturvedi
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Liu
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
14
|
Kawai S, Michikami I, Kitagaki J, Hata K, Kiyonari H, Abe T, Amano A, Wakisaka S. Syntaxin 4a Regulates Matrix Vesicle-Mediated Bone Matrix Production by Osteoblasts. J Bone Miner Res 2017; 32:440-448. [PMID: 27933643 DOI: 10.1002/jbmr.3056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/23/2016] [Accepted: 12/03/2013] [Indexed: 12/21/2022]
Abstract
Osteoblasts secrete matrix vesicles and proteins to bone surfaces, but the molecular mechanisms of this secretion system remain unclear. The present findings reveal the roles of important genes in osteoblasts involved in regulation of extracellular matrix secretion. We especially focused on "soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor" (SNARE) genes and identified notable Syntaxin 4a (Stx4a) expression on the basolateral side of the plasma membrane of osteoblasts. Furthermore, Stx4a overexpression was found to increase mineralization by osteoblastic cells, whereas Stx4a knockdown reduced levels of mineralization. Also, BMP-4 and IGF-1 induced the localization of Stx4a to the basolateral side of the cells. To examine the function of Stx4a in osteoblasts, we generated osteoblast-specific Stx4a conditional knockout mice, which demonstrated an osteopenic phenotype due to reduced matrix secretion. Bone mineral density, shown by peripheral quantitative computed tomography (pQCT), was reduced in the femur metaphyseal and diaphyseal regions of Stx4a osteoblast-specific deficient mice, whereas bone parameters, shown by micro-computed tomography (μCT) and bone histomorphometric analysis, were also decreased in trabecular bone. In addition, primary calvarial cells from those mice showed decreased mineralization and lower secretion of matrix vesicles. Our findings indicate that Stx4a plays a critical role in bone matrix production by osteoblasts. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Shinji Kawai
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ikumi Michikami
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Jirouta Kitagaki
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Hyogo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Hyogo, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Wakisaka
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
15
|
Twine NA, Harkness L, Kassem M, Wilkins MR. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells. BMC Genomics 2016; 17:872. [PMID: 27814695 PMCID: PMC5097439 DOI: 10.1186/s12864-016-3214-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/26/2016] [Indexed: 12/29/2022] Open
Abstract
Background The differentiation of human bone marrow derived skeletal stem cells (known as human bone marrow stromal or mesenchymal stem cells, hMSCs) into osteoblasts involves the activation of a small number of well-described transcription factors. To identify additional osteoblastic transcription factors, we studied gene expression of hMSCs during ex vivo osteoblast differentiation. Results Clustering of gene expression, and literature investigation, revealed three transcription factors of interest – ZNF25, ZNF608 and ZBTB38. siRNA knockdown of ZNF25 resulted in significant suppression of alkaline phosphatase (ALP) activity. This effect was not present for ZNF608 and ZBTB38. To identify possible target genes of ZNF25, we analyzed gene expression following ZNF25 siRNA knockdown. This revealed a 23-fold upregulation of matrix metallopeptidase 1 and an 18-fold upregulation of leucine-rich repeat containing G protein-coupled receptor 5 and RAN-binding protein 3-like. We also observed enrichment in extracellular matrix organization, skeletal system development and regulation of ossification in the entire upregulated set of genes. Consistent with its function as a transcription factor during osteoblast differentiation of hMSC, we showed that the ZNF25 protein exhibits nuclear localization and is expressed in osteoblastic and osteocytic cells in vivo. ZNF25 is conserved in tetrapod vertebrates and contains a KRAB (Krueppel-associated box) transcriptional repressor domain. Conclusions This study shows that the uncharacterized transcription factor, ZNF25, is associated with differentiation of hMSC to osteoblasts.
Collapse
Affiliation(s)
- Natalie A Twine
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Linda Harkness
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital, Odense, Denmark.,Present Address: Pluripotent Stem Cell Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Moustapha Kassem
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital, Odense, Denmark.,Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Lalonde R, Moses D, Zhang J, Cornell N, Ekker M, Akimenko MA. Differential actinodin1 regulation in zebrafish and mouse appendages. Dev Biol 2016; 417:91-103. [DOI: 10.1016/j.ydbio.2016.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
|
17
|
Van Otterloo E, Feng W, Jones KL, Hynes NE, Clouthier DE, Niswander L, Williams T. MEMO1 drives cranial endochondral ossification and palatogenesis. Dev Biol 2015; 415:278-295. [PMID: 26746790 DOI: 10.1016/j.ydbio.2015.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 02/01/2023]
Abstract
The cranial base is a component of the neurocranium and has a central role in the structural integration of the face, brain and vertebral column. Consequently, alteration in the shape of the human cranial base has been intimately linked with primate evolution and defective development is associated with numerous human facial abnormalities. Here we describe a novel recessive mutant mouse strain that presented with a domed head and fully penetrant cleft secondary palate coupled with defects in the formation of the underlying cranial base. Mapping and non-complementation studies revealed a specific mutation in Memo1 - a gene originally associated with cell migration. Expression analysis of Memo1 identified robust expression in the perichondrium and periosteum of the developing cranial base, but only modest expression in the palatal shelves. Fittingly, although the palatal shelves failed to elevate in Memo1 mutants, expression changes were modest within the shelves themselves. In contrast, the cranial base, which forms via endochondral ossification had major reductions in the expression of genes responsible for bone formation, notably matrix metalloproteinases and markers of the osteoblast lineage, mirrored by an increase in markers of cartilage and extracellular matrix development. Concomitant with these changes, mutant cranial bases showed an increased zone of hypertrophic chondrocytes accompanied by a reduction in both vascular invasion and mineralization. Finally, neural crest cell-specific deletion of Memo1 caused a failure of anterior cranial base ossification indicating a cell autonomous role for MEMO1 in the development of these neural crest cell derived structures. However, palate formation was largely normal in these conditional mutants, suggesting a non-autonomous role for MEMO1 in palatal closure. Overall, these findings assign a new function to MEMO1 in driving endochondral ossification in the cranium, and also link abnormal development of the cranial base with more widespread effects on craniofacial shape relevant to human craniofacial dysmorphology.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4002 Basel, Switzerland
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lee Niswander
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 2015; 32:86-106. [PMID: 26302917 DOI: 10.1016/j.jtemb.2015.06.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/07/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023]
Abstract
The human skeleton, made of 206 bones, plays vital roles including supporting the body, protecting organs, enabling movement, and storing minerals. Bones are made of organic structures, intimately connected with an inorganic matrix produced by bone cells. Many elements are ubiquitous in our environment, and many impact bone metabolism. Most elements have antagonistic actions depending on concentration. Indeed, some elements are essential, others are deleterious, and many can be both. Several pathways mediate effects of element deficiencies or excesses on bone metabolism. This paper aims to identify all elements that impact bone health and explore the mechanisms by which they act. To date, this is the first time that the effects of thirty minerals on bone metabolism have been summarized.
Collapse
Affiliation(s)
- Michael Dermience
- University of Liège - Gembloux Agro Bio Tech, Unit Analyzes, Quality, Risks, Laboratory of Analytical Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| | - Georges Lognay
- University of Liège - Gembloux Agro Bio Tech, Unit Analyzes, Quality, Risks, Laboratory of Analytical Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| | - Françoise Mathieu
- Kashin-Beck Disease Fund asbl-vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium.
| | - Philippe Goyens
- Kashin-Beck Disease Fund asbl-vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium; Department and Laboratory of Pediatric, Free Universities of Brussels, Brussels, Belgium.
| |
Collapse
|
19
|
Osteogenic differentiation and gene expression profile of human dental follicle cells induced by human dental pulp cells. J Mol Histol 2014; 46:93-106. [PMID: 25520056 DOI: 10.1007/s10735-014-9604-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
Dental follicle cells (DFCs) differentiate into cementoblasts or osteoblasts under appropriate triggering. However, the mechanism(s) for osteogenic differentiation of DFCs are still unclear. The purpose of this study was to examine the effects of dental papilla-derived human dental pulp cells (hDPCs) on osteogenic differentiation of human DFCs (hDFCs) in vitro and in vivo and to compare gene expression in hDFCs in the presence or absence of hDPCs. To evaluate the osteogenic differentiation of hDFCs induced by hDPCs, hDFCs were cultured in osteogenic medium with or without hDPCs-conditioned medium (CM) in vitro and the cells transplanted into the subcutaneous tissue of immunodeficient mice in vivo. The hDPCs-CM enhanced alkaline phosphatase promoter activity of hDFCs in osteogenic culture. The expression of several osteoblast marker genes was increased in hDFCs treated with hDPCs-CM compared to hDFCs in normal medium. The hDFCs induced by hDPCs-CM also produced more calcified nodules than hDFCs in normal medium. In transplantation experiments, hDPCs-CM promoted the osteogenic induction and bone formation of hDFCs. Microarray analysis and quantitative real-time PCR showed that osteogenesis-related genes including WNT2, VCAN, OSR2, FOSB, and POSTN in hDFCs were significantly upregulated after induction by hDPCs-CM compared to hDFCs in normal medium. These findings indicate that hDPCs could increase the expression of osteogenic genes in hDFCs and stimulate their osteogenesis and could be a cellular resource for bone regeneration therapy when induced by hDPCs-derived factors.
Collapse
|
20
|
Larson SR, Chin J, Zhang X, Brown LG, Coleman IM, Lakely B, Tenniswood M, Corey E, Nelson PS, Vessella RL, Morrissey C. Prostate cancer derived prostatic acid phosphatase promotes an osteoblastic response in the bone microenvironment. Clin Exp Metastasis 2013; 31:247-56. [PMID: 24242705 DOI: 10.1007/s10585-013-9625-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023]
Abstract
Approximately 90 % of patients who die of prostate cancer (PCa) have bone metastases, often promoting osteoblastic lesions. We observed that 88 % of castration-resistant PCa (CRPC) bone metastases express prostatic acid phosphatase (PAP), a soluble secreted protein expressed by prostate epithelial cells in predominately osteoblastic (n = 18) or osteolytic (n = 15) lesions. Additionally, conditioned media (CM) of an osteoblastic PCa xenograft LuCaP 23.1 contained significant levels of PAP and promoted mineralization in mouse and human calvaria-derived cells (MC3T3-E1 and HCO). To demonstrate that PAP promotes mineralization, we stimulated MC3T3-E1 cells with PAP and observed increased mineralization, which could be blocked with the specific PAP inhibitor, phosphonic acid. Furthermore, the mineralization promoted by LuCaP 23.1 CM was also blocked by phosphonic acid, suggesting PAP is responsible for the mineralization promoting activity of LuCaP 23.1. In addition, gene expression arrays comparing osteoblastic to osteolytic CRPC (n = 14) identified betacellulin (BTC) as a gene upregulated during the osteoblastic response in osteoblasts during new bone formation. Moreover, BTC levels were increased in bone marrow stromal cells in response to LuCaP 23.1 CM in vitro. Because new bone formation does occur in osteoblastic and can occur in osteolytic CRPC bone metastases, we confirmed by immunohistochemistry (n = 36) that BTC was highly expressed in osteoblasts involved in new bone formation occurring in both osteoblastic and osteolytic sites. These studies suggest a role for PAP in promoting the osteoblastic reaction in CRPC bone metastases and identify BTC as a novel downstream protein expressed in osteoblasts during new bone formation.
Collapse
Affiliation(s)
- Sandy R Larson
- Genitourinary Cancer Research Laboratory, Department of Urology, University of Washington, Box 356510, Seattle, WA, 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Odd-skipped related-1 controls neural crest chondrogenesis during tongue development. Proc Natl Acad Sci U S A 2013; 110:18555-60. [PMID: 24167250 DOI: 10.1073/pnas.1306495110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tongue is a critical element of the feeding system in tetrapod animals for their successful adaptation to terrestrial life. Whereas the oral part of the mammalian tongue contains soft tissues only, the avian tongue has an internal skeleton extending to the anterior tip. The mechanisms underlying the evolutionary divergence in tongue skeleton formation are completely unknown. We show here that the odd-skipped related-1 (Osr1) transcription factor is expressed throughout the neural crest-derived tongue mesenchyme in mouse, but not in chick, embryos during early tongue morphogenesis. Neural crest-specific inactivation of Osr1 resulted in formation of an ectopic cartilage in the mouse tongue, reminiscent in shape and developmental ontogeny of the anterior tongue cartilage in chick. SRY-box containing gene-9 (Sox9), the master regulator of chondrogenesis, is widely expressed in the nascent tongue mesenchyme at the onset of tongue morphogenesis but its expression is dramatically down-regulated concomitant with activation of Osr1 expression in the developing mouse tongue. In Osr1 mutant mouse embryos, expression of Sox9 persisted in the developing tongue mesenchyme where chondrogenesis is subsequently activated to form the ectopic cartilage. Furthermore, we show that Osr1 binds to the Sox9 gene promoter and that overexpression of Osr1 suppressed expression of endogenous Sox9 mRNAs and Sox9 promoter-driven reporter. These data indicate that Osr1 normally prevents chondrogenesis in the mammalian tongue through repression of Sox9 expression and suggest that changes in regulation of Osr1 expression in the neural crest-derived tongue mesenchyme underlie the evolutionary divergence of birds from other vertebrates in tongue morphogenesis.
Collapse
|
22
|
Lam PY, Kamei CN, Mangos S, Mudumana S, Liu Y, Drummond IA. odd-skipped related 2 is required for fin chondrogenesis in zebrafish. Dev Dyn 2013; 242:1284-92. [PMID: 23913342 DOI: 10.1002/dvdy.24026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/21/2013] [Accepted: 07/17/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND odd-skipped related 2 (osr2) encodes a vertebrate ortholog of the Drosophila odd-skipped zinc-finger transcription factor. Osr2 in mouse is required for proper palate, eyelid, and bone development. Zebrafish knock-down experiments have also suggested a role for osr2, along with its paralog osr1, in early pectoral fin specification and pronephric development. RESULTS We show here that osr2 has a specific function later in development, independent of osr1, in the regulation of sox9a expression and promoting fin chondrogenesis. mRNA in situ hybridization demonstrated osr2 expression in the developing floorplate and later during organogenesis in the pronephros and gut epithelium. In the pectoral fin buds, osr2 was specifically expressed in fin mesenchyme. osr2 knock down in zebrafish embryos disrupted both three and five zinc finger alternatively spliced osr2 isoforms and eliminated wild-type osr2 mRNA. osr2 morphants exhibited normal pectoral fin bud specification but exhibited defective fin chondrogenesis, with loss of differentiated chondrocytes. Defects in chondrogenesis were paralleled by loss of sox9a as well as subsequent col2a1 expression, linking osr2 function to essential regulators of chondrogenesis. CONCLUSIONS The zebrafish odd-skipped related 2 gene regulates sox9a and col2a1 expression in chondrocyte development and is specifically required for zebrafish fin morphogenesis.
Collapse
Affiliation(s)
- Pui-Ying Lam
- Massachusetts General Hospital, Department of Medicine, Nephrology Division, and Harvard Medical School Department of Genetics, Charlestown, Massachusetts
| | | | | | | | | | | |
Collapse
|
23
|
Expression pattern of zinc-finger transcription factor Odd-skipped related 2 in murine development and neonatal stage. Gene Expr Patterns 2013; 13:372-6. [PMID: 23872338 DOI: 10.1016/j.gep.2013.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/26/2013] [Accepted: 06/29/2013] [Indexed: 11/24/2022]
Abstract
The Odd-skipped gene, first identified as a Drosophila pair-rule zinc-finger transcription factor, plays an important role in Drosophila development. The mammalian homolog, Odd-skipped related 2 (Osr2), regulates limb, tooth, and kidney development in mouse embryos. However, the detailed expression pattern of Osr2 during neonatal development remains unclear. In this study, we investigated Osr2 expression patterns in mouse neonatal and embryo tissues using qPCR and in situ hybridization methods. First, we examined the tissue distribution of Osr2 by qPCR, and found it to be highly expressed in the uterus and moderately in the testes, small intestine, and prostate. That expression was also found in eye, kidney, placenta, lung, thymus, lymph node, stomach, and skeletal muscle tissues, and in all embryonic stages. On the other hand, Osr2 was not expressed in brain, heart, liver, or spleen samples. Next, we examined the tissue localization of Osr2 using in situ hybridization. Osr2 was found in the craniofacial region on E13.5, with notable expression in dental germ mesenchyme as well as the renal corpuscle on E17.5. As for neonatal tissues, Osr2 was expressed in the dental papilla, dental follicle, Harderian gland, nasal bone, eyelid dermis, synovial joint, and tibial subcutis. Our findings suggest that Osr2 functions in reproductive system organs, such as the uterus, testes, prostate, placenta, and ovaries. Furthermore, based on its expression in kidney, Harderian gland, eyelid dermis, and tibial subcutis tissues, this transcription factor may be involved in hormone synthesis and function. Together, our results demonstrate the role of Osr2 in postnatal development and embryogenesis.
Collapse
|
24
|
Verlinden L, Kriebitzsch C, Eelen G, Van Camp M, Leyssens C, Tan BK, Beullens I, Verstuyf A. The odd-skipped related genes Osr1 and Osr2 are induced by 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 2013; 136:94-7. [PMID: 23238298 DOI: 10.1016/j.jsbmb.2012.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/27/2012] [Accepted: 12/02/2012] [Indexed: 11/19/2022]
Abstract
The odd-skipped related genes Osr1 and Osr2 encode closely related zinc finger containing transcription factors that are expressed in developing limb. However, their role in osteoblast proliferation and differentiation remains controversial and little is known about their regulation. In this study we showed that both Osr1 and Osr2 were expressed in several murine and human osteoblast cell lines as well as in primary osteoblast cultures. Moreover, their transcript levels were regulated by a number of osteogenic stimuli in murine pre-osteoblast MC3T3-E1 cells. The most robust regulation of Osr1 and Osr2 mRNA levels was observed after stimulation with 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 induced transcript levels of Osr1 and Osr2 and this up-regulation was confirmed in other osteoblast cultures, both from murine and human origin. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Lieve Verlinden
- Laboratorium voor Klinische en Experimentele Endocrinologie, KU Leuven, Herestraat 49, Bus 902, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Autophagosomes form at ER-mitochondria contact sites. Nature 2013; 495:389-93. [PMID: 23455425 DOI: 10.1038/nature11910] [Citation(s) in RCA: 1337] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/15/2013] [Indexed: 12/13/2022]
Abstract
Autophagy is a tightly regulated intracellular bulk degradation/recycling system that has fundamental roles in cellular homeostasis. Autophagy is initiated by isolation membranes, which form and elongate as they engulf portions of the cytoplasm and organelles. Eventually isolation membranes close to form double membrane-bound autophagosomes and fuse with lysosomes to degrade their contents. The physiological role of autophagy has been determined since its discovery, but the origin of autophagosomal membranes has remained unclear. At present, there is much controversy about the organelle from which the membranes originate--the endoplasmic reticulum (ER), mitochondria and plasma membrane. Here we show that autophagosomes form at the ER-mitochondria contact site in mammalian cells. Imaging data reveal that the pre-autophagosome/autophagosome marker ATG14 (also known as ATG14L) relocalizes to the ER-mitochondria contact site after starvation, and the autophagosome-formation marker ATG5 also localizes at the site until formation is complete. Subcellular fractionation showed that ATG14 co-fractionates in the mitochondria-associated ER membrane fraction under starvation conditions. Disruption of the ER-mitochondria contact site prevents the formation of ATG14 puncta. The ER-resident SNARE protein syntaxin 17 (STX17) binds ATG14 and recruits it to the ER-mitochondria contact site. These results provide new insight into organelle biogenesis by demonstrating that the ER-mitochondria contact site is important in autophagosome formation.
Collapse
|
26
|
Negative regulation of Odd-skipped related 2 by TGF-beta achieves the induction of cellular migration and the arrest of cell cycle. Biochem Biophys Res Commun 2012; 421:696-700. [PMID: 22542937 DOI: 10.1016/j.bbrc.2012.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 11/24/2022]
Abstract
The transcription factor Odd-skipped related 2 (Osr2) functions in craniofacial and limb developments in mammals. We previously found that Osr2 gene expression is regulated by intracellular transcription factors such as Runx2, and C/EBP, whereas it remains unclear if extracellular factors would functionally regulate the Osr2 expression. In this study, we showed that TGF-β down-regulated the Osr2 expression, which is involved in regulation of cellular migration and cell cycle. Furthermore, the down-regulation was found to be mediated by Smad3/Smad4 and p38/ATF2 signaling molecules. The Osr2 promoter was shown to possess Smad3/4 binding element and ATF2 binding element between -647 and -64 of promoter. TGF-β induced cellular migration in C3H10T1/2 cells and arrested cell cycle at G1 phase in NMuMG-Fucci cells. In contrast, the Osr2 reduced the migration and also stimulated the cell-cycle progression. These results suggest that Osr2 is involved in TGF-β regulating cell migration and cell cycle via a Smad3-ATF2 transcriptional complex mediating pathway.
Collapse
|
27
|
Neto A, Mercader N, Gómez-Skarmeta JL. The Osr1 and Osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of Wnt2b to maintain pectoral fin development. Development 2011; 139:301-11. [PMID: 22129829 DOI: 10.1242/dev.074856] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vertebrate odd-skipped related genes (Osr) have an essential function during the formation of the intermediate mesoderm (IM) and the kidney structures derived from it. Here, we show that these genes are also crucial for limb bud formation in the adjacent lateral plate mesoderm (LPM). Reduction of zebrafish Osr function impairs fin development by the failure of tbx5a maintenance in the developing pectoral fin bud. Osr morphant embryos show reduced wnt2b expression, and increasing Wnt signaling in Osr morphant embryos partially rescues tbx5a expression. Thus, Osr genes control limb bud development in a non-cell-autonomous manner, probably through the activation of Wnt2b. Finally, we demonstrate that Osr genes are downstream targets of retinoic acid (RA) signaling. Therefore, Osr genes act as a relay within the genetic cascade of fin bud formation: by controlling the expression of the signaling molecule Wnt2ba in the IM they play an essential function transmitting the RA signaling originated in the somites to the LPM.
Collapse
Affiliation(s)
- Ana Neto
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | | | | |
Collapse
|
28
|
Gao H, Wu X, Fossett N. Odd-skipped maintains prohemocyte potency and blocks blood cell development in Drosophila. Genesis 2011; 49:105-16. [PMID: 21381183 DOI: 10.1002/dvg.20711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/20/2010] [Accepted: 12/26/2010] [Indexed: 12/11/2022]
Abstract
Studies using Drosophila have contributed significantly to our understanding of regulatory mechanisms that control stem cell fate choice. The Drosophila blood cell progenitor or prohemocyte shares important characteristics with mammalian hematopoietic stem cells, including quiescence, niche dependence, and the capacity to form all three fly blood cell types. This report extends our understanding of prohemocyte fate choice by showing that the zinc-finger protein Odd-skipped promotes multipotency and blocks differentiation. Odd-skipped was expressed in prohemocytes and downregulated in terminally differentiated plasmatocytes. Furthermore, Odd-skipped maintained the prohemocyte population and blocked differentiation of plasmatocytes and lamellocytes but not crystal cells. A previous study showed that Odd-skipped expression is downregulated by Decapentaplegic signaling. This report provides a functional basis for this regulator/target pair by suggesting that Decapentaplegic signaling limits Odd-skipped expression to promote prohemocyte differentiation. Overall, these studies are the basis for a gene regulatory model of prohemocyte cell fate choice.
Collapse
Affiliation(s)
- Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
29
|
Delorme B, Nivet E, Gaillard J, Häupl T, Ringe J, Devèze A, Magnan J, Sohier J, Khrestchatisky M, Roman FS, Charbord P, Sensebé L, Layrolle P, Féron F. The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev 2010; 19:853-66. [PMID: 19905894 DOI: 10.1089/scd.2009.0267] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We previously identified multipotent stem cells within the lamina propria of the human olfactory mucosa, located in the nasal cavity. We also demonstrated that this cell type differentiates into neural cells and improves locomotor behavior after transplantation in a rat model of Parkinson's disease. Yet, next to nothing is known about their specific stemness characteristics. We therefore devised a study aiming to compare olfactory lamina propria stem cells from 4 individuals to bone marrow mesenchymal stem cells from 4 age- and gender-matched individuals. Using pangenomic microarrays and immunostaining with 34 cell surface marker antibodies, we show here that olfactory stem cells are closely related to bone marrow stem cells. However, olfactory stem cells also exhibit singular traits. By means of techniques such as proliferation assay, cDNA microarrays, RT-PCR, in vitro and in vivo differentiation, we report that when compared to bone marrow stem cells, olfactory stem cells display (1) a high proliferation rate; (2) a propensity to differentiate into osseous cells; and (3) a disinclination to give rise to chondrocytes and adipocytes. Since peripheral olfactory stem cells originate from a neural crest-derived tissue and, as shown here, exhibit an increased expression of neural cell-related genes, we propose to name them olfactory ectomesenchymal stem cells (OE-MSC). Further studies are now required to corroborate the therapeutic potential of OE-MSCs in animal models of bone and brain diseases.
Collapse
Affiliation(s)
- Bruno Delorme
- Inserm ESPRI-EA3855, Université François Rabelais, Faculté de Médecine, Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Odd-skipped related 2 regulates genes related to proliferation and development. Biochem Biophys Res Commun 2010; 398:184-90. [DOI: 10.1016/j.bbrc.2010.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 11/24/2022]
|
31
|
Odd-skipped related 2 is epigenetically regulated in cellular quiescence. Biochem Biophys Res Commun 2010; 396:831-6. [PMID: 20450884 DOI: 10.1016/j.bbrc.2010.04.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/20/2022]
Abstract
Cellular behavior and development are extensively altered during the transition from cell cycle into quiescence, though the mechanism involved in establishing and maintaining quiescence is largely unknown. We found that Odd-skipped related 2 (Osr2) was up-regulated during cellular quiescence by serum starvation as well as culturing to confluence. To investigate the regulatory mechanism of Osr2 under these conditions, we characterized the mouse Osr2 promoter. CpG islands in the flanking region of the transcription start site were predominantly methylated in exponentially growing cells, resulting in silencing of Osr2 expression. In addition, CpG demethylation in quiescence caused activation of Osr2 expression, while acetylation of the H3 and H4 histones during quiescence also led to an increase in Osr2 expression. These results suggest that epigenetically regulated Osr2 plays an important role in cellular quiescence and proliferation.
Collapse
|
32
|
Mirmalek-Sani SH, Stokes PJ, Tare RS, Ralph EJ, Inglis S, Hanley NA, Houghton FD, Oreffo ROC. Derivation of a novel undifferentiated human foetal phenotype in serum-free cultures with BMP-2. J Cell Mol Med 2009; 13:3541-55. [PMID: 19438813 PMCID: PMC3430854 DOI: 10.1111/j.1582-4934.2009.00742.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 02/23/2009] [Indexed: 11/30/2022] Open
Abstract
Skeletal stem and progenitor populations provide a platform for cell-based tissue regeneration strategies. Optimized conditions for ex vivo expansion will be critical and use of serum-free culture may allow enhanced modelling of differentiation potential. Maintenance of human foetal femur-derived cells in a chemically defined medium (CDM) with activin A and fibroblast growth factor-2 generated a unique undifferentiated cell population in comparison to basal cultures, with significantly reduced amino acid depletion, appearance and turnover, reduced alkaline phosphatase (ALP) activity and loss of type I and II collagen expression demonstrated by fluorescence immunocytochemistry. Microarray analysis demonstrated up-regulation of CLU, OSR2, POSTN and RABGAP1 and down-regulation of differentiation-associated genes CRYAB, CSRP1, EPAS1, GREM1, MT1X and SRGN as validated by quantitative real-time polymerase chain reaction. Application of osteogenic conditions to CDM cultures demonstrated partial rescue of ALP activity. In contrast, the addition of bone morphogenetic protein-2 (BMP-2) resulted in reduced ALP levels, increased amino acid metabolism and, strikingly, a marked shift to a cobblestone-like cellular morphology, with expression of SOX-2 and SOX-9 but not STRO-1 as shown by immunocytochemistry, and significantly altered expression of metabolic genes (GFPT2, SC4MOL and SQLE), genes involved in morphogenesis (SOX15 and WIF1) and differentiation potential (C1orf19, CHSY-2,DUSP6, HMGCS1 and PPL). These studies demonstrate the use of an intermediary foetal cellular model for differentiation studies in chemically defined conditions and indicate the in vitro reconstruction of the mesenchymal condensation phenotype in the presence of BMP-2, with implications therein for rescue studies, screening assays and skeletal regeneration research.
Collapse
Affiliation(s)
- Sayed-Hadi Mirmalek-Sani
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, Developmental Origins of Health and Disease Division, University of SouthamptonSouthampton, UK
| | - Paula J Stokes
- Centre for Human Development, Stem Cells and Regeneration, Human Genetics Division, University of SouthamptonSouthampton, UK
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, Developmental Origins of Health and Disease Division, University of SouthamptonSouthampton, UK
| | - Esther J Ralph
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, Developmental Origins of Health and Disease Division, University of SouthamptonSouthampton, UK
| | - Stefanie Inglis
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, Developmental Origins of Health and Disease Division, University of SouthamptonSouthampton, UK
| | - Neil A Hanley
- Centre for Human Development, Stem Cells and Regeneration, Human Genetics Division, University of SouthamptonSouthampton, UK
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells and Regeneration, Human Genetics Division, University of SouthamptonSouthampton, UK
| | - Richard OC Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, Developmental Origins of Health and Disease Division, University of SouthamptonSouthampton, UK
| |
Collapse
|
33
|
Elemraid MA, Mackenzie IJ, Fraser WD, Brabin BJ. Nutritional factors in the pathogenesis of ear disease in children: a systematic review. ACTA ACUST UNITED AC 2009; 29:85-99. [PMID: 19460262 DOI: 10.1179/146532809x440707] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Ear disease is a major health problem in poorly resourced countries. The role of nutritional deficiencies in its pathogenesis and in relation to chronic suppurative otitis media (CSOM) has not been reviewed previously. METHODS A systematic review was undertaken using Pubmed, SCOPUS, Cinahl on Ovid, the Cochrane Database and selected medical journals, with no language restriction. Nutritional mechanisms potentially related to ear disease and CSOM risks were reviewed. All studies (observational, case-control, cohort and clinical trials including randomised controlled trials) with nutrition-related information were included. The titles and/or abstracts of all retrieved studies were reviewed and full articles were obtained for relevant studies. Exclusion criteria were multiple publication or studies which did not report nutritional information. RESULTS Supplementation studies using single micronutrients and vitamins to determine efficacy in reducing acute or chronic otitis media provided some evidence for an association of middle-ear pathology with deficiencies of zinc or vitamin A. Multi-micronutrient supplementation studies provided further support for a beneficial effect, although the number of studies was small and they were heterogeneous and uncontrolled. No human study was identified which specifically examined the association between copper, selenium or vitamin D status and middle-ear disease or infection. CONCLUSION Particularly in developing countries, research on micronutrient status and vitamin deficiency and their influence on middle-ear disease is required to improve knowledge of the pathogenesis of middle-ear infection and to determine the relevance of nutritional interventions in prevention and treatment.
Collapse
Affiliation(s)
- M A Elemraid
- WHO Collaborating Centre on Hearing Impairment, Child & Reproductive Health Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | |
Collapse
|
34
|
Zhang X, Dowd DR, Moore MC, Kranenburg TA, Meester-Smoor MA, Zwarthoff EC, MacDonald PN. Meningioma 1 is required for appropriate osteoblast proliferation, motility, differentiation, and function. J Biol Chem 2009; 284:18174-83. [PMID: 19386590 DOI: 10.1074/jbc.m109.001354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vitamin D endocrine system is essential for calcium and phosphate homeostasis and skeletal mineralization. The 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) hormone binds to the vitamin D receptor (VDR) to regulate gene expression. These gene products in turn mediate the actions of 1,25(OH)(2)D(3) in mineral-regulating target cells such as the osteoblast. We showed previously that meningioma 1 (MN1) is a novel target of 1,25(OH)(2)D(3) in MG-63 osteoblastic cells and that it is a coactivator for VDR-mediated transcription (Sutton, A. L., Zhang, X., Ellison, T. I., and MacDonald, P. N. (2005) Mol. Endocrinol. 19, 2234-2244). However, the functional significance of MN1 in osteoblastic cell biology is largely unknown. Here, we demonstrate that MN1 expression is increased dramatically during differentiation of primary osteoblastic cells. Using calvarial osteoblasts derived from wild-type and MN1 knock-out mice, we provide data supporting an essential role of MN1 in maintaining appropriate osteoblast proliferation, differentiation, and function. MN1 knock-out osteoblasts displayed altered morphology, decreased growth rate, impaired motility, and attenuated 1,25(OH)(2)D(3)/VDR-mediated transcription as well as reduced alkaline phosphatase activity and mineralized nodule formation. MN1 null osteoblasts were also impaired in supporting osteoclastogenesis in co-culture studies presumably because of marked reduction in the RANKL:OPG ratio in the MN1 null cells. Mechanistic studies supported a transcriptional role for MN1 in controlling RANKL gene expression through activation of the RANKL promoter. Cumulatively, these studies indicate an important role for MN1 in maintaining the appropriate maturation and function of calvarial osteoblasts.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Gao Y, Lan Y, Ovitt CE, Jiang R. Functional equivalence of the zinc finger transcription factors Osr1 and Osr2 in mouse development. Dev Biol 2009; 328:200-9. [PMID: 19389375 PMCID: PMC2690698 DOI: 10.1016/j.ydbio.2009.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
Osr1 and Osr2 are the only mammalian homologs of the Drosophila odd-skipped family developmental regulators. The Osr1 protein contains three zinc-finger motifs whereas Osr2 exists in two isoforms, containing three and five zinc-finger motifs respectively, due to alternative splicing of the transcripts. Targeted null mutations in these genes in mice resulted in distinct phenotypes, with heart and urogenital developmental defects in Osr1(-/-) mice and with cleft palate and open eyelids at birth in Osr2(-/-) mice. To investigate whether these contrasting mutant phenotypes are due to differences in their protein structure or to differential expression patterns, we generated mice in which the endogenous Osr2 coding region was replaced by either Osr1 cDNA or Osr2A cDNA encoding the five-finger isoform. The knockin alleles recapitulated endogenous Osr2 mRNA expression patterns in most tissues and completely rescued cleft palate and cranial skeletal developmental defects of Osr2(-/-) mice. Mice hemizygous or homozygous for either knockin allele exhibited open-eyelids at birth, which correlated with differences in expression patterns between the knockin allele and the endogenous Osr2 gene during eyelid development. Molecular marker analyses in Osr2(-/-) and Osr2(Osr1ki/Osr1ki) mice revealed that Osr2 controls eyelid development through regulation of the Fgf10-Fgfr2 signaling pathway and that Osr1 rescued Osr2 function in maintaining Fgf10 expression during eyelid development in Osr2(Osr1ki/Osr1ki) mice. These results indicate that the distinct functions of Osr1 and Osr2 during mouse development result from evolutionary divergence of their cis regulatory sequences rather than distinct biochemical activities of their protein products.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Yu Lan
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Catherine E. Ovitt
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Rulang Jiang
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
36
|
Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in Drosophila. Proc Natl Acad Sci U S A 2008; 105:14952-7. [PMID: 18815369 DOI: 10.1073/pnas.0808208105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intercellular signaling by bone morphogenetic proteins (BMPs) regulates developmental decisions in virtually all animals. Here, we report that Decapentaplegic (Dpp; a Drosophila BMP family member) plays a role in blood cell homeostasis and immune responses by regulating a transcription factor cascade. The cascade begins with Dpp repression of Zfh1, continues with Zfh1 activation of Serpent (Srp; a GATA factor), and terminates with Srp activation of U-shaped (Ush) in hematopoietic cells. Hyperactivation of Zfh1, Srp, and Ush in dpp mutants leads to hyperplasia of plasmatocytes. Salmonella challenge revealed that in dpp mutants the misregulation of this cascade also prevents the generation of lamellocytes. These findings support the hypothesis that Ush participates in a switch between plasmatocyte and lamellocyte fate in a common precursor and further suggests a mechanism for how all blood cell types can arise from a single progenitor. These results also demonstrate that combining Drosophila and Salmonella genetics can provide novel opportunities for advancing our knowledge of hematopoiesis and innate immunity.
Collapse
|
37
|
Yamauchi M, Kawai S, Kato T, Ooshima T, Amano A. Odd-skipped related 1 gene expression is regulated by Runx2 and Ikzf1 transcription factors. Gene 2008; 426:81-90. [PMID: 18804520 DOI: 10.1016/j.gene.2008.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/18/2008] [Accepted: 08/22/2008] [Indexed: 12/30/2022]
Abstract
Odd-skipped related 1 (Osr1) gene encodes a zinc-finger transcription factor that plays important roles in embryonic, heart, and urogenital development, however, it is unknown how its expression is regulated. In this study, we analyzed the promoter region of Osr1 to elucidate its regulation mechanism. The mouse Osr1 promoter region was cloned and characterized, and found to have two repressor elements in the -4504/-2766 and -1616/-109 regions, and two enhancer elements in the -2766/-1616 and -109/+199 regions. Several Runx2 and Ikzf1 binding sites were found in both mouse and human Osr1 promoters. Osr1 promoter activity was suppressed by cotransfection with Runx2- and Ikzf1-expressing vectors in a dose-dependent manner. Electrophoresis mobility shift assays showed that purified Runx2 bound to proximal (-611/-606) Runx2 binding motifs and that Ikzf1 bound to proximal (-1652/-1644) Ikzf1 binding motifs. Chrosmatin immunoprecipitation demonstrated that Runx2 bound to both the distal (-3047/-3042) and proximal regions, and that Ikzf1 bound to both the far-distal (-3036/-3028) and proximal elements. These findings indicate that Osr1 expression is regulated by Runx2 and Ikzf1, which are known as master-gene of osteogenesis and hematopoiesis, respectively.
Collapse
Affiliation(s)
- Masashi Yamauchi
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|